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Introduction

Star operations

Let D be an integral domain with quotient field K , and let
F(D) := {I ⊆ K | xI is an ideal of D for some x ∈ K} be the set of
fractional ideals of D.

Definition
A star operation on D is a map ? : F(D) −→ F(D), I 7→ I ?, such that, for
every I , J ∈ F(D), x ∈ K :

? is extensive: I ⊆ I ?;
? is idempotent: (I ?)? = I ?;
? is order-preserving: if I ⊆ J, then I ? ⊆ J?;
D? = D;
x · I ? = (xI )?.

Linked to the study of factorization, Krull domains, Kronecker
function rings, integral closure of ideals, overrings of D. . .
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Introduction

Star operations on semigroups

Let S be a numerical semigroup.
A fractional ideal of S is a subset I ⊆ Z such that d + I is an ideal of
S for some d ∈ Z.

Equivalently, is a subset I ⊆ Z such that I + S ⊆ I and d + I ⊆ S for
some d ∈ Z.
We denote the set of fractional ideal of S as F(S).

Definition ([Kim, Kwak and Park 2001])

A star operation on S is a map ? : F(S) −→ F(S), I 7→ I ?, such that, for
every I , J ∈ F(S), x ∈ K :

? is extensive: I ⊆ I ?;
? is idempotent: (I ?)? = I ?;
? is order-preserving: if I ⊆ J, then I ? ⊆ J?;
S? = S ;
d + I ? = (d + I )?.
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Introduction

Numerical semigroup rings

Given a field K , we can associate to S the integral domain

K [[S ]] := K [[X S ]] = K [[{X s | s ∈ S}]] =

∑
i≥0

aiX
i | ai = 0 if i /∈ S

 .

K [[S ]] is a one-dimensional Noetherian local ring, and its integral
closure is K [[X ]].
There are many links between the structure of S and the structure of
K [[S ]] [Barucci, Dobbs and Fontana 1997].
Rings of the form K [[S ]], or similar rings, are used as examples in
counting star operations [Houston, Mimouni and Park 2012].
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Introduction

Notation

Let S be a numerical semigroup.
F(S) is the set of fractional ideals of S .
F (S) := sup(Z \ S) is the Frobenius number of S .
g(S) := |N \ S | is the genus of S .
µ(S) := inf(S \ {0}) is the multiplicity of S .
Star(S) is the set of star operations on S .
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Star operations

Examples

The identity d : I 7→ I is a star operation.
If {Sα | α ∈ A} are semigroups and

⋂
α∈A Sα = S , then

I 7→
⋂
α∈A

I + Sα is a star operation.

The divisorial closure (or v -operation) is the map

v : J 7→ Jv := (S − (S − J)).

Ideals that are v -closed are called divisorial ideals.
?1 ≤ ?2 if and only if I ?1 ⊆ I ?2 for every I , or equivalently if every
?2-closed ideal is ?1-closed.
The v -operation is the biggest star operation; hence every divisorial
ideal is ?-closed for every ? ∈ Star(S).
S and N are divisorial (over S).
d = v (and so |Star(S)| = 1) if and only if S is symmetric
[Barucci, Dobbs and Fontana 1997].
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Star operations

Problems

Given S , find a way to describe Star(S) (the maps, the cardinality, the
order).
Describe Star(S) for whole classes of semigroups.
Find a formula to calculate the cardinality of Star(S) in a general way.
At least, find estimates.
Given n, which numerical semigroups have exactly n star operations?
Extend the results to rings of the type K [[S ]].
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Star operations

Reduction to F0(S)

By definition, if we know I ? we know also (d + I )? for every d ∈ Z.
F0(S) is the set of fractional ideals of S whose minimal element is 0.

Equivalently, is the set of fractional ideals I of S such that S ⊆ I ⊆ N.
For every I ∈ F(S), there is a unique d ∈ Z such that d + I ∈ F0(S).
Since N \ S is finite, so is F0(S).

Since S and N are divisorial, ? restricts to a map
?0 : F0(S) −→ F0(S), and ?0 uniquely determines ?.
Star(S) is always finite.
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Star operations

Closed ideals

If I = I ?, I is said to be ?-closed.
? is uniquely determined by the ?-closed ideals, since

I ? =
⋂
{J | I ⊆ J, J = J?}.

Moreover, ? is uniquely determined by

F?0 (S) := {I ∈ F0(S) | I = I ?}.

Let ∆ ⊆ F0(S). Then, ∆ = F?0 (S) for some ? ∈ Star(S) if and only
if:

S ∈ ∆;
∆ is closed by intersections;
if I ∈ ∆ and k ∈ I , then the k-shift (−k + I ) ∩ N is in ∆.

These conditions can be checked in finite time.
However, this algorithm is very slow.
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Principal star operations and antichains

Principal star operations

We can attach to any fractional ideal I the star operation

?I : J 7→ (S − (S − J)) ∩ (I − (I − J)).

