Star operations on numerical semigroups

Dario Spirito

Università di Roma Tre

International Meeting on Numerical Semigroups with Applications
Levico Terme, July 5, 2016

Star operations

Let D be an integral domain with quotient field K, and let $\mathcal{F}(D):=\{I \subseteq K|x|$ is an ideal of D for some $x \in K\}$ be the set of fractional ideals of D.

Definition
A star operation on D is a map $\star: \mathcal{F}(D) \longrightarrow \mathcal{F}(D), I \mapsto I^{\star}$, such that, for every $I, J \in \mathcal{F}(D), x \in K$:

- \star is extensive: $I \subseteq I^{\star}$;
- \star is idempotent: $\left(I^{\star}\right)^{\star}=I^{\star}$;
- \star is order-preserving: if $I \subseteq J$, then $I^{\star} \subseteq J^{\star}$;
- $D^{\star}=D$;
- $x \cdot I^{\star}=(x I)^{\star}$.
- Linked to the study of factorization, Krull domains, Kronecker function rings, integral closure of ideals, overrings of $D \ldots$

Star operations on semigroups

Let S be a numerical semigroup.

- A fractional ideal of S is a subset $I \subseteq \mathbb{Z}$ such that $d+I$ is an ideal of S for some $d \in \mathbb{Z}$.
- Equivalently, is a subset $I \subseteq \mathbb{Z}$ such that $I+S \subseteq I$ and $d+I \subseteq S$ for some $d \in \mathbb{Z}$.
- We denote the set of fractional ideal of S as $\mathcal{F}(S)$.

Definition ([Kim, Kwak and Park 2001])
A star operation on S is a map $\star: \mathcal{F}(S) \longrightarrow \mathcal{F}(S)$, $I \mapsto I^{\star}$, such that, for every $I, J \in \mathcal{F}(S), x \in K$:

- \star is extensive: $I \subseteq I^{\star}$;
- \star is idempotent: $\left(I^{\star}\right)^{\star}=I^{\star}$;
- \star is order-preserving: if $I \subseteq J$, then $I^{\star} \subseteq J^{\star}$;
- $S^{\star}=S$;
- $d+I^{\star}=(d+l)^{\star}$.

Numerical semigroup rings

- Given a field K, we can associate to S the integral domain

$$
K[[S]]:=K\left[\left[X^{S}\right]\right]=K\left[\left[\left\{X^{s} \mid s \in S\right\}\right]\right]=\left\{\sum_{i \geq 0} a_{i} X^{i} \mid a_{i}=0 \text { if } i \notin S\right\} .
$$

- $K[[S]]$ is a one-dimensional Noetherian local ring, and its integral closure is $K[[X]]$.
- There are many links between the structure of S and the structure of K[[S]] [Barucci, Dobbs and Fontana 1997].
- Rings of the form $K[[S]]$, or similar rings, are used as examples in counting star operations [Houston, Mimouni and Park 2012].

Notation

Let S be a numerical semigroup.

- $\mathcal{F}(S)$ is the set of fractional ideals of S.
- $F(S):=\sup (\mathbb{Z} \backslash S)$ is the Frobenius number of S.
- $g(S):=|\mathbb{N} \backslash S|$ is the genus of S.
- $\mu(S):=\inf (S \backslash\{0\})$ is the multiplicity of S.
- $\operatorname{Star}(S)$ is the set of star operations on S.

Examples

- The identity $d: I \mapsto I$ is a star operation.
- If $\left\{S_{\alpha} \mid \alpha \in A\right\}$ are semigroups and $\bigcap_{\alpha \in A} S_{\alpha}=S$, then

$$
I \mapsto \bigcap_{\alpha \in A} I+S_{\alpha} \quad \text { is a star operation. }
$$

- The divisorial closure (or v-operation) is the map

$$
v: J \mapsto J^{v}:=(S-(S-J))
$$

- Ideals that are v-closed are called divisorial ideals.
- $\star_{1} \leq \star_{2}$ if and only if $I^{\star_{1}} \subseteq I^{\star_{2}}$ for every I, or equivalently if every \star_{2}-closed ideal is \star_{1}-closed.
- The v-operation is the biggest star operation; hence every divisorial ideal is \star-closed for every $\star \in \operatorname{Star}(S)$.
- S and \mathbb{N} are divisorial (over S).
- $d=v$ (and so $|\operatorname{Star}(S)|=1$) if and only if S is symmetric [Barucci, Dobbs and Fontana 1997].

