Pseudo symmetric monomial curves

Mesut Şahin

HACETTEPE UNIVERSITY

Joint work with Nil Şahin (Bilkent University)

Supported by Tubitak No: 114F094

IMNS 2016, July 4-8, 2016

Part I

Indispensability

Mesut Şahin (HACETTEPE UNIVERSITY)

Pseudo symmetric monomial curves

æ

E + 4 E +

Semigroup, toric ideal, semigroup ring

Let n_1, \ldots, n_4 be positive integers with $gcd(n_1, \ldots, n_4) = 1$. Then

 $S = \langle n_1, \dots, n_4 \rangle$ is $\{u_1n_1 + \dots + u_4n_4 \mid u_i \in \mathbb{N}\}$. Let K be a field and

 $\mathcal{K}[S] = \mathcal{K}[t^{n_1}, \dots, t^{n_4}]$ be the semigroup ring of S, then $\mathcal{K}[S] \simeq \mathcal{A}/I_S$

where, $A = K[X_1, \ldots, X_4]$ and the toric ideal I_S is the kernel of the

surjection $A \xrightarrow{\phi_0} K[S]$, where $X_i \mapsto t^{n_i}$.

Pseudo symmetric S

Pseudo frobenious numbers of S are defined to be the elements of the set

 $PF(S) = \{n \in \mathbb{Z} - S \mid n + s \in S \text{ for all } s \in S - \{0\}\}.$ The largest element

is called the frobenious number denoted by g(S).

- S is called pseudo symmetric if $PF(S) = \{g(S)/2, g(S)\}$.
- S is symmetric if $PF(S) = \{g(S)\}$.

S is pseudo symmetric if $PF(S) = \{g(S)/2, g(S)\}$.

Recall the set
$$PF(S) = \{n \in \mathbb{Z} - S \mid n + s \in S \text{ for all } s \in S - \{0\}\}.$$

 $S = \langle 5, 12, 11, 14 \rangle = \{0, 5, 10, 11, 12, 14, 15, 16, 17, 19\} + \mathbb{N}$ and its
complement is $\{1, 2, 3, 4, 6, 7, 8, 9, 13, 18\}.$
 $1 + 5, 2 + 5, 3 + 5, 4 + 5, 6 + 12, 7 + 11, 8 + 10, 13 + 5 \notin S$ but
 $n + s \in S$ for all $s \in S - \{0\}$, for $n = 9, 18$. So, S is pseudosymmetric

э

3 1 4 3 1

Komeda proved that, the semigroup S is pseudo symmetric if and only if there are positive integers α_i , $1 \le i \le 4$, and α_{21} , with $\alpha_{21} < \alpha_1$, s.t.

$$\begin{split} n_1 &= \alpha_2 \alpha_3 (\alpha_4 - 1) + 1, \\ n_2 &= \alpha_{21} \alpha_3 \alpha_4 + (\alpha_1 - \alpha_{21} - 1)(\alpha_3 - 1) + \alpha_3, \\ n_3 &= \alpha_1 \alpha_4 + (\alpha_1 - \alpha_{21} - 1)(\alpha_2 - 1)(\alpha_4 - 1) - \alpha_4 + 1, \\ n_4 &= \alpha_1 \alpha_2 (\alpha_3 - 1) + \alpha_{21} (\alpha_2 - 1) + \alpha_2. \end{split}$$

For $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_{21}) = (5, 2, 2, 2, 2), S = \langle 5, 12, 11, 14 \rangle.$

Pseudo symmetric S

Komeda proved that, $K[S] = A/(f_1, f_2, f_3, f_4, f_5)$, where

$$\begin{split} f_1 &= X_1^{\alpha_1} - X_3 X_4^{\alpha_4 - 1}, \\ f_2 &= X_2^{\alpha_2} - X_1^{\alpha_{21}} X_4, \\ f_3 &= X_3^{\alpha_3} - X_1^{\alpha_1 - \alpha_{21} - 1} X_2, \\ f_4 &= X_4^{\alpha_4} - X_1 X_2^{\alpha_2 - 1} X_3^{\alpha_3 - 1}, \\ f_5 &= X_3^{\alpha_3 - 1} X_1^{\alpha_{21} + 1} - X_2 X_4^{\alpha_4 - 1} \end{split}$$

æ

< 3 > 4 3 > 4

S-degrees

Let $\deg_S(X_1^{u_1}X_2^{u_2}X_3^{u_3}X_4^{u_4}) = \sum_{i=1}^4 u_i n_i \in S$. $d \in S$ is called a Betti

S-degree if there is a minimal generator of I_S of S-degree d and β_d is the number of times d occurs as a Betti S-degree. Both β_d and the set B_S of Betti S-degrees are invariants of I_S . S-degrees of binomials in I_S which are not comparable with respect to $<_S$ constitute the minimal binomial S-degrees denoted M_S , where $s_1 <_S s_2$ if $s_2 - s_1 \in S$. In general,

 $M_S \subseteq B_S$.

