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Notations

We use the following notations:

S is a numerical semigroup;

M(S) = S \ {0} is the maximal ideal of S ;

e(S) = min(M(S)) is the multiplicity of S ;

f (S) = max{N \ S} is the Frobenius number of S ;

K(S) = {x ∈ N | f (S)− x /∈ S} is the standard canonical ideal of S . We
call canonical ideals all the relative ideals K(S) + x for any x ∈ Z;

PF(S) = {x ∈ Z \ S | x + s ∈ S for any s ∈ M(S)} is the set of the
pseudo-Frobenius numbers of S ;

t(S) = |PF(S)| is the type of S ;

HS(i) = |iM(S) \ (i + 1)M(S)| is the i-th value of the Hilbert function of
S . Here iM(S) is the sum M(S) + M(S) + · · ·+ M(S) (i times);

We write the Hilbert function of S as [HS(0),HS(1), . . . ,HS(n)→], where
the arrow means that all the values greater than n are equal to HS(n).

ν(S) = HS(1) is the embedding dimension of S ;
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Rossi’s problem

We are interesting in the following problem:

Problem (M.E. Rossi)

Is the Hilbert function of a Gorenstein local ring of dimension one not
decreasing?

We recall that a numerical semigroup is said to be symmetric if S = K(S) or
equivalently if it has type 1. If we restrict to numerical semigroup rings, we can
rewrite the previous problem as follows.

Problem

Is the Hilbert function of a symmetric numerical semigroup not decreasing?
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Known results

In the last ten years several authors gave a positive answer in some particular
cases:

F. Arslan, P. Mete and M. Şahin [2009], for infinitely many families
obtained using the notion of nice gluing of numerical semigroups;

R. Jafari and S. Zarzuela Armengou [2014], for some families of numerical
semigroups through the concept of gluing;

A. Oneto and G. Tamone [2016], when ν(S) ≥ e(S)− 4.

Moreover the answer is positive also for several families of symmetric numerical
semigroups with embedding dimension 4:

F. Arslan and P. Mete [2007];

D.P. Patil and G. Tamone [2011];

F. Arslan, N. Sipahi and N. Şahin [2013];

F. Arslan, A. Katsabekis and M. Nalbandiyan [2015].

However the answer is negative in general.
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F. Arslan, P. Mete and M. Şahin [2009], for infinitely many families
obtained using the notion of nice gluing of numerical semigroups;

R. Jafari and S. Zarzuela Armengou [2014], for some families of numerical
semigroups through the concept of gluing;

A. Oneto and G. Tamone [2016], when ν(S) ≥ e(S)− 4.

Moreover the answer is positive also for several families of symmetric numerical
semigroups with embedding dimension 4:

F. Arslan and P. Mete [2007];

D.P. Patil and G. Tamone [2011];

F. Arslan, N. Sipahi and N. Şahin [2013];
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Numerical duplication

Given a proper ideal E of S and an odd integer b ∈ S , the numerical
duplication of S with respect to E and b is defined as the numerical semigroup

Sonb E = 2 · S ∪ (2 · E + b),

where 2 · X = {2x | x ∈ X} 6= 2X for any set X .

Equivalently, if
S = 〈s1, . . . , sν〉 and E = 〈n1, . . . , nh〉, we have

Sonb E = 〈2s1, . . . , 2sν , 2n1 + b, . . . , 2nh + b〉

Proposition (D’Anna, S.)

The numerical semigroup Sonb E is symmetric if and only if E is a canonical
ideal of S .
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The Hilbert function of the numerical duplication

Let T be the numerical semigroup Sonb E .

Proposition (Barucci, D’Anna, S.)

For any i > 0 the i-value of the Hilbert function of T is

HT (i) = HS(i) + |((i − 1)M(S) + E) \ ((i − 2)M(S) + E)|.

The numerical semigroup S is said to be almost symmetric if
M(S) + K(S) = M(S). In this case the formula above becomes easier:

HT (0) = 1,

HT (1) = ν(S) + t(S),

HT (i) = HS(i) + HS(i − 1) if i ≥ 2.

