Pseudo symmetric monomial curves

Mesut Şahin

HACETTEPE UNIVERSITY

Joint work with Nil Şahin (Bilkent University)

Supported by Tubitak No: 114F094

IMNS 2016, July 4-8, 2016

Part I

Indispensability

Semigroup, toric ideal, semigroup ring

Let n_{1}, \ldots, n_{4} be positive integers with $\operatorname{gcd}\left(n_{1}, \ldots, n_{4}\right)=1$. Then
$S=\left\langle n_{1}, \ldots, n_{4}\right\rangle$ is $\left\{u_{1} n_{1}+\cdots+u_{4} n_{4} \mid u_{i} \in \mathbb{N}\right\}$. Let K be a field and
$K[S]=K\left[t^{n_{1}}, \ldots, t^{n_{4}}\right]$ be the semigroup ring of S, then $K[S] \simeq A / I_{S}$
where, $A=K\left[X_{1}, \ldots, X_{4}\right]$ and the toric ideal I_{S} is the kernel of the surjection $A \xrightarrow{\phi_{0}} K[S]$, where $X_{i} \mapsto t^{n_{i}}$.

Pseudo symmetric S

Pseudo frobenious numbers of S are defined to be the elements of the set
$P F(S)=\{n \in \mathbb{Z}-S \mid n+s \in S$ for all $s \in S-\{0\}\}$. The largest element
is called the frobenious number denoted by $g(S)$.
S is called pseudo symmetric if $P F(S)=\{g(S) / 2, g(S)\}$.
S is symmetric if $P F(S)=\{g(S)\}$.

S is pseudo symmetric if $P F(S)=\{g(S) / 2, g(S)\}$.

Recall the set $\operatorname{PF}(S)=\{n \in \mathbb{Z}-S \mid n+s \in S$ for all $s \in S-\{0\}\}$.
$S=\langle 5,12,11,14\rangle=\{0,5,10,11,12,14,15,16,17,19\}+\mathbb{N}$ and its
complement is $\{1,2,3,4,6,7,8,9,13,18\}$.
$1+5,2+5,3+5,4+5,6+12,7+11,8+10,13+5 \notin S$ but $n+s \in S$ for all $s \in S-\{0\}$, for $n=9,18$. So, S is pseudosymmetric.

Komeda proved that, the semigroup S is pseudo symmetric if and only if there are positive integers $\alpha_{i}, 1 \leq i \leq 4$, and α_{21}, with $\alpha_{21}<\alpha_{1}$, s.t. $n_{1}=\alpha_{2} \alpha_{3}\left(\alpha_{4}-1\right)+1$,
$n_{2}=\alpha_{21} \alpha_{3} \alpha_{4}+\left(\alpha_{1}-\alpha_{21}-1\right)\left(\alpha_{3}-1\right)+\alpha_{3}$,
$n_{3}=\alpha_{1} \alpha_{4}+\left(\alpha_{1}-\alpha_{21}-1\right)\left(\alpha_{2}-1\right)\left(\alpha_{4}-1\right)-\alpha_{4}+1$,
$n_{4}=\alpha_{1} \alpha_{2}\left(\alpha_{3}-1\right)+\alpha_{21}\left(\alpha_{2}-1\right)+\alpha_{2}$.

For $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{21}\right)=(5,2,2,2,2), S=\langle 5,12,11,14\rangle$.

Pseudo symmetric S

Komeda proved that, $K[S]=A /\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right)$, where

$$
f_{1}=X_{1}^{\alpha_{1}}-X_{3} X_{4}^{\alpha_{4}-1}
$$

$$
f_{2}=X_{2}^{\alpha_{2}}-X_{1}^{\alpha_{21}} X_{4},
$$

$$
f_{3}=X_{3}^{\alpha_{3}}-X_{1}^{\alpha_{1}-\alpha_{21}-1} X_{2}
$$

$$
f_{4}=X_{4}^{\alpha_{4}}-X_{1} X_{2}^{\alpha_{2}-1} X_{3}^{\alpha_{3}-1}
$$

$$
f_{5}=X_{3}^{\alpha_{3}-1} X_{1}^{\alpha_{21}+1}-X_{2} X_{4}^{\alpha_{4}-1}
$$

S-degrees

Let $\operatorname{deg}_{S}\left(X_{1}^{u_{1}} X_{2}^{u_{2}} X_{3}^{u_{3}} X_{4}^{u_{4}}\right)=\sum_{i=1}^{4} u_{i} n_{i} \in S . d \in S$ is called a Betti
S-degree if there is a minimal generator of I_{S} of S-degree d and β_{d} is the number of times d occurs as a Betti S-degree. Both β_{d} and the set B_{S} of

Betti S-degrees are invariants of I_{S}. S-degrees of binomials in I_{S} which are not comparable with respect to $<s$ constitute the minimal binomial
S-degrees denoted M_{S}, where $s_{1}<s s_{2}$ if $s_{2}-s_{1} \in S$. In general,
$M_{S} \subseteq B_{S}$.

