0 -th local cohomology of tangent cones of monomial space curves

Alessio Sammartano

International Meeting on Numerical Semigroups with Applications
Levico Terme, July 82016

PURDUE
U N I V E R S I T Y.

Introduction

Let $S=\left\langle g_{1}, g_{2}, g_{3}\right\rangle \subseteq \mathbb{N}$ be a numerical semigroup with $g_{1}<g_{2}<g_{3}$ and

$$
R=\mathbb{k}\left[\left[t^{g_{1}}, t^{g_{2}}, t^{g_{3}}\right]\right] \subseteq \mathbb{k}[[t]]
$$

the corresponding numerical semigroup ring, where \mathbb{k} is a field.
The associated graded ring is $G:=\bigoplus_{i=0}^{\infty} \mathfrak{m}^{i} / \mathfrak{m}^{i+1}$.
It is important to understand when G is a Cohen-Macaulay ring, that is $\operatorname{dim} G=\operatorname{depth} G$; in this case, this is equivalent to $\left(t^{g_{1}}\right)^{*}$ being a non-zerodivisor.

Failure of the Cohen-Macaulay property of G

The 0-th local cohomology module of G with respect to the homogeneous maximal ideal $\mathfrak{m} \subseteq G$ is

$$
H_{\mathfrak{m}}^{0}(G):=\bigcup_{i=1}^{\infty}\left(0: G \mathfrak{m}^{i}\right)=\bigcup_{i=1}^{\infty}\left(0:_{G}\left(\left(t^{g_{1}}\right)^{*}\right)^{i}\right)
$$

By depth sensitivity we have

$$
G \text { is Cohen-Macaulay } \Longleftrightarrow H_{\mathfrak{m}}^{0}(G)=0 .
$$

$H_{\mathfrak{m}}^{0}(G)$ is a monomial ideal of G such that

- $\ell\left(H_{\mathrm{m}}^{0}(G)\right)<\infty$;
- $\mathfrak{m}^{k} H_{\mathfrak{m}}^{0}(G)=0$ for some $k \geq 0$.

The Buchsbaum property

Definition

G is called a Buchsbaum ring if $\mathfrak{m} H_{\mathfrak{m}}^{0}(G)=0$.

Conjecture (Sapko, 2001)

Let $S=\left\langle g_{1}, g_{2}, g_{3}\right\rangle$. The associated graded ring $G=\oplus_{i} \mathfrak{m}^{i} / \mathfrak{m}^{i+1}$ is Buchsbaum if and only if $\ell\left(H_{\mathfrak{m}}^{0}(G)\right) \leq 1$.

The conjecture was proved independently by Shen and by D'Anna-Micale-S. in 2011.

Proof (Cortadellas-Jafari-Zarzuela, 2013).

If S is 3-generated, then $H_{\mathfrak{m}}^{0}(G)$ is a principal ideal generated by an element of the form $\left(\left(t^{g_{3}}\right)^{*}\right)^{i}$.

The 2-Buchsbaum case

Definition

G is called a k-Buchsbaum ring if $\mathfrak{m}^{k} H_{\mathfrak{m}}^{0}(G)=0$.
Thus:

$$
\begin{aligned}
0 \text {-Buchsbaum } & =\text { Cohen-Macaulay property } \\
\text { 1-Buchsbaum } & \text { Buchsbaum property }
\end{aligned}
$$

Theorem (Shen, 2011)

Assume that $S=\left\langle g_{1}, g_{2}, g_{3}\right\rangle$. The associated graded ring $G=\oplus_{i} \mathfrak{m}^{i} / \mathfrak{m}^{i+1}$ is 2-Buchsbaum if and only if $\ell\left(H_{\mathrm{m}}^{0}(G)\right) \leq 2$.

Generalization for k-Buchsbaum associated graded rings

If $\ell\left(H_{\mathfrak{m}}^{0}(G)\right) \leq k$ for some $k \in \mathbb{N}$ then G is k-Buchsbaum.
For $k=0,1,2$ the converse holds.
However, Cortadellas-Jafari-Zarzuela (2013) observe that this fails in general.

Example

Let $S=\langle 6,7,16\rangle$. Then G is 3 -Buchsbaum but $\ell\left(H_{\mathfrak{m}}^{0}(G)\right)=4$.

Still, they show that $\sup \left\{\ell\left(H_{\mathrm{m}}^{0}(G)\right): G\right.$ is k-Buchsbaum $\}<\infty$ for every k.

Question

Assume that $S=\left\langle g_{1}, g_{2}, g_{3}\right\rangle$. If the associated graded ring G is k-Buchsbaum, what is the largest possible value of $\ell\left(H_{\mathrm{m}}^{0}(G)\right)$?

