Common behaviours in families of numerical semigroups: types of Frobenius varieties

Aureliano M. Robles-Pérez

A talk based on joint works with José Carlos Rosales

International meeting on numerical semigroups with applications Levico Terme 2016

4-8th July 2016

A. M. Robles-Pérez (UGR)

Types of Frobenius varieties

Trees

- A graph G is a pair (V, E) where V is a non-empty set (of vertices) and E is a subset of {(v, w) ∈ V × V | v ≠ w} (the edges of G).
- A path (of length n) connecting two vertices x and y is a sequence of different edges (v₀, v₁), (v₁, v₂), ..., (v_{n-1}, v_n) such that v₀ = x and v_n = y.
- ➤ A graph G is a *tree* if there exists a vertex v^{*} (the *root* of G) such that, for every other vertex x, there exists a unique path connecting x and v^{*}.
- If (x, y) is an edge, then we say that x is a child of y.

The tree of the set of numerical semigroups

- Let ${\mathcal S}$ be the set formed by all numerical semigroups.
- Let G(S) be the tree associated to S. We have that
 - $_{*}$ the vertices are the elements of \mathcal{S} ,
 - * (T, S) is an edge if $S = T \cup \{F(T)\},$
 - $* \mathbb{N}$ is the root.
- If S is a numerical semigroup, then the unique path connecting S with \mathbb{N} is given by the *chain of numerical semigroups associated to S*:

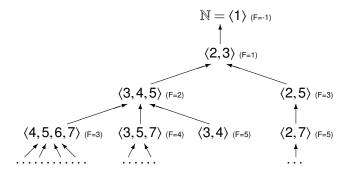
*
$$C(S) = \{S_0 \subsetneq S_1 \subsetneq \cdots \subsetneq S_n\},$$

with $S_0 = S$ and $S_{i+1} = S_i \cup \{F(S_i)\},$ for all $i < n$, and $S_n = \mathbb{N}.$

- The children of S ∈ S are S \ {a₁},...,S \ {a_r}, where a₁,...,a_r are the elements of msg(S) which are greater than F(S).
- * msg(S) is minimal system of generators of S.

The tree of the set of numerical semigroups

• The first levels (with respect the genus) of G(S).



 $*\langle 3,4\rangle$ is a *leaf*: it has not got any child.

Purpose and tools

Purpose: define structures (that is, the varieties) that allow us to build and to arrange the elements of families of numerical semigroups.

► Tools:

- * definitions of (several types of) variety,
- * monoid associated to a variety,
- * minimal system of generators with respect to a variety.

Analysis of the set of numerical semigroups

- Let *S* and *T* be numerical semigroups (with $S \neq \mathbb{N}$).
 - * $S \cup \{F(S)\}$ and $S \cap T$ are numerical semigroups.
- ► Let *S* be a numerical semigroup.

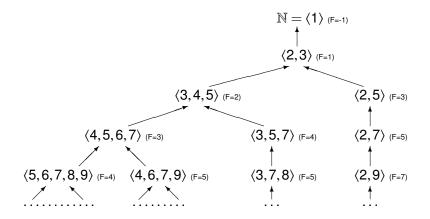
* $S \setminus \{a\}$ is a numerical semigroup if and only if $a \in msg(S)$.

- ► Let *S*, *T* be numerical semigroups.
 - * $S = T \cup \{F(T)\}$ if and only if $T = S \setminus \{a\}$ for some $a \in msg(S)$ such that a > F(S).
- ▶ Let *S*, *T* be numerical semigroups such that $S = T \cup \{F(T)\}$. * F(S) < F(T) and g(T) = g(S) + 1.

Frobenius varieties (Rosales, 2008)

- A variety is a non-empty family V of numerical semigroups that fulfills the following conditions,
 - * if $S, T \in \mathcal{V}$, then $S \cap T \in \mathcal{V}$;
 - * if $S \in \mathcal{V}$ and $S \neq \mathbb{N}$, then $S \cup \{F(S)\} \in \mathcal{V}$.
- Examples of Frobenius varieties
 - * Arf numerical semigroups.
 - * Saturated numerical semigroups.
 - * Numerical semigroups having a Toms decomposition.
 - Numerical semigroups defined by strongly admissible linear patterns.