Equivalently, ?I is the biggest star operation closing I .
If ? ∈ Star(S), there are I1, . . . , In such that ? = ?I1 ∧ · · · ∧ ?In .

If I = I v , then ?I = v .
Let G0(S) := {I ∈ F0(S) | I 6= I v}.
If I , J ∈ G0(S) and I 6= J then ?I 6= ?J .
|Star(S)| ≥ |G0(S)|+ 1.
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Principal star operations and antichains

Generating nondivisorial ideals

If S is not symmetric, there is λ such that λ,F (S)− λ /∈ S ; let
x ∈ N \ S .

If x > λ, define Ix := {y ∈ N | x − y /∈ S}.
If x ≤ λ and λ− x ∈ S , define Ix := S ∪ {y ∈ N | y > x}.
If x ≤ λ and λ− x /∈ S , define Ix := S ∪ {y ∈ N | y > x , λ− y /∈ S}.

Every Ix is not divisorial, and they are all different from each other.
|G0(S)| ≥ g(S).
|Star(S)| ≥ g(S) + 1.
For any g , there are only a finite number of numerical semigroups with
g(S) ≤ g .

Theorem
If n > 1, there are only a finite number of numerical semigroups with
exactly n star operations.
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Principal star operations and antichains

An explicit version

Definition
ξ(n) is the number of numerical semigroups with exactly n star
operations.
Ξ(n) is the number of numerical semigroups S such that
2 ≤ |Star(S)| ≤ n.
ξµ(n) and Ξµ(n) are as above, but restricted to semigroups of
multiplicity µ.

Since we are doing estimates, it is more efficient to use Ξ(n) than ξ(n).
[Zhai 2013] The number of numerical semigroups with g(S) ≤ g is
asymptotic to Cφg for some constant C , where φ is the golden ratio.
Ξ(n) = O(φn) = O(exp(n log φ)).
Ξµ(n) ≤

(n−1
µ−1

)
≤ (n − 1)µ−1.
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Principal star operations and antichains

Antichains

Every ∆ ⊆ G0(S) generates the star operation

J 7→
⋂
{J?I | I ∈ ∆} = (S − (S − J)) ∩

⋂
I∈∆

(J − (J − I )).

It can be ?∆ = ?Λ even if ∆ 6= Λ.
For example, if J = J?I , then ?I = ?{I ,J}.

We say that I ≤? J if I is ?J -closed, i.e., is ?I ≥ ?J (?-order).
We consider star operations generated by antichains of (G0(S),≤?).

An antichain is a set of pairwise noncomparable elements.
This solves the problem of J = J?I : {I , J} is not an antichain.
However, different antichains can generate the same star operation.

A more efficient algorithm: instead of all subsets of F0(S), it is
enough to consider sets of the form

∆↓ := {J ∈ F0(S) | J = Jv or J ≤? I for some I ∈ ∆},

where ∆ is an antichain of G0(S). Also, we only have to check
intersections.
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Principal star operations and antichains

Atoms

An atom of G0(S) is an ideal I such that, if I = I ?1∧?2 , then
I = I ?1 ∩ I ?2 .

This means that, if ?I ≥ ?1 ∧ ?2, then ?I ≥ ?1 or ?I ≥ ?2 (a primality
condition).

If ∆ 6= Λ are sets of atoms and are antichains in the ?-order, then
?∆ 6= ?Λ.
Not every ideal is an atom. Sufficient conditions:

|I v \ I | = 1;
the set {I ? | ? ∈ Star(S)} is linearly ordered.
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Principal star operations and antichains

The Qa

Let a ∈ N \ S . We consider the set

Qa := {I ∈ G0(S) | sup(N \ I ) = a, a ∈ I v}.

Qa 6= ∅ if a ≥ λ, where λ,F (S)− λ /∈ S .
In particular, if a ≥ F (S)/2.

Let Ma := {y ∈ N | a− y /∈ S}.
Ma is the biggest ideal of Qa, and its maximum in the ?-order.
Ma is an atom.
If I ∈ Qa and |Ma \ I | = 1, then I is an atom.

We can find antichain in Qa.
For ideals in Qa, every antichain with respect to containment is an
antichain in the ?-order.
Better, every antichain with respect to containment generates a
different star operation.
Even better, the same happens if we consider antichains in Qa and Qb

for a 6= b (so we can mix different kinds of constructions).
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Principal star operations and antichains

An example

Let S := 〈4, 5, 6, 7〉 = {0, 4,→}.

There are eight elements in
F0(S):

S

= Sv

N

= Nv

I (1) := S ∪ {1}

∈ Q3

I (2) := S ∪ {2}

∈ Q3

I (3) := S ∪ {3}

∈ Q2

I (1, 2) := S ∪ {1, 2}

= M3

I (1, 3) := S ∪ {1, 3}

= M2

I (2, 3) := S ∪ {2, 3}

= M1

Each ideal of G0(S) is an atom.

