On divisor-closed submonoids and minimal distances in finitely generated monoids

J.I. García-García D. Marín-Aragón M.A. Moreno-Frías
Departament of Mathematics University of Cádiz. Spain

International meeting on numerical semigroups (IMNS 2016)
Levico Terme (Italy), July 4th-8th, 2016
J. I. García-García, D. Marín-Aragón and M. A. Moreno-Frías, On divisor-closed submonoids and minimal distances in finitely generated monoids

Available via arXiv:1508.07646v1.
H finitely generated, cancellative, conmutative monoid
H finitely generated, cancellative, conmutative monoid

$$
\Delta^{*}(H)=\{\min (\Delta(S)) \mid S \subset H \text { is a divisor closed, } \Delta(S) \neq \emptyset\} .
$$

H finitely generated, cancellative, conmutative monoid

$$
\Delta^{*}(H)=\{\min (\Delta(S)) \mid S \subset H \text { is a divisor closed, } \Delta(S) \neq \emptyset\} .
$$

- The lattice of divisor-closed submonoids of finitely generated, cancellative and conmutative monoid H.
H finitely generated, cancellative, conmutative monoid

$$
\Delta^{*}(H)=\{\min (\Delta(S)) \mid S \subset H \text { is a divisor closed, } \Delta(S) \neq \emptyset\} .
$$

- The lattice of divisor-closed submonoids of finitely generated, cancellative and conmutative monoid H.
- If H is an affine semigroup, we give a geometrical characterization of such submonoids in terms of its cone.
H finitely generated, cancellative, conmutative monoid

$$
\Delta^{*}(H)=\{\min (\Delta(S)) \mid S \subset H \text { is a divisor closed, } \Delta(S) \neq \emptyset\} .
$$

- The lattice of divisor-closed submonoids of finitely generated, cancellative and conmutative monoid H.
- If H is an affine semigroup, we give a geometrical characterization of such submonoids in terms of its cone.
- Algorithm for computing $\Delta^{*}(H)$.

The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.7.8; 2015, http://www.gap-system.org.
A. Geroldinger and F. Halter-Koch.

Non-unique factorizations. Algebraic, combinatorial and analytic theory, Pure and Applied Mathematics (Boca Raton) 278, Chapman \& Hall/CRC, 2006.

A. Geroldinger and Q. Zhong.

The set of minimal distances in Krull monoids, preprint available at http://arxiv.org/abs/1404.2873

J. C. Rosales, P. A. García-Sánchez.

Finitely generated commutative monoids, Nova Science Publishers, Inc., New York (1999).
A. Schrijver.

Theory of Linear and Integer Programming,
John Wiley \& Sons, 1999.

Notations and Definitions

Notations and Definitions

H monoid, $a, b \in H$,

Notations and Definitions

H monoid, $a, b \in H$, $a \leq_{H} b$ if $b=a+c$, for some $c \in H$.

Notations and Definitions

H monoid, $a, b \in H$, $a \leq_{H} b$ if $b=a+c$, for some $c \in H$.
\leq_{H} is a congruence in H.

Notations and Definitions

H monoid, $a, b \in H$, $a \leq_{H} b$ if $b=a+c$, for some $c \in H$.
\leq_{H} is a congruence in H.

$$
a \leq_{H} b \Longleftrightarrow b \geq_{H} a .
$$

Notations and Definitions
H monoid, $a, b \in H$,
$a \leq_{H} b$ if $b=a+c$, for some $c \in H$.
\leq_{H} is a congruence in H.
$a \leq_{H} b \Longleftrightarrow b \geq_{H} a$.
$a \mid b \Longleftrightarrow a \leq_{H} b$.

Notations and Definitions

H monoid, $a, b \in H$,
$a \leq_{H} b$ if $b=a+c$, for some $c \in H$.
\leq_{H} is a congruence in H.
$a \leq_{H} b \Longleftrightarrow b \geq_{H} a$.
$a \mid b \Longleftrightarrow a \leq_{H} b$.

Definition (Rosales-García, 99)
A semigroup H is an Archimedean semigroup if for every $(x, y) \in H \times H$, with $x \neq y$, there exit $k \in \mathbb{N} \backslash\{0\}$ and $z \in H$ such that $k x=y+z$.