Problems

- Given S, find a way to describe $\operatorname{Star}(S)$ (the maps, the cardinality, the order).
- Describe $\operatorname{Star}(S)$ for whole classes of semigroups.
- Find a formula to calculate the cardinality of $\operatorname{Star}(S)$ in a general way. At least, find estimates.
- Given n, which numerical semigroups have exactly n star operations?
- Extend the results to rings of the type $K[[S]]$.

Reduction to $\mathcal{F}_{0}(S)$

- By definition, if we know I^{\star} we know also $(d+I)^{\star}$ for every $d \in \mathbb{Z}$.
- $\mathcal{F}_{0}(S)$ is the set of fractional ideals of S whose minimal element is 0 .
- Equivalently, is the set of fractional ideals I of S such that $S \subseteq I \subseteq \mathbb{N}$.
- For every $I \in \mathcal{F}(S)$, there is a unique $d \in \mathbb{Z}$ such that $d+I \in \mathcal{F}_{0}(S)$.
- Since $\mathbb{N} \backslash S$ is finite, so is $\mathcal{F}_{0}(S)$.
- Since S and \mathbb{N} are divisorial, \star restricts to a map $\star_{0}: \mathcal{F}_{0}(S) \longrightarrow \mathcal{F}_{0}(S)$, and \star_{0} uniquely determines \star.
- $\operatorname{Star}(S)$ is always finite.

Closed ideals

- If $I=I^{\star}, I$ is said to be \star-closed.
- \star is uniquely determined by the \star-closed ideals, since

$$
I^{\star}=\bigcap\left\{J \mid I \subseteq J, J=J^{\star}\right\}
$$

- Moreover, \star is uniquely determined by

$$
\mathcal{F}_{0}^{\star}(S):=\left\{I \in \mathcal{F}_{0}(S) \mid I=I^{\star}\right\} .
$$

- Let $\Delta \subseteq \mathcal{F}_{0}(S)$. Then, $\Delta=\mathcal{F}_{0}^{\star}(S)$ for some $\star \in \operatorname{Star}(S)$ if and only if:
- $S \in \Delta$;
- Δ is closed by intersections;
- if $I \in \Delta$ and $k \in I$, then the k-shift $(-k+I) \cap \mathbb{N}$ is in Δ.
- These conditions can be checked in finite time.
- However, this algorithm is very slow.

Principal star operations

- We can attach to any fractional ideal / the star operation

$$
\star_{I}: J \mapsto(S-(S-J)) \cap(I-(I-J)) .
$$

- Equivalently, \star_{l} is the biggest star operation closing I.
- If $\star \in \operatorname{Star}(S)$, there are I_{1}, \ldots, I_{n} such that $\star=\star I_{1} \wedge \cdots \wedge \star_{n}$.
- If $I=I^{v}$, then $\star_{I}=v$.
- Let $\mathcal{G}_{0}(S):=\left\{I \in \mathcal{F}_{0}(S) \mid I \neq I^{v}\right\}$.
- If $I, J \in \mathcal{G}_{0}(S)$ and $I \neq J$ then $\star_{I} \neq \star_{J}$.
- $|\operatorname{Star}(S)| \geq\left|\mathcal{G}_{0}(S)\right|+1$.

Generating nondivisorial ideals

- If S is not symmetric, there is λ such that $\lambda, F(S)-\lambda \notin S$; let $x \in \mathbb{N} \backslash S$.
- If $x>\lambda$, define $I_{x}:=\{y \in \mathbb{N} \mid x-y \notin S\}$.
- If $x \leq \lambda$ and $\lambda-x \in S$, define $I_{x}:=S \cup\{y \in \mathbb{N} \mid y>x\}$.
- If $x \leq \lambda$ and $\lambda-x \notin S$, define $I_{x}:=S \cup\{y \in \mathbb{N} \mid y>x, \lambda-y \notin S\}$.
- Every I_{x} is not divisorial, and they are all different from each other.
- $\left|\mathcal{G}_{0}(S)\right| \geq g(S)$.
- $|\operatorname{Star}(S)| \geq g(S)+1$.
- For any g, there are only a finite number of numerical semigroups with $g(S) \leq g$.