Indispensables

By Komeda's result, $B_S = \{d_1, d_2, d_3, d_4, d_5\}$ if d_i 's are all distinct, where

 d_i is the S-degree of f_i , for i = 1, ..., 5. A binomial is called indispensable

if it appears in every minimal generating set of I_S .

Lemma

A binomial of S-degree d is indispensable if and only if $\beta_d = 1$ and

 $d \in M_S$.

We use the following Lemma twice in the sequel.

If $0 < v_k < \alpha_k$ and $0 < v_l < \alpha_l$, for $k \neq l \in \{1, 2, 3, 4\}$, then

 $v_k n_k - v_l n_l \notin S.$

Proposition

 $M_S = \{d_1, d_2, d_3, d_4, d_5\}$ if $\alpha_1 - \alpha_{21} > 2$ and $M_S = \{d_1, d_2, d_3, d_5\}$ if

 $\alpha_1 - \alpha_{21} = 2.$

Corollary

Indispensable binomials of I_S are $\{f_1, f_2, f_3, f_4, f_5\}$ if $\alpha_1 - \alpha_{21} > 2$ and are

$$\{f_1, f_2, f_3, f_5\}$$
 if $\alpha_1 - \alpha_{21} = 2$.

3

Strongly indispensable minimal free resolutions

For a graded minimal free A-resolution

$$\mathbf{F}: \ 0 \longrightarrow A^{\beta_{k-1}} \xrightarrow{\phi_{k-1}} A^{\beta_{k-2}} \xrightarrow{\phi_{k-2}} \cdots \xrightarrow{\phi_2} A^{\beta_1} \xrightarrow{\phi_1} A^{\beta_0} \longrightarrow \mathcal{K}[S] \longrightarrow 0$$

of K[S], let A^{β_i} be generated in degrees $s_{i,j} \in S$, which we call *i*-Betti degrees, i.e. $A^{\beta_i} = \bigoplus_{j=1}^{\beta_i} A[-s_{i,j}]$.

The resolution (\mathbf{F}, ϕ) is strongly indispensable if for any graded minimal

resolution (\mathbf{G}, θ) , we have an injective complex map $i \colon (\mathbf{F}, \phi) \longrightarrow (\mathbf{G}, \theta)$.

Betti i-degrees of $S = \langle 5, 12, 11, 14 \rangle$

1-Betti degrees : {22, 24, 25, 26, 28}

2-Betti degrees: {36, 37, 38, 39, 40, 46}

 $3-Betti degrees : \{51, 60\}.$

Note that $\{51, 60\} - 42 = \{9, 18\}$. Recall that

 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_{21}) = (5, 2, 2, 2, 2).$

In, Barucci-Froberg-Sahin (2014), we give a minimal free resolution of K[S], for symmetric and pseudo symmetric S and prove that it is always strongly indispensable for symmetric S. It follows that it is strongly indispensable for pseudo symmetric S iff the differences between the

i-Betti degrees do not lie in S, for only i = 1, 2. Using this, we obtain

Main Theorem 1

Let S be a 4-generated pseudo-symmetric semigroup. Then K[S] has a

strongly indispensable minimal graded free resolution if and only if $\alpha_4>2$

and $\alpha_1 - \alpha_{21} > 2$.

▲御★ ▲理★ ▲理★

3

Part II

Cohen-Macaulayness of the Tangent Cone

and Sally's Conjecture

Mesut Şahin (HACETTEPE UNIVERSITY)

Pseudo symmetric monomial curves

If (R, \mathbf{m}) is a local ring with maximal ideal \mathbf{m} , then the Hilbert function of

R is defined to be the Hilbert function of its associated graded ring

$$gr_{\mathbf{m}}(R) = \bigoplus_{r \in \mathbb{N}} \mathbf{m}^r / \mathbf{m}^{r+1}.$$

That is,

$$H_R(r) = \dim_K(\mathbf{m}^r/\mathbf{m}^{r+1}).$$

Mesut Şahin (HACETTEPE UNIVERSITY)

The Main Problem:

Determine the conditions under which the Hilbert function of a local ring

 (R, \mathbf{m}) is non-decreasing.