Notations and Definitions

H monoid, $a, b \in H$,
$a \leq_{H} b$ if $b=a+c$, for some $c \in H$.
\leq_{H} is a congruence in H.
$a \leq_{H} b \Longleftrightarrow b \geq_{H} a$.
$a \mid b \Longleftrightarrow a \leq_{H} b$.

Definition (Rosales-García, 99)
A semigroup H is an Archimedean semigroup if for every $(x, y) \in H \times H$, with $x \neq y$, there exit $k \in \mathbb{N} \backslash\{0\}$ and $z \in H$ such that $k x=y+z$.

If S is a numerical semigroup $\Longrightarrow S$ is Arquimedean semigroup.
H monoide, $a, b \in H$,
H monoide, $a, b \in H$, $a \mathcal{N} b$ if there exist $k, I \in \mathbb{N} \backslash\{0\}$ such that $k a \geq_{H} b$ y $l b \geq_{H} a$.
H monoide, $a, b \in H$, $a \mathcal{N} b$ if there exist $k, I \in \mathbb{N} \backslash\{0\}$ such that $k a \geq_{H} b$ y $l b \geq_{H} a$.

- \mathcal{N} is a congruence over H.
H monoide, $a, b \in H$, $a \mathcal{N} b$ if there exist $k, I \in \mathbb{N} \backslash\{0\}$ such that $k a \geq_{H} b$ y $l b \geq_{H} a$.
- \mathcal{N} is a congruence over H.

$$
H / \mathcal{N}=\left\{[a]_{\mathcal{N}}: a \in H\right\}
$$

H monoide, $a, b \in H$,
$a \mathcal{N} b$ if there exist $k, I \in \mathbb{N} \backslash\{0\}$ such that $k a \geq_{H} b$ y $l b \geq_{H} a$.

- \mathcal{N} is a congruence over H.

$$
H / \mathcal{N}=\left\{[a]_{\mathcal{N}}: a \in H\right\}
$$

$[a]_{\mathcal{N}}$, Archimedean components of H.
H monoide, $a, b \in H$,
$a \mathcal{N} b$ if there exist $k, I \in \mathbb{N} \backslash\{0\}$ such that $k a \geq_{H} b$ y $l b \geq_{H} a$.

- \mathcal{N} is a congruence over H.

$$
H / \mathcal{N}=\left\{[a]_{\mathcal{N}}: a \in H\right\}
$$

$[a]_{\mathcal{N}}$, Archimedean components of H.
H monoide, $a, b \in H$,
$a \mathcal{N} b$ if there exist $k, I \in \mathbb{N} \backslash\{0\}$ such that $k a \geq_{H} b$ y $l b \geq_{H} a$.

- \mathcal{N} is a congruence over H.

$$
H / \mathcal{N}=\left\{[a]_{\mathcal{N}}: a \in H\right\}
$$

$[a]_{\mathcal{N}}$, Archimedean components of H.
Results: [Rosales-García,99]
H monoide, $a, b \in H$,
$a \mathcal{N} b$ if there exist $k, I \in \mathbb{N} \backslash\{0\}$ such that $k a \geq_{H} b$ y $l b \geq_{H} a$.

- \mathcal{N} is a congruence over H.

$$
H / \mathcal{N}=\left\{[a]_{\mathcal{N}}: a \in H\right\} .
$$

$[a]_{\mathcal{N}}$, Archimedean components of H.
Results: [Rosales-García,99]

- Let H be a monoid. The Archimedean components of H are subsemigroups of H.
H monoide, $a, b \in H$,
$a \mathcal{N} b$ if there exist $k, I \in \mathbb{N} \backslash\{0\}$ such that $k a \geq_{H} b$ y $l b \geq_{H} a$.
- \mathcal{N} is a congruence over H.

$$
H / \mathcal{N}=\left\{[a]_{\mathcal{N}}: a \in H\right\} .
$$

$[a]_{\mathcal{N}}$, Archimedean components of H.
Results: [Rosales-García,99]

