linear inequalities for the hilbert depth of graded modules over polynomial rings

Julio José Moyano Fernández July 8th, 2016

Universitat Jaume I de Castellón

Introduction

- Invariants of Hilbert series \longrightarrow numerical semigroups
- New interpretation of some characterization already explained in Vila-Real and Cortona
- This talk is based on a series of common works with
 - * Lukas Katthän, Goethe-Universität Frankfurt am Main
 - * Jan Uliczka, Universität Osnabrück
 - All available on the arXiv.

 $\ensuremath{\mathrm{The}}$ setting

Let K be a field.

Let $R := K[X_1, \dots, X_n]$ be a polynomial ring endowed with a grading, typically

- \diamond standard- \mathbb{Z} -grading, i.e., deg $X_i = 1$
- \diamond nonstandard-Z-grading
- \diamond (\mathbb{Z}^r -grading)

Let $0 \neq M = \bigoplus_{\underline{\ell}} M_{\underline{\ell}}$ be a finitely generated graded *R*-module, with <u>Hilbert series</u>

$$H_{M}(t) = \sum_{\underline{\ell} \in \mathbb{Z}^{r}} (\dim_{\mathcal{K}} M_{\underline{\ell}}) \underline{t}^{\underline{\ell}} \in \mathbb{Z}[\![\underline{t}]\!][\underline{t}^{-\underline{1}}]$$

Series without negative coefficients: nonnegative series.

Previous results

For the moment, let us restrict ourselves to \mathbb{Z} -gradings

Set $d_i := \deg X_i \in \mathbb{N}$ for all $i = 1, \ldots n$.

Definition [Hilbert depth]

 $\mathrm{Hdep}(M) := \max\{\mathrm{depth} N \mid N \text{ a f.g. gr. module with } H_N = H_M\}.$

This is a well-defined but opaque quantity!

Characterizations?

Theorem [---, Uliczka 13]

A formal Laurent series H with denominator $\prod_i (1 - t^{d_i})$ is the Hilbert series of a f.g. graded *R*-module *M* if and only if

$$H(t) = \sum_{I \subseteq \{1,...,n\}} \frac{Q_I(t)}{\prod_{j \in I} (1 - t^{d_j})}$$

with nonnegative $Q_I(t)$.

Definition [Decomposition Hilbert depth]

 $\operatorname{decHdep}(M) := \max \left\{ r \in \mathbb{N} \ \left| \begin{array}{c} H_M \text{ admits a decompos. as above} \\ \text{with } Q_I = 0 \ \forall \ I \text{ such th. } |I| < r \end{array} \right\}.$

Let R = K[X, Y] be with $\alpha := \deg X$, $\beta := \deg Y$ coprime. Set $\Gamma := \langle \alpha, \beta \rangle$ the numerical semigroup generated by α and β . <u>Theorem</u> [--, Uliczka 13] Let M be a finitely generated graded R-module. Then Hdep(M) > 0 if and only if $H_M(t) = \sum_n h_n t^n$ satisfies the

condition

$$\sum_{i\in I}h_{i+n}\leq \sum_{j\in J}h_{j+n}$$

for all $n \in \mathbb{Z}$ and all "fundamental couples" [I, J].

(I) What is a "fundamental couple" [I, J]?

Let *L* be the set of gaps of $\langle \alpha, \beta \rangle$.

An (α, β) -fundamental couple [I, J] consists of two integer sequences $I = (i_k)_{k=0}^m$ and $J = (j_k)_{k=0}^m$, such that

(0)
$$i_0 = 0.$$

(1) $i_1, \dots, i_m, j_1, \dots, j_{m-1} \in L \text{ and } j_0, j_m \le \alpha \beta$

(2)

 $\begin{array}{ll} i_k \equiv j_k & \mod \alpha & \text{and} & i_k < j_k & \text{for } k = 0, \dots, m; \\ j_k \equiv i_{k+1} & \mod \beta & \text{and} & j_k > i_{k+1} & \text{for } k = 0, \dots, m-1; \\ j_m \equiv i_0 & \mod \beta & \text{and} & j_m \ge i_0. \end{array}$

(3) $|i_k - i_\ell| \in L$ for $1 \leq k < \ell \leq m$.

(II) What is a "fundamental couple" [I, J]?

- I consists of minimal generators of "relative ideals" = "semimodules" Δ of $\Gamma.$
- J contains "small shifts" of I-sets which turn out to generate a sort of syzygy Syz_△.

Syzygy in the sense that any element in Syz_{Δ} admits more than one presentation in the form i + x with $i \in I$ and $x \in \Gamma$.

In the special case $\Gamma=\langle 3,5\rangle$ the criterion is given by the inequalities

Lattice paths for $\Gamma=\langle 5,7\rangle$

= [15, 13, 16, 14].

Lattice paths for $\Gamma=\langle 5,7\rangle$

$$I = [0, 8, 6, 9]$$

Lattice paths for $\Gamma=\langle 5,7\rangle$

$$I = [0, 8, 6, 9]$$

Lattice paths for $\Gamma = \langle 5, 7 \rangle$

I = [0, 8, 6, 9] and J = [15, 13, 16, 14].