A sufficient condition:

If the tangent cone is Cohen-Macaulay, $H_R(r)$ is non-decreasing. But this

does not follow from Cohen-Macaulayness of (R, \mathbf{m}) .

Sally's Conjecture (1980):

If (R, \mathbf{m}) is a one dimensional Cohen-Macaulay local ring with small

embedding dimension $d := H_R(1)$, then $H_R(r)$ is non-decreasing.

Literature:

- d = 1, obvious as $H_R(r) = 1$
- d = 2, proved by Matlis (1977)
- *d* = 3, proved by Elias (1993)
- d = 4, a counterexample is given by Gupta-Roberts (1983)
- $d \ge 5$, counterexamples for each d are given by Orecchia(1980).

伺下 イヨト イヨト

The local ring associated to the monomial curve $C = C(n_1, \ldots, n_k)$ is $K[[t^{n_1},\ldots,t^{n_k}]]$ with $\mathbf{m}=(t^{n_1},\ldots,t^{n_k})$, and the associated graded ring $gr_{\mathbf{m}}(K[[t^{n_1},\ldots,t^{n_k}]])$ is isomorphic to the ring $K[x_1,\ldots,x_k]/I(C)_*$, where I(C) is the defining ideal of C and $I(C)_*$ is the ideal generated by the polynomials f_* for f in I(C) and f_* is the homogeneous summand of f of least degree. In other words, $I(C)_*$ is the defining ideal of the tangent cone of C at 0.

Herzog-Waldi, 1975

Let $C = C(30, 35, 42, 47, 148, 153, 157, 169, 181, 193) \subset \mathbb{A}^{10}$ and (R, \mathbf{m})

be its associated local ring. Then the Hilbert function of R is NOT

non-decreasing as $H_R = \{1, 10, \mathbf{9}, 16, 25, \dots\}.$

Eakin-Sathaye,1976

Let $C = C(15, 21, 23, 47, 48, 49, 50, 52, 54, 55, 56, 58) \subset \mathbb{A}^{12}$ and (R, \mathbf{m})

be its associated local ring. Then the Hilbert function of R is NOT

non-decreasing as $H_R = \{1, 12, \mathbf{11}, 13, 15, \dots\}.$

4-generated case:

The conjecture has been proven by Arslan-Mete in 2007 for Gorenstein

local rings R associated to certain symmetric monomial curves in \mathbb{A}^4 . The

method to achieve this result was to show that the tangent cones of these

curves at the origin are Cohen-Macaulay. More recently,

Arslan-Katsabekis-Nalbandiyan, generalized this characterizing

Cohen-Macaulayness of the tangent cone completely.

Criterion for Cohen-Macaulayness

Let $C = C(n_1, \ldots, n_k)$ be a monomial curve with n_1 the smallest and $G = \{f_1, \ldots, f_s\}$ be a minimal standard basis of the ideal I(C) wrt the negative degree reverse lexicographical ordering that makes x_1 the lowest variable. C has Cohen-Macaulay tangent cone at the origin if and only if x_1 does not divide $LM(f_i)$ for $1 \le i \le k$, where $LM(f_i)$ denotes the leading monomial of a polynomial f_i .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Pseudo symmetric S with n_1 the smallest generator

Lemma

The set $G = \{f_1, f_2, f_3, f_4, f_5\}$ where f_i 's are as defined before, is a minimal

standard basis for I_S wrt negdegrevlex ordering, if

1
$$\alpha_2 \le \alpha_{21} + 1$$

 $a_{21} + \alpha_3 \le \alpha_1$

 $a_4 \leq \alpha_2 + \alpha_3 - 1.$

Pseudo symmetric S with n_1 the smallest generator

Main Theorem 2

Tangent cone of the monomial curve C_S is Cohen-Macaulay iff

1
$$\alpha_2 \le \alpha_{21} + 1$$

$$\mathbf{2} \ \alpha_{21} + \alpha_3 \le \alpha_1$$

$$a_4 \leq \alpha_2 + \alpha_3 - 1.$$

Mesut Şahin (HACETTEPE UNIVERSITY)

< 3 > < 3 >

Pseudo symmetric S with n_2 the smallest generator

Lemma

- $1 \alpha_{21} + \alpha_3 \le \alpha_1$
- $a_{21} + \alpha_3 \le \alpha_4$
- $a_4 \leq \alpha_2 + \alpha_3 1$