Theorem

If $n>1$, there are only a finite number of numerical semigroups with exactly n star operations.

An explicit version

Definition

- $\xi(n)$ is the number of numerical semigroups with exactly n star operations.
- 三(n) is the number of numerical semigroups S such that $2 \leq|\operatorname{Star}(S)| \leq n$.
- $\xi_{\mu}(n)$ and $\Xi_{\mu}(n)$ are as above, but restricted to semigroups of multiplicity μ.
- Since we are doing estimates, it is more efficient to use $\Xi(n)$ than $\xi(n)$.
- [Zhai 2013] The number of numerical semigroups with $g(S) \leq g$ is asymptotic to C^{g} for some constant C, where ϕ is the golden ratio.
- 三 $(n)=O\left(\phi^{n}\right)=O(\exp (n \log \phi))$.
- $\equiv_{\mu}(n) \leq\binom{ n-1}{\mu-1} \leq(n-1)^{\mu-1}$.

Antichains

- Every $\Delta \subseteq \mathcal{G}_{0}(S)$ generates the star operation

$$
J \mapsto \bigcap\left\{J^{\star \prime} \mid I \in \Delta\right\}=(S-(S-J)) \cap \bigcap(J-(J-I)) .
$$

- It can be $\star_{\Delta}=\star_{\Lambda}$ even if $\Delta \neq \Lambda$.
- For example, if $J=J^{\star \prime}$, then $\star_{I}=\star_{\{I, J\}}$.
- We say that $I \leq_{\star} J$ if I is \star_{J}-closed, i.e., is $\star_{I} \geq \star_{J}$ ($\star_{\text {-order }}$).
- We consider star operations generated by antichains of $\left(\mathcal{G}_{0}(S), \leq_{\star}\right)$.
- An antichain is a set of pairwise noncomparable elements.
- This solves the problem of $J=J^{\star \prime}:\{I, J\}$ is not an antichain.
- However, different antichains can generate the same star operation.
- A more efficient algorithm: instead of all subsets of $\mathcal{F}_{0}(S)$, it is enough to consider sets of the form

$$
\Delta^{\downarrow}:=\left\{J \in \mathcal{F}_{0}(S) \mid J=J^{\vee} \text { or } J \leq_{\star} I \text { for some } I \in \Delta\right\},
$$

where Δ is an antichain of $\mathcal{G}_{0}(S)$. Also, we only have to check intersections.

Atoms

- An atom of $\mathcal{G}_{0}(S)$ is an ideal I such that, if $I=I^{\star_{1} \wedge \star_{2}}$, then $I=I^{\star_{1}} \cap I^{\star_{2}}$.
- This means that, if $\star_{1} \geq \star_{1} \wedge \star_{2}$, then $\star_{1} \geq \star_{1}$ or $\star_{1} \geq \star_{2}$ (a primality condition).
- If $\Delta \neq \Lambda$ are sets of atoms and are antichains in the \star-order, then $\star_{\Delta} \neq \star_{\wedge}$.
- Not every ideal is an atom. Sufficient conditions:
- $\left|I^{\nu} \backslash I\right|=1$;
- the set $\left\{I^{\star} \mid \star \in \operatorname{Star}(S)\right\}$ is linearly ordered.