Corollary

Let S be almost symmetric and let E be a canonical ideal of S . If
HS(i − 1) > HS(i + 1), then HT (i) > HT (i + 1). In particular T is a symmetric
numerical semigroup with decreasing Hilbert function.
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A new question

Question

Are there almost symmetric numerical semigroups S such that
HS(i − 1) > HS(i + 1) for some i?

The condition in the above equation implies that S has decreasing Hilbert
function

, but in general this is a stronger condition. For instance the numerical
semigroup

S = 〈30, 35, 42, 47, 108, 110, 113, 118, 122, 127, 134, 139〉

is almost symmetric and its Hilbert function is HS = [1, 12, 17, 16, 25, 30→].
Therefore HS decreases, but HS(i − 1) ≤ HS(i + 1) for any i .

The same happens for the almost symmetric semigroup

S = 〈56, 63, 72, 79, 271, 273, 275, 278, 282, 285, 289, 291, 298,

304, 305, 307, 311, 314, 318, 320, 321, 322, 325, 332〉

that has Hilbert function [1, 24, 23, 27, 25, 36, 49, 56→].
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Studying the Apéry set

Definition

1. If s is an element of S , the order of s is ord(s) := max{i | s ∈ iM(S)}.
2. The Apéry set of S is Ap(S) := {s ∈ S | s − e(S) /∈ S}.
3. Apk(S) := {s ∈ Ap(S) | ord(s) = k}.
4. Dk := {s ∈ S | ord(s) = k − 1 and ord(s + e(S)) > k}.

If S has decreasing Hilbert function, D’Anna, Di Marca, and Micale proved
that |Ap2(S)| ≥ 3. So we first consider the simpler case:

Proposition (Oneto, S., Tamone)

Assume that |Ap2(S)| = 3, Apk(S) = ∅ for all k ≥ 3 and HS is decreasing.
Then S is not almost symmetric.
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The case |Ap2(S)| = 3 and |Ap3(S)| = 1

If HS is decreasing we denote by ` the minimum level in which decreases.
Moreover we set d = max{ord(s) | s ∈ Ap(S)}.

Proposition (Oneto, S., Tamone)

Assume that |Ap2(S)| = 3, |Ap3(S)| = 1 and HS is decreasing.

1. If S is almost symmetric, then ` ≥ 3.

2. If ` ≥ 3, then HS(h) = HS(`− 1) for all h ∈ [1, `− 1]. Further
HS(`− 2)− HS(`) = 1.

Therefore it is enough to find an almost symmetric numerical semigroup with
decreasing Hilbert function such that |Ap2(S)| = 3 and |Ap3(S)| = 1.
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Come back to the previous talk

Proposition (Oneto, Tamone)

Assume that |Ap2(S)| = 3, |Ap3(S)| = 1, HS is decreasing and (`, d) 6= (3, 3).
Then ` ≤ d and there exist n1, n2 ∈ Ap1(S) such that Apk(S) = kn1, for
3 ≤ k ≤ d and Ap2(S) = {2n1, n1 + n2, 2n2}. Moreover for 2 ≤ k ≤ `− 1

Dk + e(S) = {kn1 + n2, (k − 1)n1 + 2n2, . . . , (k + 1)n2},
D` + e(S) = {(d + 1)n1, `n1 + n2, (`− 1)n1 + 2n2, . . . , (`+ 1)n2}.