The tree of the Arf numerical semigroups



* Binary tree: each node has at most two children.

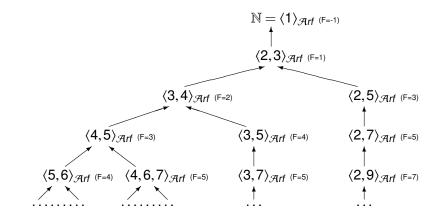
$\mathcal V\text{-monoids}$ and $\mathcal V\text{-systems}$ of generators

- Let \mathcal{V} be a Frobenius variety.
- A submonoid *M* of ℕ is a 𝒱-monoid if it can be expressed as intersection of elements in 𝒱.
 - $_*$ The intersection of $\mathcal V\text{-monoids}$ is a $\mathcal V\text{-monoid.}$
- ► Let $A \subseteq \mathbb{N}$. The \mathcal{V} -monoid generated by A (denoted by $\mathcal{V}(A)$) is the intersection of all the \mathcal{V} -monoids containing A.
 - * $\mathcal{V}(A)$ is the intersection of all elements of \mathcal{V} containing A.
- If $M = \mathcal{V}(A)$, then A is a \mathcal{V} -system of generators of M.
- A is a minimal \mathcal{V} -system of generators of M if $M \neq \mathcal{V}(B)$ for all $B \subsetneq A$.
 - Every V-monoid M has a unique minimal V-system of generators, which in additon is finite (msg_V(M)).
- ▶ If *M* is a \mathcal{V} -monoid and $x \in M$, then $M \setminus \{x\}$ is a \mathcal{V} -monoid if and only if $x \in msg_{\mathcal{V}}(M)$.

The tree of a Frobenius variety

- ► Let 𝒴 be a variety.
- Let $G(\mathcal{V})$ be the tree associated to \mathcal{V} . We have that
 - $_{*}$ the vertices are the elements of \mathcal{V} ,
 - * (T, S) is an edge if $S = T \cup \{F(T)\},$
 - $* \mathbb{N}$ is the root.
- If $S \in \mathcal{V}$, then the unique path connecting S with \mathbb{N} is C(S) (that is, the chain of numerical semigroups associated to S).
- ▶ The children of $S \in \mathcal{V}$ are $S \setminus \{a_1\}, ..., S \setminus \{a_r\}$, where $a_1, ..., a_r$ are the elements of $msg_{\mathcal{V}}(S)$ which are greater than F(S).

The tree of the Arf numerical semigroups as Frobenius variety



* Binary tree: each node has at most two children.

Frobenius pseudo-varieties (R.-P. and Rosales, 2015)

- The set of numerical semigroups with maximal embedding dimension is not a variety.
- ► A *Frobenius pseudo-variety* is a non-empty family *P* of numerical semigroups that fulfills the following conditions,
 - * \mathcal{P} has a maximum element $\Delta(\mathcal{P})$ (with respect to the inclusion order);
 - * if $S, T \in \mathcal{P}$, then $S \cap T \in \mathcal{P}$;
 - * if $S \in \mathcal{P}$ and $S \neq \Delta(\mathcal{P})$, then $S \cup \{F(S)\} \in \mathcal{P}$.
- Examples of pseudo-varieties.
 - * The set of numerical semigroups with multiplicity *m*.
 - * The set of numerical semigroups with maximal embedding dimension and multiplicity *m*.
 - The set of numerical semigroups admitting a strong admissible pattern and multiplicity m: m-varieties.
 (Bras-Amorós, García-Sánchez and Vico-Oton, 2013)

