linear inequalities for the hilbert depth of graded modules over polynomial rings

Julio José Moyano Fernández
July 8th, 2016

Universitat Jaume I de Castellón

Introduction

Introduction

- Invariants of Hilbert series \longrightarrow numerical semigroups
- New interpretation of some characterization already explained in Vila-Real and Cortona
- This talk is based on a series of common works with
* Lukas Katthän, Goethe-Universität Frankfurt am Main
* Jan Uliczka, Universität Osnabrück

All available on the arXiv.

The setting

Let K be a field.
Let $R:=K\left[X_{1}, \ldots, X_{n}\right]$ be a polynomial ring endowed with a grading, typically
\diamond standard-Z्Z-grading, i.e., $\operatorname{deg} X_{i}=1$
\diamond nonstandard-Z्Z-grading
$\diamond\left(\mathbb{Z}^{r}\right.$-grading $)$
Let $0 \neq M=\bigoplus_{\underline{\ell}} M_{\underline{\ell}}$ be a finitely generated graded R-module, with Hilbert series

$$
H_{M}(t)=\sum_{\underline{\ell} \in \mathbb{Z}^{r}}\left(\operatorname{dim}_{K} M_{\underline{\ell}}\right) \underline{t}^{\underline{\ell}} \in \mathbb{Z} \llbracket \rrbracket \rrbracket\left[\underline{t}^{-1}\right]
$$

Series without negative coefficients: nonnegative series.

Previous results

hilbert depth

For the moment, let us restrict ourselves to \mathbb{Z}-gradings
Set $d_{i}:=\operatorname{deg} X_{i} \in \mathbb{N}$ for all $i=1, \ldots n$.
Definition [Hilbert depth]
$\operatorname{Hdep}(M):=\max \left\{\operatorname{depth} N \mid N\right.$ a f.g. gr. module with $\left.H_{N}=H_{M}\right\}$.

This is a well-defined but opaque quantity!

Characterizations?

Theorem [—, Uliczka 13]
A formal Laurent series H with denominator $\prod_{i}\left(1-t^{d_{i}}\right)$ is the Hilbert series of a f.g. graded R-module M if and only if

$$
H(t)=\sum_{I \subseteq\{1, \ldots, n\}} \frac{Q_{I}(t)}{\Pi_{j \in I}\left(1-t^{d_{j}}\right)}
$$

with nonnegative $Q_{l}(t)$.

Definition [Decomposition Hilbert depth]
$\operatorname{dec} \operatorname{Hdep}(M):=\max \left\{\begin{array}{l|l}r \in \mathbb{N} & \begin{array}{c}H_{M} \text { admits a decompos. as above } \\ \text { with } Q_{I}=0 \forall I \text { such th. }|I|<r\end{array}\end{array}\right\}$.

Case of two variables

Let $R=K[X, Y]$ be with $\alpha:=\operatorname{deg} X, \beta:=\operatorname{deg} Y$ coprime.
Set $\Gamma:=\langle\alpha, \beta\rangle$ the numerical semigroup generated by α and β.
Theorem [—, Uliczka 13]
Let M be a finitely generated graded R-module. Then
$\operatorname{Hdep}(M)>0$ if and only if $\quad H_{M}(t)=\sum_{n} h_{n} t^{n}$ satisfies the condition

$$
\sum_{i \in l} h_{i+n} \leq \sum_{j \in J} h_{j+n}
$$

for all $n \in \mathbb{Z}$ and all "fundamental couples" $[I, J]$.
(I) What is a "fundamental couple" $[I, J]$?

Let L be the set of gaps of $\langle\alpha, \beta\rangle$.

An (α, β)-fundamental couple $[I, J]$ consists of two integer sequences $I=\left(i_{k}\right)_{k=0}^{m}$ and $J=\left(j_{k}\right)_{k=0}^{m}$, such that
(0) $i_{0}=0$.
(1) $i_{1}, \ldots, i_{m}, j_{1}, \ldots, j_{m-1} \in L$ and $j_{0}, j_{m} \leq \alpha \beta$.
(2)

$$
\begin{array}{lllll}
i_{k} \equiv j_{k} & \bmod \alpha & \text { and } & i_{k}<j_{k} & \text { for } k=0, \ldots, m ; \\
j_{k} \equiv i_{k+1} & \bmod \beta & \text { and } & j_{k}>i_{k+1} & \text { for } k=0, \ldots, m-1 ; \\
j_{m} \equiv i_{0} & \bmod \beta & \text { and } & j_{m} \geq i_{0} . &
\end{array}
$$

(3) $\left|i_{k}-i_{\ell}\right| \in L$ for $1 \leq k<\ell \leq m$.
(II) What is a "fundamental couple" [I, J]?