- Let H be a monoid. The Archimedean components of H are subsemigroups of H.
- Let H be a finitely generated monoid. Then H / \mathcal{N} is a finite monoid.
H monoide, $a, b \in H$,
$a \mathcal{N} b$ if there exist $k, I \in \mathbb{N} \backslash\{0\}$ such that $k a \geq_{H} b$ y $l b \geq_{H} a$.
- \mathcal{N} is a congruence over H.

$$
H / \mathcal{N}=\left\{[a]_{\mathcal{N}}: a \in H\right\} .
$$

$[a]_{\mathcal{N}}$, Archimedean components of H.
Results: [Rosales-García,99]

- Let H be a monoid. The Archimedean components of H are subsemigroups of H.
- Let H be a finitely generated monoid. Then H / \mathcal{N} is a finite monoid.
- Every finitely generated monoid is a finite lattice of Arquimedean semigroups.

Divisor-closed submonoids

Divisor-closed submonoids

Definition (Geroldinger-Qinghai)
A submonoid S of H is called a divisor-closed submonoid (d.c.s) of H if $a \in S, b \in H$, and b divides a imply that $b \in S$.

Divisor-closed submonoids

Definition (Geroldinger-Qinghai)
A submonoid S of H is called a divisor-closed submonoid (d.c.s) of H if $a \in S, b \in H$, and b divides a imply that $b \in S$.

- $\{0\}$ and H, are divisor-closed submonoids of H.

Divisor-closed submonoids

Definition (Geroldinger-Qinghai)

A submonoid S of H is called a divisor-closed submonoid (d.c.s) of H if $a \in S, b \in H$, and b divides a imply that $b \in S$.

- $\{0\}$ and H, are divisor-closed submonoids of H.

Definition
A submonoid S of H is (d.c.s) if $b+c \in S \Longrightarrow b, c \in S$.

Divisor-closed submonoids

Definition (Geroldinger-Qinghai)
A submonoid S of H is called a divisor-closed submonoid (d.c.s) of H if $a \in S, b \in H$, and b divides a imply that $b \in S$.

- $\{0\}$ and H, are divisor-closed submonoids of H.

Definition
A submonoid S of H is (d.c.s) if $b+c \in S \Longrightarrow b, c \in S$.
Example
$H=\langle 5,7\rangle, S=\langle 7\rangle$ is not divisor-closed submonoid

Divisor-closed submonoids

Definition (Geroldinger-Qinghai)

A submonoid S of H is called a divisor-closed submonoid (d.c.s) of H if $a \in S, b \in H$, and b divides a imply that $b \in S$.

- $\{0\}$ and H, are divisor-closed submonoids of H.

Definition
A submonoid S of H is (d.c.s) if $b+c \in S \Longrightarrow b, c \in S$.
Example
$H=\langle 5,7\rangle, S=\langle 7\rangle$ is not divisor-closed submonoid
$35=5+5+5+5+5+5+5 \in S$, then $5 \mid 35$

Divisor-closed submonoids

Definition (Geroldinger-Qinghai)

A submonoid S of H is called a divisor-closed submonoid (d.c.s) of H if $a \in S, b \in H$, and b divides a imply that $b \in S$.

- $\{0\}$ and H, are divisor-closed submonoids of H.

Definition
A submonoid S of H is (d.c.s) if $b+c \in S \Longrightarrow b, c \in S$.
Example
$H=\langle 5,7\rangle, S=\langle 7\rangle$ is not divisor-closed submonoid $35=5+5+5+5+5+5+5 \in S$, then $5 \mid 35$ but $5 \notin S$.

Divisor-closed submonoids

Definition (Geroldinger-Qinghai)
A submonoid S of H is called a divisor-closed submonoid (d.c.s) of H if $a \in S, b \in H$, and b divides a imply that $b \in S$.

- $\{0\}$ and H, are divisor-closed submonoids of H.

Definition
A submonoid S of H is (d.c.s) if $b+c \in S \Longrightarrow b, c \in S$.
Example
$H=\langle 5,7\rangle, S=\langle 7\rangle$ is not divisor-closed submonoid $35=5+5+5+5+5+5+5 \in S$, then $5 \mid 35$ but $5 \notin S$.
Example
$\left(\mathbb{N}^{2},+\right)$,

Divisor-closed submonoids

Definition (Geroldinger-Qinghai)
A submonoid S of H is called a divisor-closed submonoid (d.c.s) of H if $a \in S, b \in H$, and b divides a imply that $b \in S$.