A conjectural answer

Conjecture

Let $S=\left\langle g_{1}, g_{2}, g_{3}\right\rangle$. If G is a k-Buchsbaum ring, i.e. $\mathfrak{m}^{k} H_{\mathfrak{m}}^{0}(G)=0$, then

$$
\ell\left(H_{\mathfrak{m}}^{0}(G)\right) \leq\left\lfloor\frac{k+2}{3}\right\rfloor\left\lfloor\frac{k+3}{3}\right\rfloor\left\lfloor\frac{k+4}{3}\right\rfloor
$$

and this bound is sharp for each k.

Computational evidence: true for $g_{1}, g_{2}, g_{3} \leq 300$.

Combinatorial interpretation

Recall: $R=\mathbb{k}\left[\left[t^{g_{1}}, t^{g_{2}}, t^{g_{3}}\right]\right], G=\oplus_{i} \mathfrak{m}^{i} / \mathfrak{m}^{i+1}=\mathbb{k}[x, y, z]$ where $x=\left(t^{g_{1}}\right)^{*}$, $y=\left(t^{g_{2}}\right)^{*}, z=\left(t^{g_{3}}\right)^{*}$.

We associate to each monomial $\mathbf{u} \in H_{\mathfrak{m}}^{0}(G)$ its factorization $\mathbf{u}=x^{a} y^{b} z^{c}$:

$$
\mathcal{H}:=\left\{(a, b, c) \mid 0 \neq x^{a} y^{b} z^{c} \in H_{\mathfrak{m}}^{0}(G)\right\} \subseteq \mathbb{N}^{3}
$$

$$
\ell\left(H_{\mathfrak{m}}^{0}(G)\right) \leftrightarrow \operatorname{vol}(\mathcal{H})
$$

k-Buchsbaum property \leftrightarrow number of slices of \mathcal{H}

Conjecture (revisited)

The volume of \mathcal{H} is less than or equal to the largest possible volume of a rectangular parallelepiped with as many slices as \mathcal{H}.

Examples

Recall: $x=\left(t^{g_{1}}\right)^{*}, y=\left(t^{g_{2}}\right)^{*}, z=\left(t^{g_{3}}\right)^{*}$.
Structure of $H_{\mathfrak{m}}^{0}(G)=z^{i} G$ when G is 3 -Buchsbaum (3 slices)

allowed

not allowed

According to the conjecture $\ell\left(H_{\mathrm{m}}^{0}(G)\right) \leq 4$.

The socle (1)

Since $H_{\mathfrak{m}}^{0}(G)=z^{i} G$ for some $i \geq 0$, the crucial part is to understand the socle

$$
\operatorname{Soc}(G):=(0: G \mathfrak{m}) \subseteq H_{\mathfrak{m}}^{0}(G)=\cup_{i}\left(0:_{G} \mathfrak{m}^{i}\right)
$$

Remark

Suppose $\operatorname{dim}_{\mathfrak{k}} \operatorname{Soc}(G)=1$. If G is k-Buchsbaum then

$$
\ell\left(H_{\mathrm{m}}^{0}(G)\right) \leq\left\lfloor\frac{k+2}{3}\right\rfloor\left\lfloor\frac{k+3}{3}\right\rfloor\left\lfloor\frac{k+4}{3}\right\rfloor .
$$

The socle (2)

Unfortunately, $\operatorname{dim}_{\mathfrak{k}} \operatorname{Soc}(G)$ can be large.

Proposition

Suppose that $S=\left\langle g_{1}, g_{2}, g_{3}\right\rangle$ is symmetric. If all the elements of $\left\{(a, b, c) \mid x^{a} y^{b} z^{c} \in \operatorname{Soc}(G)\right\} \subseteq \mathbb{N}^{3}$ have a constant coordinate, then

$$
\ell\left(H_{\mathrm{m}}^{0}(G)\right) \leq\left\lfloor\frac{k+2}{3}\right\rfloor\left\lfloor\frac{k+3}{3}\right\rfloor\left\lfloor\frac{k+4}{3}\right\rfloor .
$$

Sharpness

Theorem

For every $k \in \mathbb{N}$ there exists a 3-generated numerical seimigroup ring (R, \mathfrak{m}) such that the associated graded ring G is k-Buchsbaum and

$$
\ell\left(H_{\mathfrak{m}}^{0}(G)\right)=\left\lfloor\frac{k+2}{3}\right\rfloor\left\lfloor\frac{k+3}{3}\right\rfloor\left\lfloor\frac{k+4}{3}\right\rfloor .
$$

Proof.

Use the "six parameters" from Rosales-García-Sánchez (2004) to construct families with prescribed socle.

$$
S_{k}= \begin{cases}\left\langle 3 p^{2}+4 p, 3 p^{2}+5 p, 3 p^{2}+12 p+11\right\rangle & \text { if } k=3 p \\ \left\langle 3 p^{2}+9 p+6,3 p^{2}+9 p+7,3 p^{2}+12 p+11\right\rangle & \text { if } k=3 p+1 \\ \left\langle 3 p^{2}+10 p+8,3 p^{2}+10 p+9,3 p^{2}+13 p+14\right\rangle & \text { if } k=3 p+2\end{cases}
$$