A. M. Robles-Pérez (UGR)

Types of Frobenius varieties

Pseudo-varieties and varieties

- Every variety is a pseudo-variety.
- If \mathcal{P} is a pseudo-variety, then \mathcal{P} is a variety if and only if $\mathbb{N} \in \mathcal{P}$.
- If \mathcal{P} is a family of numerical semigroups with maximum Δ , then \mathcal{P} is a pseudo-variety if and only if $\mathcal{P} \cup C(\Delta)$ is a variety.
- ► If \mathcal{P} is a pseudo-variety and $S \in \mathcal{P}$, then $\Delta(\mathcal{P}) \in C(S)$.
- If S_1, S_2, Δ are numerical semigroups such that $\Delta \in C(S_1) \cap C(S_2)$, then $\Delta \in C(S_1 \cap S_2)$.
- Let \mathcal{V} be a variety and let $\Delta \in \mathcal{V}$.
 - * Then $\mathcal{D}(\mathcal{V}, \Delta) = \{S \in \mathcal{V} \mid \Delta \in C(S)\}$ is a pseudo-variety.
 - * Every pseudo-variety can be obtained in this way.
- $\mathcal{D}(S, \{0, m, \rightarrow\}) = \{S \in S \mid S \subseteq \{0, m, \rightarrow\}\}$ is a pseudo-variety.

\mathcal{P} -monoids and \mathcal{P} -systems of generators

- Let \mathcal{P} be a pseudo-variety.
- A submonoid *M* of ℕ is a *P*-monoid if it can be expressed as intersection of elements in *P*.
 - $_*$ The intersection of $\mathcal V\text{-monoids}$ is a $\mathcal V\text{-monoid.}$
- ► Let $A \subseteq \Delta(\mathcal{P})$. The \mathcal{P} -monoid generated by A (denoted by $\mathcal{P}(A)$) is the intersection of all the \mathcal{P} -monoids containing A.
 - * $\mathcal{P}(A)$ is the intersection of all elements of \mathcal{P} containing A.
- If $M = \mathcal{P}(A)$, then A is a \mathcal{P} -system of generators of M.
- A is a minimal \mathcal{P} -system of generators of M if $M \neq \mathcal{P}(B)$ for all $B \subsetneq A$.
 - Every *P*-monoid *M* has a unique minimal *P*-system of generators, which in additon is finite. (A = msg_{*P*}(M)).
- ▶ If *M* is a \mathcal{P} -monoid and $x \in M$, then $M \setminus \{x\}$ is a \mathcal{P} -monoid if and only if $x \in msg_{\mathcal{P}}(M)$.

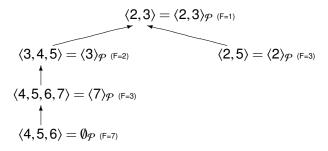
The tree of a pseudo-variety

- Let \mathcal{P} be a pseudo-variety (with maximum $\Delta(\mathcal{P})$).
- Let $G(\mathcal{P})$ be the tree associated to \mathcal{P} . We have that
 - $_{*}$ the vertices are the elements of \mathcal{P} ,
 - * (T, S) is an edge if $S = T \cup \{F(T)\},$
 - $* \Delta(\mathcal{P})$ is the root.
- If $S \in \mathcal{P}$, then the unique path connecting S with $\Delta(\mathcal{P})$ is $C_{\mathcal{P}}(S)$:
 - * $C_{\varphi}(S) = \{S_0 \subsetneq S_1 \subsetneq \cdots \subsetneq S_n\}$, where $S_0 = S$, $S_{i+1} = S_i \cup \{F(S_i)\}$, for all i < n, and $S_n = \Delta(\mathcal{P})$.
- ▶ The children of $S \in \mathcal{P}$ are $S \setminus \{a_1\}, ..., S \setminus \{a_r\}$, where $a_1, ..., a_r$ are the elements of $msg_{\mathcal{P}}(S)$ which are greater than F(S).

Example

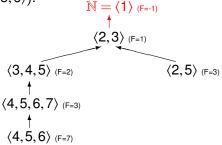
- Let *T* be a numerical semigroup, $T \neq \mathbb{N}$.
 - * $S(T, \langle 2, 3 \rangle) = \{S \in S \mid T \subseteq S \subseteq \langle 2, 3 \rangle\}$ is a pseudo-variety with $\Delta(S(T, \langle 2, 3 \rangle)) = \langle 2, 3 \rangle.$
 - * If $S \in \mathcal{S}(T, \langle 2, 3 \rangle)$, then $\operatorname{msg}_{\mathcal{S}(T, \langle 2, 3 \rangle)}(S) = \operatorname{msg}(S) \setminus T$.