New results

A deep algebraic meaning of the inequalities $\sum_{i \in I} h_{i+n} \leq \sum_{j \in J} h_{j+n} \text{ remained rather hidden.}$

New insights appeared when considering the \mathbb{Z}^r -grading.

The starting question arose by looking at the decomposition theorem (already mentioned):

A formal Laurent series H with denominator $\prod_i (1 - t^{d_i})$ is the Hilbert series of a f.g. graded *R*-module *M* iff

$$H(t) = \sum_{I \subseteq \{1,...,n\}} rac{Q_I(t)}{\prod_{j \in I} (1-t^{d_j})} \quad ext{with nonnegative } Q_I.$$

<u>Question</u>: Is the condition of the Thm satisfied by *every* rational function with the given denominator and nonnegative coefficients?

[excursus]

<u>Question</u>: Which formal Laurent series arise as Hilbert series of R-modules (in a certain class)?

Conditions: The series must...

- ... have nonnegative coefficients.
- ... be rational function with denominator $\prod_i (1 \underline{t}^{\deg X_i})$.

• ...

Related work:

- Macaulay, 1927: cyclic modules, standard $\mathbb{Z}\text{-}\mathsf{grading}.$
- Boij & Smith, 2015: modules generated in degree 0, standard $\mathbb{Z}\text{-}\mathsf{grading}$ + technical details

Theorem [Katthän, -, Uliczka 2016]

Let $H \in \mathbb{Z}[[t]][t^{-1}]$ be a formal Laurent series, which is the Hilbert series of some finitely generated graded *R*-module *M*. Let further $S := R/(X^{\beta} - Y^{\alpha})$.

Then the following statements are equivalent:

- (a) $\operatorname{Hdep}(M) > 0$
- (b) For any finitely generated torsionfree S-module N, it holds that

$$\frac{H\cdot H_N}{H_R}\geq 0.$$

- (c) Condition (b) holds for any finitely generated torsionfree S-module of rank 1.
- (d) For all $n \in \mathbb{Z}$, [I, J] fundamental couple, $H = \sum_i h_i t^i$ satisfies

$$\sum_{i\in I} h_{i+n} \le \sum_{j\in J} h_{j+n} \tag{(\star)}$$

We need the following result about the structure of fundamental couples.

<u>Lemma</u>

Let $[I = (i_k), J = (j_k)]$ be a fundamental couple of length *m*. Then there exist two integer sequences

$$eta > a_0 > a_1 > \cdots > a_m = 0,$$
 and $0 = b_0 < b_1 < \cdots < b_m < lpha$

such that

$$i_k = \alpha \beta - a_{k-1} \alpha - b_k \beta$$
 for $1 \le k \le m$, and
 $j_k = \alpha \beta - a_k \alpha - b_k \beta$ for $0 \le k \le m$

(c) \Rightarrow (d): Let [I, J] be a fundamental couple.

Recall that $S = K[t^{\alpha}, t^{\beta}]$ is the monoid algebra of Γ . Let $N \subseteq K[t]$ be the S-module generated by $t^{\alpha\beta-j_0}, \ldots, t^{\alpha\beta-j_m}$. This module is torsionfree, hence $\frac{H_MH_N}{H_R} \ge 0$ by assumption. To see that this inequality implies (*), we need to compute H_N . Let $(a_k)_{k=0}^m, (b_k)_{k=0}^m$ be the sequences as in Lemma and let

$$\tilde{N} := (X^{a_0} Y^{b_0}, \dots, X^{a_m} Y^{b_m}).$$

It is easy to see that \tilde{N} is the preimage of N under the projection $R \rightarrow S$.

In particular, note that $X^{\beta} - Y^{\alpha} \in \tilde{N}$, because $X^{a_0}, Y^{b_m} \in \tilde{N}$. Hence $N \cong \tilde{N}/(X^{\beta} - Y^{\alpha})$ and thus $H_N = H_{\tilde{N}} - t^{\alpha\beta}H_R$. By considering the minimal free resolution of \tilde{N} , one sees that its syzygies are generated in the degrees $a_{k-1}\alpha + b_k\beta$ for $1 \le k \le m$.

Therefore

$$\frac{H_N}{H_R} = \frac{H_{\tilde{N}} - t^{\alpha\beta}H_R}{H_R} = \sum_{k=0}^m t^{a_k\alpha+b_k\beta} - \sum_{k=1}^m t^{a_{k-1}\alpha+b_k\beta} - t^{\alpha\beta}$$
$$= \sum_{k=0}^m t^{\alpha\beta-j_k} - \sum_{k=1}^m t^{\alpha\beta-i_k} - t^{\alpha\beta-i_0} = t^{\alpha\beta} \left(\sum_{j\in J} t^{-j} - \sum_{i\in I} t^{-i}\right)$$

Then we obtain

$$0 \leq \frac{H \cdot H_N}{H_R} = \left(\sum_{n \in \mathbb{Z}} h_n t^n\right) t^{\alpha \beta} \left(\sum_{j \in J} t^{-j} - \sum_{i \in I} t^{-i}\right)$$
$$= t^{\alpha \beta} \sum_{n \in \mathbb{Z}} t^n \left(\sum_{j \in J} h_{n+j} - \sum_{i \in I} h_{n+i}\right),$$

and (\star) is satisfied for [I, J].