Indispensables

By Komeda's result, $B_{S}=\left\{d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right\}$ if d_{i} 's are all distinct, where d_{i} is the S-degree of f_{i}, for $i=1, \ldots, 5$. A binomial is called indispensable if it appears in every minimal generating set of I_{S}.

Lemma

A binomial of S-degree d is indispensable if and only if $\beta_{d}=1$ and
$d \in M_{S}$.

We use the following Lemma twice in the sequel.

If $0<v_{k}<\alpha_{k}$ and $0<v_{l}<\alpha_{l}$, for $k \neq I \in\{1,2,3,4\}$, then
$v_{k} n_{k}-v_{l} n_{l} \notin S$.

Proposition

$M_{S}=\left\{d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right\}$ if $\alpha_{1}-\alpha_{21}>2$ and $M_{S}=\left\{d_{1}, d_{2}, d_{3}, d_{5}\right\}$ if $\alpha_{1}-\alpha_{21}=2$.

Corollary

Indispensable binomials of I_{S} are $\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$ if $\alpha_{1}-\alpha_{21}>2$ and are
$\left\{f_{1}, f_{2}, f_{3}, f_{5}\right\}$ if $\alpha_{1}-\alpha_{21}=2$.

Strongly indispensable minimal free resolutions

For a graded minimal free A-resolution

$$
\mathbf{F}: 0 \longrightarrow A^{\beta_{k-1}} \xrightarrow{\phi_{k-1}} A^{\beta_{k-2}} \xrightarrow{\phi_{k-2}} \cdots \xrightarrow{\phi_{2}} A^{\beta_{1}} \xrightarrow{\phi_{1}} A^{\beta_{0}} \longrightarrow K[S] \longrightarrow 0
$$

of $K[S]$, let $A^{\beta_{i}}$ be generated in degrees $s_{i, j} \in S$, which we call i-Betti degrees, i.e. $A^{\beta_{i}}=\bigoplus_{j=1}^{\beta_{i}} A\left[-s_{i, j}\right]$.
The resolution (\mathbf{F}, ϕ) is strongly indispensable if for any graded minimal resolution (\mathbf{G}, θ), we have an injective complex map $i:(\mathbf{F}, \phi) \longrightarrow(\mathbf{G}, \theta)$.

Betti i-degrees of $S=\langle 5,12,11,14\rangle$

1-Betti degrees : $\{22,24,25,26,28\}$
2-Betti degrees: $\{36,37,38,39,40,46\}$
3-Betti degrees: $\{51,60\}$.
Note that $\{51,60\}-42=\{9,18\}$. Recall that
$\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{21}\right)=(5,2,2,2,2)$.

In, Barucci-Froberg-Sahin (2014), we give a minimal free resolution of
$K[S]$, for symmetric and pseudo symmetric S and prove that it is always strongly indispensable for symmetric S . It follows that it is strongly indispensable for pseudo symmetric S iff the differences between the i-Betti degrees do not lie in S, for only $i=1,2$. Using this, we obtain

Main Theorem 1

Let S be a 4-generated pseudo-symmetric semigroup. Then $K[S]$ has a strongly indispensable minimal graded free resolution if and only if $\alpha_{4}>2$
and $\alpha_{1}-\alpha_{21}>2$.

Part II

Cohen-Macaulayness of the Tangent Cone

and Sally's Conjecture

If (R, \mathbf{m}) is a local ring with maximal ideal \mathbf{m}, then the Hilbert function of
R is defined to be the Hilbert function of its associated graded ring

$$
g r_{\mathbf{m}}(R)=\bigoplus_{r \in \mathbb{N}} \mathbf{m}^{r} / \mathbf{m}^{r+1}
$$

That is,

$$
H_{R}(r)=\operatorname{dim}_{K}\left(\mathbf{m}^{r} / \mathbf{m}^{r+1}\right)
$$

The Main Problem:

Determine the conditions under which the Hilbert function of a local ring (R, \mathbf{m}) is non-decreasing.