The \mathcal{Q}_{a}

- Let $a \in \mathbb{N} \backslash S$. We consider the set

$$
\mathcal{Q}_{a}:=\left\{I \in \mathcal{G}_{0}(S) \mid \sup (\mathbb{N} \backslash I)=a, a \in I^{v}\right\} .
$$

- $\mathcal{Q}_{a} \neq \emptyset$ if $a \geq \lambda$, where $\lambda, F(S)-\lambda \notin S$.
- In particular, if $a \geq F(S) / 2$.
- Let $M_{a}:=\{y \in \mathbb{N} \mid a-y \notin S\}$.
- M_{a} is the biggest ideal of \mathcal{Q}_{a}, and its maximum in the \star-order.
- M_{a} is an atom.
- If $I \in \mathcal{Q}_{a}$ and $\left|M_{a} \backslash I\right|=1$, then I is an atom.
- We can find antichain in \mathcal{Q}_{a}.
- For ideals in \mathcal{Q}_{a}, every antichain with respect to containment is an antichain in the \star-order.
- Better, every antichain with respect to containment generates a different star operation.
- Even better, the same happens if we consider antichains in \mathcal{Q}_{a} and \mathcal{Q}_{b} for $a \neq b$ (so we can mix different kinds of constructions).

An example

Let $S:=\langle 4,5,6,7\rangle=\{0,4, \rightarrow\}$.

- There are eight elements in $\mathcal{F}_{0}(S)$:
- S
- \mathbb{N}
- $I(1):=S \cup\{1\}$
- $I(2):=S \cup\{2\}$
- $I(3):=S \cup\{3\}$
- $I(1,2):=S \cup\{1,2\}$
- $I(1,3):=S \cup\{1,3\}$
- $I(2,3):=S \cup\{2,3\}$

An example

Let $S:=\langle 4,5,6,7\rangle=\{0,4, \rightarrow\}$.

- There are eight elements in $\mathcal{F}_{0}(S)$:
- $S=S^{v}$
- $\mathbb{N}=\mathbb{N}^{v}$
- $I(1):=S \cup\{1\} \in \mathcal{Q}_{3}$
- $I(2):=S \cup\{2\} \in \mathcal{Q}_{3}$
- $I(3):=S \cup\{3\} \in \mathcal{Q}_{2}$
- $I(1,2):=S \cup\{1,2\}=M_{3}$
- $I(1,3):=S \cup\{1,3\}=M_{2}$
- $I(2,3):=S \cup\{2,3\}=M_{1}$

- Each ideal of $\mathcal{G}_{0}(S)$ is an atom.
$|\operatorname{Star}(S)|=14$

A bound on multiplicity

- If $a, F(S)-a \notin S$, let $\mathcal{H}:=\{x \in \mathbb{N} \backslash S \mid a-\mu(S)<x<a\}$.
- If $\mu(S)<a \leq F(S) / 2$, then $|\mathcal{H}| \geq\lfloor\mu(S) / 2\rfloor$.
- Let $I:=S \cup\{x \in \mathbb{N} \mid x>a\}$.
- If $H \subseteq \mathcal{H}$, then $I \cup H$ is an ideal in \mathcal{Q}_{a}.
- Every family of noncomparable subsets of \mathcal{H} generates a different star operation.

$$
|\operatorname{Star}(S)| \geq \exp \left(\binom{\lfloor\mu / 2\rfloor}{\lfloor\mu / 4\rfloor} \log (2)\right) .
$$

- Writing $\Xi(n)=\sum_{\mu} \Xi_{\mu}(n)$, we obtain

$$
\equiv(n)=O\left(n^{(A+\epsilon) \log \log (n)}\right)
$$

for every $\epsilon>0$, where $A:=\frac{2}{\log (2)}$.

Multiplicity 3

- Let $S:=\langle 3,3 \alpha+1,3 \beta+2\rangle$. Then, $\mathcal{G}_{0}(S)$ is order-isomorphic to a rectangle with sides of length $2 \alpha-\beta$ and $2 \beta-\alpha+1$.
- From this, we can calculate

$$
|\operatorname{Star}(S)|=\binom{\alpha+\beta+1}{2 \alpha-\beta}=\binom{\alpha+\beta+1}{2 \beta-\alpha+1}=\binom{g(S)+1}{F(S)-g(S)+2}
$$

- The numerical semigroups of multiplicity 3 with n star operations corresponds to the binomial coefficients $\binom{x}{y}$ such that $x+y \equiv 1 \bmod 3$. Hence,

$$
\xi_{3}(n)=O(\log (n)) \quad \text { and } \quad \Xi_{3}(n)=\frac{2}{3} n+O(\sqrt{n} \log (n))
$$

- If every integer is only equal to a finite number of binomial coefficients (a conjecture of Erdős), then the logarithms can be eliminated.

