On Critical Binomial Ideals

Ignacio Ojeda Martínez de Castilla Universidad de Extremadura

(joint work-in-progress with D. Llena and P.A. García Sánchez)

July 7th, 2016

Ignacio Ojeda. Universidad de Extremadura Levico Terme (Italy), July 4, 2016

Semigroup algebra

Let $\mathbb{N}\mathcal{A}$ be a combinatorially finite, cancellative and commutative semigroup with zero element finitely generated by

$$\mathcal{A} := \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$$

and such that $\mathbb{N}A \cap (-\mathbb{N}A) = \{0\}$. For simplicity, we assume that $A \subseteq \mathbb{N}^d$, for some d > 0.

Let \Bbbk be a field and let $\Bbbk[\mathbb{N}\mathcal{A}]$ be the semigroup $\Bbbk\text{-algebra}$ of $\mathbb{N}\mathcal{A},$ that is to say,

$$\Bbbk[\mathbb{N}\mathcal{A}] = \bigoplus_{\mathbf{a} \in \mathbb{N}\mathcal{A}} \Bbbk\{\mathbf{t}^{\mathbf{a}}\},$$

with the product given by $t^{a} \cdot t^{a'} = t^{a+a'}$.

Consider the polynomial ring $\mathbb{k}[\mathbf{X}] := \mathbb{k}[X_1, \dots, X_n]$ over \mathbb{k} generated by the variables X_1, \dots, X_n in degrees $\mathbf{a}_1, \dots, \mathbf{a}_n$, respectively.

The kernel of the ring homomorphism

$$\Bbbk[\mathbf{X}] = \Bbbk[X_1, \ldots, X_n] \stackrel{\varphi_0}{\longrightarrow} \Bbbk[\mathbb{N}\mathcal{A}]; \ X_i \longmapsto \mathbf{t}^{\mathbf{a}_i},$$

is a $\mathbb{N}\mathcal{A}$ -homogeneous binomial ideal called the semigroup ideal associated to \mathcal{A} . It is clear that $\mathbb{k}[\mathbb{N}\mathcal{A}] = \mathbb{k}[\mathbf{X}]/I_{\mathcal{A}}$ is $\mathbb{N}\mathcal{A}$ -graded.

Any set of generators of $I_{\mathcal{A}}$ gives a presentation of the semigroup algebra $\mathbb{k}[\mathbb{N}\mathcal{A}]$ as $\mathbb{k}[\mathbf{X}]$ -module; more precisely, if $I_{\mathcal{A}} = \langle f_1, \ldots, f_{\beta_1} \rangle$, then

$$\Bbbk[\mathbf{X}]^{eta_1} \xrightarrow{arphi_1 = (f_1 \ f_2 \ \dots \ f_{eta_1})} \Bbbk[\mathbf{X}] \xrightarrow{arphi_0} \Bbbk[\mathbb{N}\mathcal{A}] \longrightarrow 0$$

is a $\mathbb{N}\mathcal{A}$ -graded exact sequence.

Every minimal system of binomial generators of I_A is $\mathbb{N}A$ -homogeneous and it has the same cardinality.

Critical binomials

A binomial $X_i^{c_i} - \prod_{j \neq i} X_j^{u_{ij}} \in I_A$ is called critical with respect to X_i if c_i is the least positive integer such that

$$c_i \mathbf{a}_i \in \sum_{j \neq i} \mathbb{N} \mathbf{a}_j.$$

A subideal of I_A generated by *n* critical binomials, one for each variable, is said to be a critical binomial ideal associated to A.

Proposition

If $\mathbb{N}A$ is a numerical semigroup, there exist critical binomial ideals associated to A.

Critical binomials

Proposition

If $\mathbb{Z}\mathcal{A}$ has rank 1, there exist critical binomial ideals associated to $\mathcal{A}.$

However, the converse is not necessarily true.

Example

Let $\mathcal{A} \subset \mathbb{N}^2$ be the set of columns of

$$A=\left(egin{array}{ccccc} 3 & 5 & 7 & 0 & 0 \ 0 & 0 & 0 & 2 & 3 \end{array}
ight).$$

The ideals I_A and $I_{A'}$ where $A' = \{15, 25, 35, 22, 33\}$ contain the same critical binomial ideal, I_A .

$$I_{\mathcal{A}} = \langle X_2^2 - X_1 X_3, X_1^3 X_2 - X_3^2, X_4^3 - X_5^2, X_1^4 - X_2 X_3 \rangle$$
$$I_{\mathcal{A}'} = \langle X_2^2 - X_1 X_3, X_1^3 X_2 - X_3^2, X_4^3 - X_5^2, X_1^4 - X_2 X_3, X_1^2 X_2 - X_4 X_5 \rangle$$

Definition

We will say that $\mathbb{N}\mathcal{A}$ is a critical monoid if $I_{\mathcal{A}}$ is a critical binomial ideal.