A sufficient condition:

If the tangent cone is Cohen-Macaulay, $H_{R}(r)$ is non-decreasing. But this does not follow from Cohen-Macaulayness of (R, \mathbf{m}).

Sally's Conjecture (1980):

If (R, \mathbf{m}) is a one dimensional Cohen-Macaulay local ring with small embedding dimension $d:=H_{R}(1)$, then $H_{R}(r)$ is non-decreasing.

Literature:

- $d=1$, obvious as $H_{R}(r)=1$
- $d=2$, proved by Matlis (1977)
- $d=3$, proved by Elias (1993)
- $d=4$, a counterexample is given by Gupta-Roberts (1983)
- $d \geq 5$, counterexamples for each d are given by Orecchia(1980).

The local ring associated to the monomial curve $C=C\left(n_{1}, \ldots, n_{k}\right)$ is
$K\left[\left[t^{n_{1}}, \ldots, t^{n_{k}}\right]\right]$ with $\mathbf{m}=\left(t^{n_{1}}, \ldots, t^{n_{k}}\right)$, and the associated graded ring $\operatorname{gr}\left(K\left[\left[t^{n_{1}}, \ldots, t^{n_{k}}\right]\right]\right)$ is isomorphic to the ring $K\left[x_{1}, \ldots, x_{k}\right] / I(C)_{*}$, where $I(C)$ is the defining ideal of C and $I(C)_{*}$ is the ideal generated by the polynomials f_{*} for f in $I(C)$ and f_{*} is the homogeneous summand of f of least degree. In other words, $I(C)_{*}$ is the defining ideal of the tangent cone of C at 0 .

Herzog-Waldi,1975

Let $C=C(30,35,42,47,148,153,157,169,181,193) \subset \mathbb{A}^{10}$ and (R, \mathbf{m})
be its associated local ring. Then the Hilbert function of R is NOT
non-decreasing as $H_{R}=\{1,10,9,16,25, \ldots\}$.

Eakin-Sathaye,1976

Let $C=C(15,21,23,47,48,49,50,52,54,55,56,58) \subset \mathbb{A}^{12}$ and (R, \mathbf{m})
be its associated local ring. Then the Hilbert function of R is NOT non-decreasing as $H_{R}=\{1,12,11,13,15, \ldots\}$.

4-generated case:

The conjecture has been proven by Arslan-Mete in 2007 for Gorenstein
local rings R associated to certain symmetric monomial curves in \mathbb{A}^{4}. The method to achieve this result was to show that the tangent cones of these curves at the origin are Cohen-Macaulay. More recently,

Arslan-Katsabekis-Nalbandiyan, generalized this characterizing

Cohen-Macaulayness of the tangent cone completely.

Criterion for Cohen-Macaulayness

Let $C=C\left(n_{1}, \ldots, n_{k}\right)$ be a monomial curve with n_{1} the smallest and
$G=\left\{f_{1}, \ldots, f_{s}\right\}$ be a minimal standard basis of the ideal $I(C)$ wrt the negative degree reverse lexicographical ordering that makes x_{1} the lowest variable. C has Cohen-Macaulay tangent cone at the origin if and only if x_{1} does not divide $\operatorname{LM}\left(f_{i}\right)$ for $1 \leq i \leq k$, where $\operatorname{LM}\left(f_{i}\right)$ denotes the leading monomial of a polynomial f_{i}.

Pseudo symmetric S with n_{1} the smallest generator

Lemma

The set $G=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$ where f_{i} 's are as defined before, is a minimal
standard basis for I_{S} wrt negdegrevlex ordering, if
(1) $\alpha_{2} \leq \alpha_{21}+1$
(2) $\alpha_{21}+\alpha_{3} \leq \alpha_{1}$
(3) $\alpha_{4} \leq \alpha_{2}+\alpha_{3}-1$.

Pseudo symmetric S with n_{1} the smallest generator

Main Theorem 2

Tangent cone of the monomial curve C_{S} is Cohen-Macaulay iff
(1) $\alpha_{2} \leq \alpha_{21}+1$
(2) $\alpha_{21}+\alpha_{3} \leq \alpha_{1}$
(3) $\alpha_{4} \leq \alpha_{2}+\alpha_{3}-1$.