- $\{0\}$ and H, are divisor-closed submonoids of H.

Definition
A submonoid S of H is (d.c.s) if $b+c \in S \Longrightarrow b, c \in S$.
Example
$H=\langle 5,7\rangle, S=\langle 7\rangle$ is not divisor-closed submonoid
$35=5+5+5+5+5+5+5 \in S$, then $5 \mid 35$ but $5 \notin S$.
Example
$\left(\mathbb{N}^{2},+\right)$,

- $S_{1}=\langle(1,0)\rangle \subseteq \mathbb{N}^{2}$.

Divisor-closed submonoids

Definition (Geroldinger-Qinghai)

A submonoid S of H is called a divisor-closed submonoid (d.c.s) of H if $a \in S, b \in H$, and b divides a imply that $b \in S$.

- $\{0\}$ and H, are divisor-closed submonoids of H.

Definition
A submonoid S of H is (d.c.s) if $b+c \in S \Longrightarrow b, c \in S$.
Example
$H=\langle 5,7\rangle, S=\langle 7\rangle$ is not divisor-closed submonoid $35=5+5+5+5+5+5+5 \in S$, then $5 \mid 35$ but $5 \notin S$.

Example
$\left(\mathbb{N}^{2},+\right)$,

- $S_{1}=\langle(1,0)\rangle \subseteq \mathbb{N}^{2} . S$ is a divisor-closed submonoid.

Divisor-closed submonoids

Definition (Geroldinger-Qinghai)

A submonoid S of H is called a divisor-closed submonoid (d.c.s) of H if $a \in S, b \in H$, and b divides a imply that $b \in S$.

- $\{0\}$ and H, are divisor-closed submonoids of H.

Definition
A submonoid S of H is (d.c.s) if $b+c \in S \Longrightarrow b, c \in S$.
Example
$H=\langle 5,7\rangle, S=\langle 7\rangle$ is not divisor-closed submonoid $35=5+5+5+5+5+5+5 \in S$, then $5 \mid 35$ but $5 \notin S$.

Example
$\left(\mathbb{N}^{2},+\right)$,

- $S_{1}=\langle(1,0)\rangle \subseteq \mathbb{N}^{2} . S$ is a divisor-closed submonoid.
- $S_{2}=\langle(5,0)\rangle \subseteq \mathbb{N}^{2}$ is not divisor-closed submonoid,

Divisor-closed submonoids

Definition (Geroldinger-Qinghai)

A submonoid S of H is called a divisor-closed submonoid (d.c.s) of H if $a \in S, b \in H$, and b divides a imply that $b \in S$.

- $\{0\}$ and H, are divisor-closed submonoids of H.

Definition
A submonoid S of H is (d.c.s) if $b+c \in S \Longrightarrow b, c \in S$.
Example
$H=\langle 5,7\rangle, S=\langle 7\rangle$ is not divisor-closed submonoid $35=5+5+5+5+5+5+5 \in S$, then $5 \mid 35$ but $5 \notin S$.

Example
$\left(\mathbb{N}^{2},+\right)$,

- $S_{1}=\langle(1,0)\rangle \subseteq \mathbb{N}^{2} . S$ is a divisor-closed submonoid.
- $S_{2}=\langle(5,0)\rangle \subseteq \mathbb{N}^{2}$ is not divisor-closed submonoid, $(2,0)+(3,0)=(5,0) \in S_{2}$ but $(2,0) \notin S_{2}$.

Proposition

Let H be a finitely generated monoid with $G=\left\{g_{1}, \ldots, g_{p}\right\}$ one of its system of generators. Then, every divisor-closed submonoid of H is finitely generated and has a system of generators contained in G.

Proposition

Let H be a finitely generated monoid with $G=\left\{g_{1}, \ldots, g_{p}\right\}$ one of its system of generators. Then, every divisor-closed submonoid of H is finitely generated and has a system of generators contained in G.