We want to construct a numerical semigroup S satisfying the hypothesis of the
previous proposition with a fixed d = ` ≥ 4. Suppose first that we already know
e(S), n1 and n2; then we know all the elements of the Apéry set with order
greater than 1. Since the elements of Dk have order k − 1, this implies that the
elements of Dk − (k − 2)e(S) have order 1 or are not in S . In the last case it
follows that some elements of Dk − he(S) are in Apk(S) for some k ≥ 2 and we
can exclude this case with a smart choice of e(S), n1 and n2: for this and other
technical reasons we require that `n1 = (`+ 2)n2 − (`− 1)e(S). Consequently

we get the following generators:
sp,q := pn1 + qn2 − (p + q − 2)e(S),

t1 := (`+ 1)n1 − (`− 1)e(S),

where 0 ≤ p ≤ `, 1 ≤ q ≤ `+ 1 and 2 ≤ p + q ≤ `+ 1.
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Nari’s theorem

To force that S is almost symmetric we use the following theorem:

Theorem (Nari)

Set Ap(S) = {0 < α1 < · · · < αm} ∪ {β1 < · · · < βt(S)−1}, where
PF(S) = {βi − e(S) | 1 ≤ i ≤ t(S)− 1} ∪ {αm − e(S) = f (S)} and
m = e(S)− t(S). Then S is almost symmetric if and only if:

1. αi + αm−i = αm for all i ∈ {1, 2, . . . ,m − 1};
2. βj + βt(S)−j = αm + e(S) for all j ∈ {1, 2, . . . , t(S)− 1}.

In our case αm = `n1. Clearly the elements {pn1 | 1 ≤ p ≤ `} satisfy the first
condition. Further also {n2} ∪ {qn2 − (q − 2)e(S) | 2 ≤ q ≤ `+ 1} satisfy the
conditions of the theorem. On the other hand, if 2 ≤ p + q ≤ `+ 1, p ≥ 1 and
q ≥ 1, we require that among our generators there are also

rp,q := `n1 + e(S)− sp,q,

t2 := `n1 + e(S)− t1 = `e(S)− n1.
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Construction

Since Ap(S) = Ap1(S) ∪ {2n1, n1 + n2, 2n2} ∪ {kn1 | 3 ≤ k ≤ `}, it follows that
ν(S) = e(S)− `− 1. Moreover in Ap1(S) there are all the elements
{e(S), n1, n2, t1, t2}, {sp,q} and {rp,q} \ {n1 + n2, 2n2}. Then, if we require that
these elements are distinct, we get

e(S) ≥ 5 +
`2 + 3`

2
+
`2 + `

2
− 2 + `+ 1 = `2 + 3`+ 4.

Construction (Oneto, S., Tamone)

Let ` ≥ 4 be an integer such that ` /∈ {14 + 22k, 35 + 46k | k ∈ N} and let
e := `2 + 3`+ 4. Further we set{

n1 := e + (2`− 1), n2 := e + (`2 − 6), if ` is odd,

n1 := e + (`− 3), n2 := e + (`2 − `− 6), if ` is even.

We denote by S` the semigroup generated by {e, n1, n2, t1, t2} ∪ {sp,q} ∪ {rp,q}.
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{e(S), n1, n2, t1, t2}, {sp,q} and {rp,q} \ {n1 + n2, 2n2}. Then, if we require that
these elements are distinct, we get

e(S) ≥ 5 +
`2 + 3`

2
+
`2 + `

2
− 2 + `+ 1 = `2 + 3`+ 4.

Construction (Oneto, S., Tamone)

Let ` ≥ 4 be an integer such that ` /∈ {14 + 22k, 35 + 46k | k ∈ N} and let
e := `2 + 3`+ 4. Further we set{

n1 := e + (2`− 1), n2 := e + (`2 − 6), if ` is odd,

n1 := e + (`− 3), n2 := e + (`2 − `− 6), if ` is even.

We denote by S` the semigroup generated by {e, n1, n2, t1, t2} ∪ {sp,q} ∪ {rp,q}.

Francesco Strazzanti Symmetric numerical semigroups with decreasing Hilbert function



Construction validity

The following properties hold:

S` is a numerical semigroup;

The Apéry set of S` is

{0, n2, t1, t2} ∪ {kn1 | k ∈ [1, `]} ∪ {sp,q} ∪ {rp,q}.