That is to say, $\mathbb{N}\mathcal{A}$ is a critical monoid if there exists a minimal system of generators of $I_{\mathcal{A}}$ consisting in critical binomials. In particular, the cardinality of (any) system of binomial generators of $I_{\mathcal{A}}$ is lesser than or equal to n.

- To give necessary and/or sufficient conditions for a semigroup ideal (monoid, resp.) to be a critical binomial ideal (critical monoid, resp.).
- To exhibit families of critial monoids.

Theorem (Herzog, 1970)

If n = 3, every numerical semigroup is a critical monoid.

Theorem (Alcántar and Villarreal, 1994)

If n = 4 and I_A is critical of height 3, then (after permuting the variables appropriately) I_A has a set of binomial generators of one of the following three types:

(N):
$$f_1 = X_1^{c_1} - X_3^{u_{13}} X_4^{u_{14}}, f_2 = X_2^{c_2} - X_1^{u_{21}} X_4^{X_{24}}, f_3 = X_3^{c_3} - X_2^{u_{32}} X_4^{u_{34}}$$

and $D = X_4^{c_4} - X_1^{u_{41}} X_2^{u_{42}} X_3^{u_{43}}$, with $u_{ij} > 0$, for all i, j .

$$\begin{array}{ll} (g\mathsf{N1}): \ f_1 = X_1^{c_1} - X_3^{c_3}, f_2 = X_2^{c_2} - X_1^{u_{21}} X_3^{u_{23}} \ \text{and} \\ g = X_4^{c_4} - X_1^{u_{41}} X_2^{u_{42}} X_3^{u_{43}}. \\ (g\mathsf{N2}): \ f_1 = X_1^{c_1} - X_2^{u_{12}} X_3^{u_{13}}, f_2 = X_2^{c_2} - X_1^{u_{21}} X_3^{u_{23}}, D = X_3^{c_3} - X_1^{u_{31}} X_2^{u_{32}} \\ and \ g = X_4^{c_4} - X_1^{u_{41}} X_2^{u_{42}} X_3^{u_{43}}, \ \text{with} \ u_{ij} > 0 \ \text{for all} \ i \neq 4 \ \text{and} \\ u_{4j} \ge 0, \ \text{not all zero, for all } j. \end{array}$$

Numerical semigroups

(N)
$$f_1 = X_1^{c_1} - X_3^{u_{13}} X_4^{u_{14}}, f_2 = X_2^{c_2} - X_1^{u_{21}} X_4^{x_{24}}, f_3 = X_3^{c_3} - X_2^{u_{32}} X_4^{u_{34}}$$

and $D = X_4^{c_4} - X_1^{u_{41}} X_2^{u_{42}} X_3^{u_{43}}$, with $u_{ij} > 0$, for all i, j .

Proposition (Bresinsky, 1988)

Let B be the matrix whose rows are the exponent vectors of f_1, f_2, f_3 and D. i.e.,

$$B = \begin{pmatrix} c_1 & 0 & -u_{13} & -u_{14} \\ -u_{21} & c_2 & 0 & -u_{24} \\ 0 & -u_{32} & c_3 & -u_{34} \\ -u_{41} & -u_{42} & -u_{43} & c_4 \end{pmatrix}$$

There exists $\mathcal{A} \subset \mathbb{N}$ such that $\mathbb{N}\mathcal{A}$ is a numerical semigroup and $I_{\mathcal{A}} = \langle f_1, f_2, f_3, D \rangle$ if and only if

(a) the sum of the columns of B are zero;

Critical ideals of Northcott type

Definition

Let

$$\Phi = \begin{pmatrix} X_1^{u_{n1}} & 0 & \dots & -X_n^{u_{1n}} \\ -X_n^{u_{2n}} & X_2^{u_{n2}} & \dots & 0 \\ 0 & -X_n^{u_{3n}} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & X_{n-1}^{u_{nn-1}} \end{pmatrix}$$

and $\mathbf{m} = (X_1^{u_{21}}, \dots, X_{n-2}^{u_{n-1n-2}}, X_{n-1}^{u_{1n-1}})$, with $u_{ij} > 0$, for all i, j. If $(f_1, \dots, f_{n-1})^{\mathrm{T}} = \Phi \mathbf{m}^{\mathrm{T}}$ and $D = \det(\Phi)$, then the ideal of $\Bbbk[\mathbf{X}]$ generated by

$$\{f_1,\ldots,f_{n-1},D\}$$

will be called a critical ideal of Northcott type.

The family of critical ideals of Northcott type contains as subcases the semigroup ideals associated to non-symmetric numerical semigroups of embedding dimension 3 and the family (N) introduced by Alcantar and Villarreal.

The first case has been studied from this point of view by O'Carrol+Planas-Vilanova.