Pseudo symmetric S with n_{2} the smallest generator

Lemma

(1) $\alpha_{21}+\alpha_{3} \leq \alpha_{1}$
(2) $\alpha_{21}+\alpha_{3} \leq \alpha_{4}$
(3) $\alpha_{4} \leq \alpha_{2}+\alpha_{3}-1$
(4) $\alpha_{21}+\alpha_{1} \leq \alpha_{4}+\alpha_{2}-1$ then a minimal standard basis for I_{S} is
(i) $\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$ if $\alpha_{1} \leq \alpha_{4}$,
(ii) $\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}=X_{1}^{\alpha_{1}+\alpha_{21}}-X_{2}^{\alpha_{2}} X_{3} X_{4}^{\alpha_{4}-2}\right\}$ if $\alpha_{1}>\alpha_{4}$,

Pseudo symmetric S with n_{2} the smallest generator

The Main Theorem 3

Tangent cone of the monomial curve C_{S} is Cohen-Macaulay iff
(1) $\alpha_{21}+\alpha_{3} \leq \alpha_{1}$
(2) $\alpha_{21}+\alpha_{3} \leq \alpha_{4}$
(3) $\alpha_{4} \leq \alpha_{2}+\alpha_{3}-1$
(9) $\alpha_{21}+\alpha_{1} \leq \alpha_{4}+\alpha_{2}-1$.

Pseudo symmetric S with n_{3} the smallest generator

Lemma

If the tangent cone of C_{S} is Cohen-Macaulay, then the following must hold
(1) $\alpha_{1} \leq \alpha_{4}$,
(2) $\alpha_{4} \leq \alpha_{21}+\alpha_{3}$,
(3) $\alpha_{4} \leq \alpha_{2}+\alpha_{3}-1$ if $\alpha_{1}-\alpha_{21}>2 ; \alpha_{4} \leq \alpha_{2}+2 \alpha_{3}-3$ if $\alpha_{1}-\alpha_{21}=2$,

Pseudo symmetric S with n_{3} the smallest generator

Lemma

(1) $\alpha_{1} \leq \alpha_{4}$,
(2) $\alpha_{4} \leq \alpha_{21}+\alpha_{3}$,
(3) $\alpha_{2} \leq \alpha_{21}+1$, then a minimal standard basis for I_{S} is
(i) $\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}=X_{1}^{\alpha_{1}-1} X_{4}-X_{2}^{\alpha_{2}-1} X_{3}^{\alpha_{3}}\right\}$ if $\alpha_{4} \leq \alpha_{2}+\alpha_{3}-1$,
(ii) $\left\{f_{1}, f_{2}, f_{3}, f_{4}^{\prime}, f_{5}, f_{6}\right\}$ if $\alpha_{1}-\alpha_{21}=2, \alpha_{2}+\alpha_{3}-1<\alpha_{4} \leq \alpha_{2}+2 \alpha_{3}-3$.

Corollary

If n_{3} is the smallest and
(1) $\alpha_{1} \leq \alpha_{4}$,
(2) $\alpha_{4} \leq \alpha_{21}+\alpha_{3}$,
(3) $\alpha_{2} \leq \alpha_{21}+1$,
(c) $\alpha_{4} \leq \alpha_{2}+\alpha_{3}-1$,
hold, then the tangent cone of the monomial curve C_{S} is Cohen-Macaulay.
If (1), (2), (3) hold, $\alpha_{1}-\alpha_{21}=2$ and $\alpha_{2}+\alpha_{3}-1<\alpha_{4} \leq \alpha_{2}+2 \alpha_{3}-3$,
the tangent cone of C_{S} is Cohen-Macaulay if and only if $\alpha_{1} \leq \alpha_{2}+\alpha_{3}-1$.

Pseudo symmetric S with n_{4} the smallest generator

Lemma

If the tangent cone of the monomial curve C_{S} is Cohen-Macaulay then
(1) $\alpha_{1} \leq \alpha_{4}$,
(2) $\alpha_{2} \leq \alpha_{21}+1$,
(3) $\alpha_{3}+\alpha_{21} \leq \alpha_{4}$.

Lemma

Let n_{4} be the smallest in $\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}$ and the conditions
(1) $\alpha_{1} \leq \alpha_{4}$,
(2) $\alpha_{2} \leq \alpha_{21}+1$,
(3) $\alpha_{3}+\alpha_{21} \leq \alpha_{4}$,
(9) $\alpha_{3} \leq \alpha_{1}-\alpha_{21}$,
hold, then $\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$ is a minimal standard basis for I_{S} and the tangent cone of C_{S} is Cohen-Macaulay.

FINAL RESULT

Hilbert function of the local ring is non-decreasing, when the TC is

Cohen-Macaulay.

FINAL RESULT

Hilbert function of the local ring is non-decreasing, when the TC is

Cohen-Macaulay.

THANK YOU