Further Ap2(S`) = {2n1, n1 + n2, 2n2} and
Apk(S`) = {kn1} for 3 ≤ k ≤ `;
S` is almost symmetric;

The embedding dimension of S` is ν = e − (`+ 1) = `2 + 2`+ 3;

The Hilbert function of S` decreases at level ` and consequently

HS` = [1, ν, ν, . . . , ν, ν − 1,HS`(`+ 1), . . . ];

The type of S` is t(S`) = ν − 1 = `2 + 2`+ 2.
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The first example

The “smallest” numerical semigroup that we have constructed is

S4 = 〈32, 33, 38, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,

89, 90, 91, 92, 93, 94, 95〉.

We have Ap2(S4) = {66, 71, 76}, Ap3(S4) = {99}, Ap4(S4) = {132} and its
Hilbert function is [1, 27, 27, 27, 26, 27, 29, 30, 31, 32→].

Moreover if we set E := K(S) + 101 = K(S) + f (S) + 1 ⊆ S , we get

Son33E = 〈64, 66, 76, 138, 144, 146, 148, 150, 154, 156, 158, 160, 162, 164, 166,

168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 235, 309,

313, 315, 317, 319, 321, 323, 325, 327, 329, 331, 333, 335, 337, 339,

341, 343, 345, 347, 349, 351, 353, 355, 357, 361〉.

This is a symmetric numerical semigroup and its Hilbert function is

[1, 53, 54, 54, 53, 53, 56, 59, 61, 63, 64→].
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The main theorem

Theorem (Oneto, S., Tamone)

Let m, ` > 1 be integers such that ` /∈ {14 + 22k, 35 + 46k | k ∈ N}. Then
there exist infinitely many symmetric numerical semigroups T such that
HT (`− 1)− HT (`) > m.

Consider T0 = S5 that has Hilbert function [1, 38, 38, 38, 38, 37, 44→]. All the
following semigroups are almost symmetric:

If T1 = T0on53 M(T0), then HT1 = [1, 76, 76, 76, 76, 74, 88→];

If T2 = T1on141M(T1), then HT2 = [1, 152, 152, 152, 152, 148, 176→];

If T3 = T2on317M(T2), then HT3 = [1, 304, 304, 304, 304, 296, 352→];

If T4 = T3on669M(T3), then HT4 = [1, 608, 608, 608, 608, 592, 704→];

Moreover if we set K := K(T4) + f (T4) + 1 ⊆ T4, the numerical
semigroup T = T4on1373K is symmetric and has Hilbert function

HT = [1, 1215, 1216, 1216, 1216, 1200, 1296, 1408→].

Note that T has 1215 minimal generators included between 1408 and 23835.
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Examples 1

Consider the almost symmetric numerical semigroup

T0 = 〈30, 33, 37, 64, 68, 69, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82,

83, 84, 85, 86, 87, 88, 89, 91, 92〉

that has Hilbert function [1, 26, 26, 25, 24, 27, 28, 29, 30→] and type 25.

Let
Ki be a proper canonical ideal of Ti and bi an arbitrary odd element of Ti . All
the following numerical semigroups are symmetric.

If T1 = T0onb0 K0, then HT1 = [1, 51, 52, 51, 49, 51, 55, 57, 59, 60→];

If T2 = T1onb1 K1, its Hilbert function is

HT2 = [1, 52, 103, 103, 100, 100, 106, 112, 116, 119, 120→];

If T3 = T2onb2 K2 has Hilbert function

HT3 = [1, 53, 155, 206, 203, 200, 206, 218, 228, 235, 239, 240→];

If T4 = T3onb3 K3 has Hilbert function

HT4 = [1, 54, 208, 361, 409, 403, 406, 424, 446, 463, 474, 479, 480→].
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Examples 2

Consider the numerical semigroup

S := 〈30, 33, 37, 64, 68, 69, 71, 72, 73, 75, . . . , 89, 91, 92, 95〉

that is not almost symmetric and has Hilbert function

[1, 27, 26, 25, 24, 27, 28, 29, 30→].