Theorem

If $J \subset \mathbb{k}[\mathbf{X}]$ is a critical ideal of Northcott type, then it can be computed $\mathcal{A} = {\mathbf{a}_1, \ldots, \mathbf{a}_n} \subset \mathbb{Z} \oplus T$, where T is finite abelian group, such that $I_{\mathcal{A}} = J$. In this case, we will say that $\mathbb{N}\mathcal{A}$ is a Northcott type semigroup

Observe that Norhtcott type semigroups are critical monoids.

One of the key facts of the proof is that the system of generators $\{f_1, \ldots, f_{n-1}, D\}$ determinated by Φ and **m** forms a Groebner basis with respect to a particular term order on $\Bbbk[X]$

Corollary

Every critical ideal of Northcott type has unique minimal system of binomial generators (up to signs), that is to say, f_1, \ldots, f_{n-1} and D are indispensable binomials.

Apéry Set

Let S be a numerical semigroup, and let z be an integer. The Apéry set of z in S is the set

$$\operatorname{Ap}(S,z) = \{s \in S \mid s - z \notin S\}.$$

Lemma

Let J be a critical ideal of Northcott type and let $\mathcal{A} = \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ be such that $J = I_{\mathcal{A}}$. If $S = \mathbb{N}\mathcal{A}$ is a numerical semigroup, then $\operatorname{Ap}(S, \mathbf{a}_n)$ can be explicitly described.

Therefore, by using the Selmer's formulas:

•
$$F(S) = \max(Ap(S, s)) - s$$
,

$$(S) = \frac{1}{s} \sum_{w \in \operatorname{Ap}(S,s)} w - \frac{s-1}{2},$$

the Frobenius number and the genus of S can be explicitly determined.

Example

а

Let J be a critical ideal of Northcott type for $\mathbf{m} = (X_1, \ldots, X_{n-1})$ and let $\mathcal{A} = {\mathbf{a}_1, \ldots, \mathbf{a}_n}$ be such that $J = I_{\mathcal{A}}$. If $\mathbb{N}\mathcal{A}$ is a numerical semigroup, then

•
$$\mathbf{a}_n = \prod_{i=1}^{n-1} (u_{ni} + 1) - 1$$
,
• $\mathbf{a}_k = u_{\sigma(k)n} + (\sum_{i=1}^{n-2} \prod_{j=1}^{i} (u_{n\sigma^k(j)} + 1)) u_{\sigma^k(i+1)n}$, for $k \neq n$,
nd
 $\Sigma(2) = (\sum_{i=1}^{n-1} (1) \sum_{j=1}^{n-1} (1) \sum_{j=1}^{n-1}$

•
$$F(S) = (\sum_{i=1}^{n-1} u_{in} - 1)a_n - \min a_j,$$

• $g(S) = (\sum_{i=1}^{n-1} u_{in} - 1)(a_n - 1)/2,$

$$\begin{array}{ll} ({\rm gN1}): \ f_1 = X_1^{c_1} - X_3^{c_3}, f_2 = X_2^{c_2} - X_1^{u_{21}} X_3^{u_{23}} \ \text{and} \\ g = X_4^{c_4} - X_1^{u_{41}} X_2^{u_{42}} X_3^{u_{43}}. \\ ({\rm gN2}): \ f_1 = X_1^{c_1} - X_2^{u_{12}} X_3^{u_{13}}, f_2 = X_2^{c_2} - X_1^{u_{21}} X_3^{u_{23}}, D = X_3^{c_3} - X_1^{u_{31}} X_2^{u_{32}} \\ \text{and} \ g = X_4^{c_4} - X_1^{u_{41}} X_2^{u_{42}} X_3^{u_{43}}, \ \text{with} \ u_{ij} > 0 \ \text{for all} \ i \neq 4 \ \text{and} \\ u_{4j} \ge 0, \ \text{not all zero, for all} \ j. \end{array}$$

$$\begin{array}{ll} ({\rm gN}^*): \ f_1 = X_1^{c_1} - X_2^{u_{12}} X_3^{u_{13}}, f_2 = X_2^{c_2} - X_1^{u_{21}} X_3^{u_{23}}, D = X_3^{c_3} - X_1^{u_{31}} X_2^{u_{32}} \\ \mbox{ and } g = X_4^{c_4} - X_1^{u_{41}} X_2^{u_{42}} X_3^{u_{43}}, \mbox{ with } (u_{ij} > 0 \mbox{ for all } i \neq 4 \mbox{ and } \\ u_{4j} \ge 0, \mbox{ not all zero, for all } j), \mbox{ or } (u_{12} = u_{32} = 0, \ u_{13} = c_3 \\ \mbox{ and } u_{31} = c_1). \end{array}$$

Proposition (Bresinsky, 1988)