• $G(\mathcal{P}) = G(\mathcal{S}(\langle 4, 5, 6 \rangle, \langle 2, 3 \rangle))$



Pseudo-varieties trees vs varieties trees

- Let \mathcal{V} be a variety and $\Delta \in \mathcal{V}$.
 - * $\mathcal{D}(\mathcal{V}, \Delta) = \{S \in \mathcal{V} \mid \Delta \in \mathcal{C}(S)\}$ is a pseudo-variety.
 - * $\mathcal{D}(\mathcal{V}, \Delta)$ is formed by the descendants of Δ in the tree $G(\mathcal{V})$.
 - * So, a pseudo-variety is a subtree obtained from the tree of a variety when we take a vertex and all its descendants.
- ► If T is a numerical semigroup, then $O(T) = \{S \in S \mid T \subset S\}$ is a variety.
- The tree of $O(\langle 4,5,6\rangle)$.



Examples: no pseudo-varieties

• Let
$$\mathcal{R}(\langle 5,6\rangle) = \{S \in S \mid S \subseteq \langle 5,6\rangle\}.$$

*
$$T = \langle 5, 6 \rangle \setminus \{6\} = \langle 5, 11, 12, 18 \rangle \in \mathcal{R}(\langle 5, 6 \rangle).$$

- * F(T) = 19.
- * $T \cup \{19\} \notin \mathcal{R}(\langle 5, 6 \rangle).$
- * So, $\mathcal{R}(\langle 5,6 \rangle)$ is not a pseudo-variety (or a variety).
- Let $\mathcal{R}(\langle 3,8\rangle,\langle 3,4\rangle) = \{S \in S \mid \langle 3,8\rangle \subseteq S \subseteq \langle 3,4\rangle\}.$

*
$$T = \langle 3, 4 \rangle \setminus \{4\} = \langle 3, 7, 8 \rangle \in \mathcal{R}(\langle 3, 8 \rangle, \langle 3, 4 \rangle).$$

- * F(T) = 5.
- * $T \cup \{5\} \notin \mathcal{R}(\langle 5,6 \rangle, \langle 3,5 \rangle).$
- * So, $\mathcal{R}(\langle 3, 8 \rangle, \langle 3, 4 \rangle)$ is not a pseudo-variety (or a variety).

*R***-varieties** (R.-P. and Rosales, preprint available at arXiv)

- ▶ If *S* and *T* are numerical semigroups such that $S \subsetneq T$, then $S \cup \{\max(T \setminus S)\}$ is another numerical semigroup.
- $F_T(S) = \max(T \setminus S)$ is the Frobenius number of S restricted to T.
- ► An *R*-variety is a non-empty family *R* of numerical semigroups that fulfills the following conditions,
 - * \mathcal{R} has a maximum element $\Delta(\mathcal{R})$ (with respect to the inclusion order);
 - * if $S, T \in \mathcal{R}$, then $S \cap T \in \mathcal{R}$;
 - * if $S \in \mathcal{R}$ and $S \neq \Delta(\mathcal{R})$, then $S \cup \{F_{\Delta(\mathcal{R})}(S)\} \in \mathcal{R}$.