Other cases

- If S is pseudosymmetric and $F(S)=2 \mu(S)-2$, then
$|\operatorname{Star}(S)|=1+\omega(\mu-2)$ (where $\omega(x)$ is the number of antichain of the power set of $\{1, \ldots, x\}$).
- If S is pseudosymmetric and $\mu(S)=4$, then $|\operatorname{Star}(S)|=2^{\frac{g(S)}{2}+1}-1$.
- Let $S_{j, k}:=\langle 4,4 j+2,2 k+1,2 k+4 j-1\rangle$. Experimentally, we have $\left|\operatorname{Star}\left(S_{1, k}\right)\right|=20 k-29 \quad$ for $\quad 4 \leq k \leq 13$
$\left|\operatorname{Star}\left(S_{2, k}\right)\right|=400 k-1432$ for $7 \leq k \leq 15$
$\left|\operatorname{Star}\left(S_{3, k}\right)\right|=6800 k-38200$ for $10 \leq k \leq 14$

Some data

- $\xi(2)=0, \xi(3)=1, \xi(4)=1, \xi(5)=0, \xi(6)=1, \xi(7)=2, \xi(8)=0$, $\xi(9)=1, \xi(10)=2, \xi(11)=0, \xi(12)=1, \xi(13)=1, \xi(14)=2$, $\xi(15)=3, \xi(16)=1, \xi(17)=0, \ldots$
- There are 43 numerical semigroups with 45 or less star operations.
- 34 of these have multiplicity 3, 6 have multiplicity 4 and 3 have multiplicity 5 .
- 34 of these are pseudosymmetric.
- 29 are pseudosymmetric of multiplicity 3.

Semigroup rings

- Every star operation on S induces a star operation on $K[[S]]$.
- Conversely, there are two canonical surjective maps from $\operatorname{Star}(K[[S]])$ to $\operatorname{Star}(S)$.
- $|\operatorname{Star}(K[[S]])| \geq|\operatorname{Star}(S)|$.
- $|\operatorname{Star}(K[[S]])|=1$ if and only if $|\operatorname{Star}(S)|=1$.
- For a fixed field K and a fixed $n>1$, there are only finitely many rings of the form $K[[S]]$ with exactly n star operations.

Residually rational rings

- More generally: take a discrete valuation ring V, with valuation \mathbf{v}. Let $\mathfrak{V}(V)$ be the set of rings R such that:
- the integral closure of R is V;
- R is Noetherian;
- $(R: V) \neq(0)$;
- the inclusion $R \hookrightarrow V$ induces an isomorphism $R / \mathfrak{m}_{R} \xrightarrow{\simeq} V / \mathfrak{m}_{V}$.
- Every $R \in \mathfrak{V}(V)$ is associated to the numerical semigroup $v(R)$.
- We can't apply directly the semigroup case: R has more ideals than $v(R)$, but some ideals of $v(R)$ does not correspond to ideals of R.
- However, we can replay the arguments of the semigroup case.
- If the residue field of V is finite and $n>1$, then there are only finitely many $R \in \mathfrak{V}(V)$ such that $|\operatorname{Star}(R)|=n$.

Thank you for your attention

Bibliography

围 Valentina Barucci，David E．Dobbs and Marco Fontana，Maximality properties in numerical semigroups and applications to one－dimensional analytically irreducible local domains，Mem．Amer．Math．Soc． 125（598）（1997）．

國 Evan G．Houston Abdeslam Mimouni and Mi Hee Park，Noetherian domains which admit only finitely many star operations，J．Algebra 366 （2012）．

嗇 Myeong Og Kim，Dong Je Kwak and Young Soo Park，Star－operations on semigroups，Semigroup Forum 63（2）：202－222（2001）．
Alex Zhai，Fibonacci－like growth of numerical semigroups of a given genus，Semigroup Forum 86（3）：634－662（2013）．