- | consists of minimal generators of "relative ideals" = "semimodules" Δ of Γ.
- J contains "small shifts" of I-sets which turn out to generate a sort of syzygy Syz_{Δ}.

Syzygy in the sense that any element in Syz_{Δ} admits more than one presentation in the form $i+x$ with $i \in I$ and $x \in \Gamma$.

In the special case $\Gamma=\langle 3,5\rangle$ the criterion is given by the inequalities

$$
\begin{aligned}
h_{n+0} & \leq h_{n+15}, \\
h_{n+0}+h_{n+1} & \leq h_{n+6}+h_{n+10}, \\
h_{n+0}+h_{n+2} & \leq h_{n+12}+h_{n+5}, \\
h_{n+0}+h_{n+4} & \leq h_{n+9}+h_{n+10}, \\
h_{n+0}+h_{n+7} & \leq h_{n+12}+h_{n+10}, \\
h_{n+0}+h_{n+1}+h_{n+2} & \leq h_{n+5}+h_{n+6}+h_{n+7}, \\
h_{n+0}+h_{n+2}+h_{n+4} & \leq h_{n+5}+h_{n+7}+h_{n+9}
\end{aligned}
$$

Lattice paths for $\Gamma=\langle 5,7\rangle$

2						
16	4					
23	18	6	1			
2	13	8				

Lattice paths for $\Gamma=\langle 5,7\rangle$

$$
I=[0,8,6,9]
$$

Lattice paths for $\Gamma=\langle 5,7\rangle$

$I=[0,8,6,9]$

Lattice paths for $\Gamma=\langle 5,7\rangle$

(0)							
(7)	2						
(14)	9	4					
(21)	16	11	6	1			
(28)	23	18	13	8	3		
(35)	(30)	(25)	(20)	(15)	(10)	(5)	(0)

New results

A deep algebraic meaning of the inequalities
$\sum_{i \in I} h_{i+n} \leq \sum_{j \in J} h_{j+n}$ remained rather hidden.
New insights appeared when considering the \mathbb{Z}^{r}-grading.
The starting question arose by looking at the decomposition theorem (already mentioned):

A formal Laurent series H with denominator $\prod_{i}\left(1-t^{d_{i}}\right)$ is the Hilbert series of a f.g. graded R-module M iff

$$
H(t)=\sum_{I \subseteq\{1, \ldots, n\}} \frac{Q_{I}(t)}{\Pi_{j \in I}\left(1-t^{d_{j}}\right)} \quad \text { with nonnegative } Q_{l} .
$$

Question: Is the condition of the Thm satisfied by every rational function with the given denominator and nonnegative coefficients?

[excursus]

Question: Which formal Laurent series arise as Hilbert series of R-modules (in a certain class)?

Conditions: The series must...

- ... have nonnegative coefficients.
- ... be rational function with denominator $\prod_{i}\left(1-\underline{t}^{\operatorname{deg} X_{i}}\right)$.

Related work:

- Macaulay, 1927: cyclic modules, standard \mathbb{Z}-grading.
- Boij \& Smith, 2015: modules generated in degree 0, standard Z-grading + technical details

Theorem [Katthän, —, Uliczka 2016]
Let $H \in \mathbb{Z} \llbracket t \rrbracket\left[t^{-1}\right]$ be a formal Laurent series, which is the Hilbert series of some finitely generated graded R-module M. Let further $S:=R /\left(X^{\beta}-Y^{\alpha}\right)$.