R-varieties, pseudo-varieties and varieties

- Every pseudo-variety is an *R*-variety.
- ▶ If \mathcal{R} is an R-variety, then \mathcal{R} is a pseudo-variety if and only if $F(S) \in \Delta(\mathcal{R})$ for all $S \in \mathcal{R}$ such that $S \neq \Delta(\mathcal{R})$.
- If \mathcal{R} is an R-variety, then \mathcal{R} is a variety if and only if $\mathbb{N} \in \mathcal{R}$.
- Let \mathcal{V} be a variety and let T be a numerical semigroup.
 - * Then $\mathcal{V}_T = \{S \cap T \mid S \in \mathcal{V}\}$ is an *R*-variety.
 - * Every *R*-variety is of this form.
- ▶ If \mathcal{R} is an R-variety and U is a numerical semigroup, then $\mathcal{R}_U = \{S \cap U \mid S \in \mathcal{R}\}$ is an R-variety.
- ▶ Let \mathcal{P} be a pseudo-variety and let T be a numerical semigroup.
 - * Then $\mathcal{P}_T = \{S \cap T \mid S \in \mathcal{P}\}$ is an *R*-variety.
 - * Every *R*-variety is of this form.

$\mathcal R\text{-monoids}$ and $\mathcal R\text{-systems}$ of generators

- Let \mathcal{R} be an R-variety.
- A submonoid *M* of \mathbb{N} is an \mathcal{R} -monoid if it can be expressed as intersection of elements in \mathcal{R} .
 - $_*$ The intersection of $\mathcal R\text{-monoids}$ is an $\mathcal R\text{-monoid.}$
- Let $A \subseteq \Delta(\mathcal{R})$. The *R*-monoid generated by A (denoted by $\mathcal{R}(A)$) is the intersection of all the *R*-monoids containing A.
 - * $\mathcal{R}(A)$ is the intersection of all elements of \mathcal{R} containing A.
- If $M = \mathcal{R}(A)$, then A is an \mathcal{R} -system of generators of M.
- A is a minimal \mathcal{P} -system of generators of M if $M \neq \mathcal{R}(B)$ for all $B \subsetneq A$.
 - Every *R*-monoid *M* has a unique minimal *R*-system of generators, which in additon is finite. (A = msg_R(M)).
- ▶ If *M* is a *R*-monoid and $x \in M$, then $M \setminus \{x\}$ is a *R*-monoid if and only if $x \in msg_{\mathcal{R}}(M)$.

The tree of an *R*-variety

- Let \mathcal{R} be an R-variety (with maximum $\Delta(\mathcal{R})$).
- Let $G(\mathcal{R})$ be the tree associated to \mathcal{R} . We have that
 - $_{*}$ the vertices are the elements of \mathcal{R} ,
 - * $(S, S') \in \mathcal{R} \times \mathcal{R}$ is an edge if $S' = S \cup \{F_{\Delta(\mathcal{R})}(S)\},\$
 - $* \Delta(\mathcal{R})$ is the root.
- ► If $S \in \mathcal{R}$, then the unique path connecting S with $\Delta(\mathcal{R})$ is $C_{\mathcal{R}}(S)$:
 - * $C_{\mathcal{R}}(S) = \{S_0 \subsetneq S_1 \subsetneq \cdots \subsetneq S_n\}$, where $S_0 = S$, $S_{i+1} = S_i \cup \{F_{\Delta(\mathcal{R})}(S_i)\}$, for all i < n, and $S_n = \Delta(\mathcal{R})$.
- ▶ The children of $S \in \mathcal{R}$ are $S \setminus \{a_1\}, ..., S \setminus \{a_r\}$, where $a_1, ..., a_r$ are the elements of $msg_{\mathcal{R}}(S)$ which are greater than F(S).

Example

- $R(3,8) := \mathcal{R}(\langle 3,8 \rangle, \langle 3,4 \rangle)$ is an *R*-variety with $\Delta(R(3,8)) = \langle 3,4 \rangle$. • If $S \in R(3,8)$, then $\operatorname{msg}_{R(3,8)}(S) = \operatorname{msg}(S) \setminus \langle 3,8 \rangle$.
- ► G(R(3,8)) $\langle 3,4\rangle = \langle 4\rangle_{R(3,8)}$ $(F(\langle 3,4\rangle)=5, F(\langle 3,4\rangle)_{\Delta}=-1)$ $\langle 3,7,8\rangle = \langle 7\rangle_{R(3,8)}$ $(F(\langle 3,7,8\rangle) = 5, F(\langle 3,7,8\rangle)_{\Delta} = 4)$ $\langle 3, 8, 10 \rangle = \langle 10 \rangle_{R(3,8)}$ $(F(\langle 3,8,10\rangle) = F(\langle 3,8,10\rangle)_{\Delta} = 7)$ $\langle \mathbf{3}, \mathbf{8}, \mathbf{13} \rangle = \langle \mathbf{13} \rangle_{R(\mathbf{3}, \mathbf{8})} \qquad (F(\langle \mathbf{3}, \mathbf{8}, \mathbf{13} \rangle) = F(\langle \mathbf{3}, \mathbf{8}, \mathbf{13} \rangle)_{\Delta} = \mathbf{10})$ $\langle 3, 8 \rangle = \emptyset_{B(3,8)}$ $(F(\langle 3,8\rangle) = F(\langle 3,8\rangle)_{\Delta} = 13)$