Let B be the matrix whose rows are the exponent vectors of f_1,f_2 D, and g, that is,

$$B = \begin{pmatrix} c_1 & -u_{12} & -u_{13} & 0\\ -u_{21} & c_2 & -u_{23} & 0\\ -u_{31} & -u_{32} & c_3 & 0\\ -u_{41} & -u_{42} & -u_{43} & c_4 \end{pmatrix}$$

There exists $\mathcal{A} \subset \mathbb{N}$ such that $\mathbb{N}\mathcal{A}$ is a numerical semigroup and $I_{\mathcal{A}} = \langle f_1, f_2, D, g \rangle$ if and only if (a) $\{f_1, f_2, D\}$ generates a toric ideal in $\mathbb{k}[X_1, X_2, X_3]$.

b) the
$$(3,j)$$
-minors of $B, j = 1, ..., 4$ are relatively prime.

Let G be a finitely generated commutative group and let $\mathcal{A} = \{\mathbf{a}_1, \dots, \mathbf{a}_n\} \subset G$ be such that $\mathbb{N}\mathcal{A} \cap (-\mathbb{N}\mathcal{A}) = \{0\}$.

Assume that

$$\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$$

with $\mathcal{A}_1 \neq \varnothing \neq \mathcal{A}_2$.

After reindexing the elements in \mathcal{A} if necessary, we may suppose that $\mathcal{A}_1 = \{\mathbf{a}_1, \dots, \mathbf{a}_k\}$ and $\mathcal{A}_2 = \{\mathbf{a}_{k+1}, \dots, \mathbf{a}_n\}$.

Definition

We say that $\mathbb{N}\mathcal{A}$ is a gluing of $\mathbb{N}\mathcal{A}_1$ and $\mathbb{N}\mathcal{A}_2$ if $I_{\mathcal{A}}$ has a system of generators of the form $B_1 \cup B_2 \cup \{\mathbf{X}^{\mathbf{u}} - \mathbf{X}^{\mathbf{v}}\}$, where $B_1 \cup \{\mathbf{X}^{\mathbf{u}}\} \subseteq \Bbbk[X_1, \ldots, X_k]$ and $B_2 \cup \{\mathbf{X}^{\mathbf{v}}\} \subseteq \Bbbk[X_{k+1}, \ldots, X_n]$.

(gN*):
$$f_1 = X_1^{c_1} - X_2^{u_{12}} X_3^{u_{13}}, f_2 = X_2^{c_2} - X_1^{u_{21}} X_3^{u_{23}}, D = X_3^{c_3} - X_1^{u_{31}} X_2^{u_{32}}$$

and $g = X_4^{c_4} - X_1^{u_{41}} X_2^{u_{42}} X_3^{u_{43}}$, with $(u_{ij} > 0 \text{ for all } i \neq 4 \text{ and}$
 $u_{4j} \ge 0$, not all zero, for all j), or $(u_{12} = u_{32} = 0, u_{13} = c_3$
and $u_{31} = c_1$).

Proposition

There exists $\mathcal{A} = \{a_1, a_2, a_3, a_4\} \subset \mathbb{N}$ such that $\langle f_1, f_2, D, g \rangle = I_{\mathcal{A}}$ if and only if $\mathbb{N}\mathcal{A}$ is a gluing of $c_4\mathbb{N}\mathcal{A}'$ and $a_4\mathbb{N}$, with $\mathcal{A}' = \{a_i/\operatorname{gcd}(a_1, a_2, a_3) \mid i = 1, 2, 3\}.$

Theorem

Every critical monoid of embedding dimnesion 4 is either a Northcott type semigroup or a gluing of a Northcott type semigroup and \mathbb{N} .

In general, we have the following:

Proposition

Let G be a commutative group, $\mathcal{A} = \{\mathbf{a}_1, \dots, \mathbf{a}_n\} \subset G$ and $\mathbf{a}_{n+1} \in G$. If $\mathbb{N}\mathcal{A}$ is a critical monoid and $S = \mathbb{N}\mathcal{A} + \mathbb{N}\mathbf{a}_{n+1}$ is a gluing of $\mathbb{N}\mathcal{A}$ and $\mathbb{N}\mathbf{a}_{n+1}$, then S is a critical monoid.

Example

A quick search using shows that $S = \langle 11, 13, 14, 15, 19 \rangle$ is not a gluing and not Northcott-type.

gap> MinimalPresentationOfNumericalSemigroup(s);

[[[0, 0, 0, 2, 0], [1, 0, 0, 0, 1]], [[0, 0, 2, 0, 0], [0, 1, 0, 1, 0]], [[0, 2, 0, 0, 0], [1, 0, 0, 1, 0]], [[1, 1, 1, 0, 0], [0, 0, 0, 0, 2]], [[3, 0, 0, 0, 0], [0, 0, 1, 0, 1]]

Thanks for your attention!