If we set K := K(S) + 66 ⊆ S , the semigroup Son33K is symmetric and has
Hilbert function

[1, 54, 55, 55, 54, 57, 58, 59, 60→].

In the previous talk it is showed that if T is a symmetric semigroup with
decreasing Hilbert function, then e(T )− ν(T ) ≥ 5; in this example
e(Son33K)− ν(Son33K) = 6.
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Examples 3

If E is only a relative ideal it is still possible to define the numerical duplication.
This is a numerical semigroup if and only if E + E + b ⊆ S . Moreover this is
symmetric if and only if E is a canonical ideal.

Example

Consider the numerical semigroup

S = 〈30, 33, 37, 73, 76, 77, 79, 80, 81, 82, 83, 84,

85, 86, 87, 88, 89, 91, 92, 94, 95, 98, 101, 108〉

that has Hilbert function [1, 24, 25, 24, 23, 25, 27, 29, 30→]. Then

T1 := Son67K(S) has Hilbert function [1, 43, 47, 45, 49, 51, 60→];

T2 := Son73K(S) has Hilbert function [1, 44, 43, 41, 49, 58, 60,→];

T3 := Son79K(S) has Hilbert function [1, 44, 41, 40, 52, 58, 60,→];

T4 := Son81K(S) has Hilbert function [1, 43, 45, 47, 52, 54, 56, 58, 60→];

T5 := Son85K(S) has Hilbert function [1, 44, 42, 45, 52, 54, 58, 60→];

T6 := Son87K(S) has Hilbert function [1, 46, 48, 47, 49, 51, 56, 58, 60→];

T7 := Son93K(S) has Hilbert function [1, 47, 49, 48, 48, 50, 55, 58, 60→].
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Examples 4

Example

Consider S15 that has 258 generators. According to GAP, the Hilbert
function of the symmetric semigroup S15on957K(S15) decreases 13 times

[1, 514, 514, 513, 512, 511, 510, 509, 508, 507, 506, 505, 504, 503, 502, 500, . . . ]

Among the symmetric semigroups with decreasing Hilbert function, the
following is the semigroup with the smallest multiplicity and embedding
dimension that I know.

Example

Consider S = 〈19, 21, 24, 47, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60〉 and

Son49K(S) = 〈38, 42, 48, 49, 94, 100, 101, 102, 104, 105, 106, 107, 108, 109,

110, 111, 112, 113, 115, 116, 117, 119, 120, 121, 123, 127〉.

Even if S has non-decreasing Hilbert function [1, 14, 14, 14, 16, 18, 19→], the
Hilbert function of Son49K(S) is [1, 26, 25, 25, 32, 38→].
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A more general construction

Let R be a commutative ring with identity, let I be a proper ideal of R and let
a, b ∈ R. Consider the Rees algebra R[It] = ⊕n≥0 I ntn ⊆ R[t], where t is an
indeterminate. Then we define the ring

R(I )a,b =
R[It]

(t2 + at + b)R[t] ∩ R[It]
.

Let S = 〈s1, . . . , sν〉 and let R = k[[S ]] = k[[x s1 , . . . , x sν ]] be its numerical
semigroup ring. If m is odd and b = xm, then R(I )0,−b

∼= k[[Sonm v(I )]], where
v is the standard valuation.

The Hilbert function and the Gorenstein property of R(I )a,b are independent of
a and b. This means that if we find a symmetric numerical semigroup Sonb E
with decreasing Hilbert function and R(I )0,b is isomorphic to its numerical
semigroup ring, where R = k[[S ]], then R(I )a,b is a one-dimensional Gorenstein
local ring with decreasing Hilbert function for any a and b. In particular we
note that R(I )−1,0 is isomorphic to the amalgamated duplication, that is not a
domain, while R(I )0,0 is isomorphic to the idealization (or trivial extension)
that is never reduced.
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THANK YOU!
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