R-varieties trees vs (pseudo-)varieties trees (I)

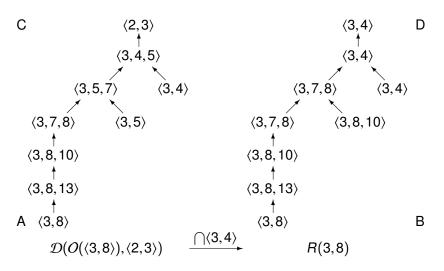
- Let \mathcal{R} be an R-variety and $T \in \mathcal{R}$.
 - * $\mathcal{D}(\mathcal{R}, T) = \{ S \in \mathcal{R} \mid S \text{ is a descendant of } T \text{ in the tree } G(\mathcal{R}) \}.$
 - * $\mathcal{D}(\mathcal{R}, T)$ is an *R*-variety.
- Let \mathcal{V} be a variety and $\Delta \in \mathcal{V}$.
 - * $\mathcal{D}(\mathcal{V}, \Delta) = \{S \in \mathcal{V} \mid \Delta \in \mathcal{C}(S)\}$ is a pseudo-variety.
 - * Every pseudo-variety is of the form $\mathcal{D}(\mathcal{V}, \Delta)$.
- Consequence: there exist *R*-varieties which are not the set formed by all the descendants of an element belonging to a variety.

R-varieties trees vs (pseudo-)varieties trees (II)

- ► Let \mathcal{V} be a variety, let $\Delta \in \mathcal{V}$, and let T be a numerical semigroup.
 - * $\mathcal{D}_T(\mathcal{V}, \Delta) = \{S \cap T \mid S \in \mathcal{D}(\mathcal{V}, \Delta)\}$ is an *R*-variety.
 - * Every *R*-variety can be obtained in this way.
- ► Let \mathcal{P} be a pseudo-variety, let $\Delta \in \mathcal{P}$, and let T be a numerical semigroup.
 - * $\mathcal{D}_T(\mathcal{P}, \Delta) = \{S \cap T \mid S \in \mathcal{D}(\mathcal{P}, \Delta)\}$ is an *R*-variety.
 - * Every *R*-variety can be obtained in this way.

Example

• Let $\mathcal{V} = O(\langle 3, 8 \rangle) = \{ S \in S \mid \langle 3, 8 \rangle \subset S \}, \Delta = \langle 2, 3 \rangle, \text{ and } T = \langle 3, 4 \rangle.$



A. M. Robles-Pérez (UGR)

Types of Frobenius varieties

References

- M. Bras-Amorós, P. A. García-Sánchez, A. Vico-Oton. Nonhomogeneous patterns on numerical semigroups. Internat. J. Algebra Comput. 23 (2013), 14691483.
- 🛸 A. M. Robles-Pérez, J. C. Rosales. Frobenius pseudo-varieties in numerical semigroups. Ann. Mat. Pura Appl. 194 (2015), 275–287.

A.M. Robles-Pérez and J.C. Rosales. Frobenius restricted varieties in numerical semigroups. Preprint available at arXiv (arXiv:1605.03778).

J. C. Rosales.

Families of numerical semigroups closed under finite intersections and for the Frobenius number.

Houston J. Math. 34 (2008), 339-348.

Thank you very much for your attention!!