Then the following statements are equivalent:
(a) $\operatorname{Hdep}(M)>0$
(b) For any finitely generated torsionfree S-module N, it holds that

$$
\frac{H \cdot H_{N}}{H_{R}} \geq 0 .
$$

(c) Condition (b) holds for any finitely generated torsionfree S-module of rank 1 .
(d) For all $n \in \mathbb{Z},[I, J]$ fundamental couple, $H=\sum_{i} h_{i} t^{i}$ satisfies

$$
\sum_{i \in I} h_{i+n} \leq \sum_{j \in J} h_{j+n}
$$

We need the following result about the structure of fundamental couples.

Lemma

Let $\left[I=\left(i_{k}\right), J=\left(j_{k}\right)\right]$ be a fundamental couple of length m. Then there exist two integer sequences

$$
\begin{aligned}
& \beta>a_{0}>a_{1}>\cdots>a_{m}=0, \quad \text { and } \\
& 0=b_{0}<b_{1}<\cdots<b_{m}<\alpha
\end{aligned}
$$

such that

$$
\begin{array}{ll}
i_{k}=\alpha \beta-a_{k-1} \alpha-b_{k} \beta & \text { for } 1 \leq k \leq m, \quad \text { and } \\
j_{k}=\alpha \beta-a_{k} \alpha-b_{k} \beta & \text { for } 0 \leq k \leq m
\end{array}
$$

$(\mathrm{c}) \Rightarrow(\mathrm{d})$: Let $[I, J]$ be a fundamental couple.

Recall that $S=K\left[t^{\alpha}, t^{\beta}\right]$ is the monoid algebra of Γ. Let
$N \subseteq K[t]$ be the S-module generated by $t^{\alpha \beta-j_{0}}, \ldots, t^{\alpha \beta-j_{m}}$.
This module is torsionfree, hence $\frac{H_{M} H_{N}}{H_{R}} \geq 0$ by assumption.
To see that this inequality implies (\star), we need to compute H_{N}.
Let $\left(a_{k}\right)_{k=0}^{m},\left(b_{k}\right)_{k=0}^{m}$ be the sequences as in Lemma and let

$$
\tilde{N}:=\left(X^{a_{0}} Y^{b_{0}}, \ldots, X^{a_{m}}, Y^{b_{m}}\right) .
$$

It is easy to see that \tilde{N} is the preimage of N under the projection $R \rightarrow S$.

In particular, note that $X^{\beta}-Y^{\alpha} \in \tilde{N}$, because $X^{a 0}, Y^{b_{m}} \in \tilde{N}$.
Hence $N \cong \tilde{N} /\left(X^{\beta}-Y^{\alpha}\right)$ and thus $H_{N}=H_{\tilde{N}}-t^{\alpha \beta} H_{R}$.

By considering the minimal free resolution of \tilde{N}, one sees that its syzygies are generated in the degrees $a_{k-1} \alpha+b_{k} \beta$ for $1 \leq k \leq m$.

Therefore

$$
\begin{aligned}
\frac{H_{N}}{H_{R}} & =\frac{H_{\tilde{N}}-t^{\alpha \beta} H_{R}}{H_{R}}=\sum_{k=0}^{m} t^{a_{k} \alpha+b_{k} \beta}-\sum_{k=1}^{m} t^{a_{k-1} \alpha+b_{k} \beta}-t^{\alpha \beta} \\
& =\sum_{k=0}^{m} t^{\alpha \beta-j_{k}}-\sum_{k=1}^{m} t^{\alpha \beta-i_{k}}-t^{\alpha \beta-i_{0}}=t^{\alpha \beta}\left(\sum_{j \in J} t^{-j}-\sum_{i \in I} t^{-i}\right)
\end{aligned}
$$

Then we obtain

$$
\begin{aligned}
0 \leq \frac{H \cdot H_{N}}{H_{R}} & =\left(\sum_{n \in \mathbb{Z}} h_{n} t^{n}\right) t^{\alpha \beta}\left(\sum_{j \in J} t^{-j}-\sum_{i \in I} t^{-i}\right) \\
& =t^{\alpha \beta} \sum_{n \in \mathbb{Z}} t^{n}\left(\sum_{j \in J} h_{n+j}-\sum_{i \in I} h_{n+i}\right),
\end{aligned}
$$

and (\star) is satisfied for $[I, J]$.