I (1, 2)

I (2) I (1, 3) I (1)

I (2, 3) I (3)

|Star(S)| = 14

Dario Spirito (Univ. Roma Tre) Star operations on numerical semigroups July 5, 2016 16 / 24



Principal star operations and antichains

An example

Let S := 〈4, 5, 6, 7〉 = {0, 4,→}.

There are eight elements in
F0(S):

S = Sv

N = Nv

I (1) := S ∪ {1} ∈ Q3
I (2) := S ∪ {2} ∈ Q3
I (3) := S ∪ {3} ∈ Q2
I (1, 2) := S ∪ {1, 2} = M3
I (1, 3) := S ∪ {1, 3} = M2
I (2, 3) := S ∪ {2, 3} = M1

Each ideal of G0(S) is an atom.

I (1, 2)

I (2) I (1, 3) I (1)

I (2, 3) I (3)

|Star(S)| = 14

Dario Spirito (Univ. Roma Tre) Star operations on numerical semigroups July 5, 2016 16 / 24



Principal star operations and antichains

A bound on multiplicity

If a,F (S)− a /∈ S , let H := {x ∈ N \ S | a− µ(S) < x < a}.
If µ(S) < a ≤ F (S)/2, then |H| ≥ bµ(S)/2c.
Let I := S ∪ {x ∈ N | x > a}.
If H ⊆ H, then I ∪ H is an ideal in Qa.
Every family of noncomparable subsets of H generates a different star
operation.

|Star(S)| ≥ exp
((
bµ/2c
bµ/4c

)
log(2)

)
.

Writing Ξ(n) =
∑

µ Ξµ(n), we obtain

Ξ(n) = O(n(A+ε) log log(n))

for every ε > 0, where A := 2
log(2) .
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Special cases

Multiplicity 3

Let S := 〈3, 3α + 1, 3β + 2〉. Then, G0(S) is order-isomorphic to a
rectangle with sides of length 2α− β and 2β − α + 1.
From this, we can calculate

|Star(S)| =

(
α + β + 1
2α− β

)
=

(
α + β + 1
2β − α + 1

)
=

(
g(S) + 1

F (S)− g(S) + 2

)
.

The numerical semigroups of multiplicity 3 with n star operations
corresponds to the binomial coefficients

(x
y

)
such that

x + y ≡ 1 mod 3. Hence,

ξ3(n) = O(log(n)) and Ξ3(n) =
2
3
n + O(

√
n log(n)).

If every integer is only equal to a finite number of binomial coefficients
(a conjecture of Erdős), then the logarithms can be eliminated.
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Special cases

Other cases

If S is pseudosymmetric and F (S) = 2µ(S)− 2, then
|Star(S)| = 1 + ω(µ− 2) (where ω(x) is the number of antichain of
the power set of {1, . . . , x}).

If S is pseudosymmetric and µ(S) = 4, then |Star(S)| = 2
g(S)
2 +1 − 1.

Let Sj ,k := 〈4, 4j + 2, 2k + 1, 2k + 4j − 1〉. Experimentally, we have

|Star(S1,k)| = 20k−29 for 4 ≤ k ≤ 13
|Star(S2,k)| = 400k−1432 for 7 ≤ k ≤ 15
|Star(S3,k)| = 6800k−38200 for 10 ≤ k ≤ 14
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Special cases

Some data

ξ(2) = 0, ξ(3) = 1, ξ(4) = 1, ξ(5) = 0, ξ(6) = 1, ξ(7) = 2, ξ(8) = 0,
ξ(9) = 1, ξ(10) = 2, ξ(11) = 0, ξ(12) = 1, ξ(13) = 1, ξ(14) = 2,
ξ(15) = 3, ξ(16) = 1, ξ(17) = 0, . . .
There are 43 numerical semigroups with 45 or less star operations.

34 of these have multiplicity 3, 6 have multiplicity 4 and 3 have
multiplicity 5.
34 of these are pseudosymmetric.
29 are pseudosymmetric of multiplicity 3.
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The ring version

Semigroup rings

Every star operation on S induces a star operation on K [[S ]].
Conversely, there are two canonical surjective maps from Star(K [[S ]])
to Star(S).
|Star(K [[S ]])| ≥ |Star(S)|.
|Star(K [[S ]])| = 1 if and only if |Star(S)| = 1.
For a fixed field K and a fixed n > 1, there are only finitely many rings
of the form K [[S ]] with exactly n star operations.
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The ring version

Residually rational rings

More generally: take a discrete valuation ring V , with valuation v. Let
V(V ) be the set of rings R such that:

the integral closure of R is V ;
R is Noetherian;
(R : V ) 6= (0);
the inclusion R ↪→ V induces an isomorphism R/mR

'−→ V /mV .

Every R ∈ V(V ) is associated to the numerical semigroup v(R).
We can’t apply directly the semigroup case: R has more ideals than
v(R), but some ideals of v(R) does not correspond to ideals of R .
However, we can replay the arguments of the semigroup case.
If the residue field of V is finite and n > 1, then there are only finitely
many R ∈ V(V ) such that |Star(R)| = n.
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The ring version

Thank you for your attention
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The ring version
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