• $\alpha_{21} + \alpha_1 \le \alpha_4 + \alpha_2 - 1$ then a minimal standard basis for I_S is

(i) $\{f_1, f_2, f_3, f_4, f_5\}$ if $\alpha_1 \le \alpha_4$,

(ii) $\{f_1, f_2, f_3, f_4, f_5, f_6 = X_1^{\alpha_1 + \alpha_{21}} - X_2^{\alpha_2} X_3 X_4^{\alpha_4 - 2}\}$ if $\alpha_1 > \alpha_4$,

Pseudo symmetric S with n_2 the smallest generator

The Main Theorem 3

Tangent cone of the monomial curve C_S is Cohen-Macaulay iff

- $a_{21} + \alpha_3 \le \alpha_1$
- $a_{21} + \alpha_3 \le \alpha_4$
- $\mathbf{0} \ \alpha_{4} \leq \alpha_{2} + \alpha_{3} 1$
- $a_{21} + \alpha_1 \le \alpha_4 + \alpha_2 1.$

3 K 4 3 K

Pseudo symmetric S with n_3 the smallest generator

Lemma

If the tangent cone of C_S is Cohen-Macaulay, then the following must hold

 $\ \, \mathbf{0} \ \, \alpha_1 \leq \alpha_4,$

2 $\alpha_4 \le \alpha_{21} + \alpha_3$,

3

Pseudo symmetric S with n_3 the smallest generator

Lemma
•
$$\alpha_1 \leq \alpha_4$$
,
• $\alpha_4 \leq \alpha_{21} + \alpha_3$,
• $\alpha_2 \leq \alpha_{21} + 1$, then a minimal standard basis for I_5 is
(i) $\{f_1, f_2, f_3, f_4, f_5, f_6 = X_1^{\alpha_1 - 1} X_4 - X_2^{\alpha_2 - 1} X_3^{\alpha_3}\}$ if $\alpha_4 \leq \alpha_2 + \alpha_3 - 1$,
(ii) $\{f_1, f_2, f_3, f'_4, f_5, f_6\}$ if $\alpha_1 - \alpha_{21} = 2$, $\alpha_2 + \alpha_3 - 1 < \alpha_4 \leq \alpha_2 + 2\alpha_3 - 3$.

3 D (3 D)

Corollary

- If n_3 is the smallest and
 - $\ \ \, \alpha_1 \leq \alpha_4,$
 - **2** $\alpha_4 \le \alpha_{21} + \alpha_3$,
 - **3** $\alpha_2 \le \alpha_{21} + 1$,
 - $\ \, \bullet \ \, \alpha_4 \leq \alpha_2 + \alpha_3 1,$

hold, then the tangent cone of the monomial curve C_S is Cohen-Macaulay.

If (1), (2), (3) hold, $\alpha_1 - \alpha_{21} = 2$ and $\alpha_2 + \alpha_3 - 1 < \alpha_4 \le \alpha_2 + 2\alpha_3 - 3$,

the tangent cone of C_S is Cohen-Macaulay if and only if $\alpha_1 \leq \alpha_2 + \alpha_3 - 1$.

Pseudo symmetric S with n_4 the smallest generator

Lemma

If the tangent cone of the monomial curve C_S is Cohen-Macaulay then

- $\ \, \mathbf{0} \ \, \alpha_1 \leq \alpha_4,$
- **2** $\alpha_2 \le \alpha_{21} + 1$,

 $a_3 + \alpha_{21} \le \alpha_4.$

E + 4 E +

Lemma

Let n_4 be the smallest in $\{n_1, n_2, n_3, n_4\}$ and the conditions

- $1 \alpha_1 \leq \alpha_4,$
- **2** $\alpha_2 \le \alpha_{21} + 1$,
- $a_3 + \alpha_{21} \le \alpha_4,$
- $a_3 \leq \alpha_1 \alpha_{21},$

hold, then $\{\mathit{f}_1,\mathit{f}_2,\mathit{f}_3,\mathit{f}_4,\mathit{f}_5\}$ is a minimal standard basis for I_S and the

tangent cone of C_S is Cohen-Macaulay.

3

A B M A B M

FINAL RESULT

Hilbert function of the local ring is non-decreasing, when the TC is

Cohen-Macaulay.

э

3 1 4 3 1

FINAL RESULT

Hilbert function of the local ring is non-decreasing, when the TC is

Cohen-Macaulay.

THANK YOU

Mesut Şahin (HACETTEPE UNIVERSITY)

Pseudo symmetric monomial curves

æ

(B)