Example
$H=\left\langle g_{1}, g_{2}, g_{3}\right\rangle$,

Proposition

Let H be a finitely generated monoid with $G=\left\{g_{1}, \ldots, g_{p}\right\}$ one of its system of generators. Then, every divisor-closed submonoid of H is finitely generated and has a system of generators contained in G.

Example
$H=\left\langle g_{1}, g_{2}, g_{3}\right\rangle$,

Proposition

Let H be a finitely generated monoid with $G=\left\{g_{1}, \ldots, g_{p}\right\}$ one of its system of generators. Then, every divisor-closed submonoid of H is finitely generated and has a system of generators contained in G.

Example

$$
H=\left\langle g_{1}, g_{2}, g_{3}\right\rangle, \quad \sharp(\text { d.c.s }) \leq 2^{n}
$$

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.
Example

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.
Example

$$
H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}
$$

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.
Example

$$
H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}, S=\langle(2,2)\rangle
$$

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.
Example

$$
\begin{aligned}
& H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}, S=\langle(2,2)\rangle \\
& 2(3,0)+2(0,3)=(6,6) \in S
\end{aligned}
$$

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.
Example

$$
\begin{aligned}
& H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}, S=\langle(2,2)\rangle, \\
& 2(3,0)+2(0,3)=(6,6) \in S, \quad 2(0,3) \mid(6,6),
\end{aligned}
$$

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.
Example

$$
\begin{aligned}
& H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}, S=\langle(2,2)\rangle, \\
& 2(3,0)+2(0,3)=(6,6) \in S, \quad 2(0,3) \mid(6,6), \text { but } 2(0,3) \notin S
\end{aligned}
$$

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.

Example

$$
\begin{aligned}
& H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}, S=\langle(2,2)\rangle, \\
& 2(3,0)+2(0,3)=(6,6) \in S, \quad 2(0,3) \mid(6,6), \text { but } 2(0,3) \notin S
\end{aligned}
$$

S is not divisor-closed submonoid.

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.

Example

$H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}, S=\langle(2,2)\rangle$,
$2(3,0)+2(0,3)=(6,6) \in S, 2(0,3) \mid(6,6)$, but $2(0,3) \notin S$,
S is not divisor-closed submonoid.
S is divisor-closed?,

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.

Example

$H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}, S=\langle(2,2)\rangle$,
$2(3,0)+2(0,3)=(6,6) \in S, 2(0,3) \mid(6,6)$, but $2(0,3) \notin S$,
S is not divisor-closed submonoid.
S is divisor-closed?,

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.

Example

$H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}, S=\langle(2,2)\rangle$,
$2(3,0)+2(0,3)=(6,6) \in S, 2(0,3) \mid(6,6)$, but $2(0,3) \notin S$,
S is not divisor-closed submonoid.
S is divisor-closed?, Arquimedean components.

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.

Example

$H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}, S=\langle(2,2)\rangle$,
$2(3,0)+2(0,3)=(6,6) \in S, 2(0,3) \mid(6,6)$, but $2(0,3) \notin S$,
S is not divisor-closed submonoid.
S is divisor-closed?, Arquimedean components.

- They are semigroups. They are not monoids.
- They are not finitely generated.

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.

Example

$H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}, S=\langle(2,2)\rangle$,
$2(3,0)+2(0,3)=(6,6) \in S, 2(0,3) \mid(6,6)$, but $2(0,3) \notin S$,
S is not divisor-closed submonoid.
S is divisor-closed?, Arquimedean components.

- They are semigroups. They are not monoids.
- They are not finitely generated.

Example

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.

Example

$H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}, S=\langle(2,2)\rangle$,
$2(3,0)+2(0,3)=(6,6) \in S, 2(0,3) \mid(6,6)$, but $2(0,3) \notin S$,
S is not divisor-closed submonoid.
S is divisor-closed?, Arquimedean components.

- They are semigroups. They are not monoids.
- They are not finitely generated.

Example

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.

Example

$H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}, S=\langle(2,2)\rangle$,
$2(3,0)+2(0,3)=(6,6) \in S, 2(0,3) \mid(6,6)$, but $2(0,3) \notin S$,
S is not divisor-closed submonoid.
S is divisor-closed?, Arquimedean components.

- They are semigroups. They are not monoids.
- They are not finitely generated.

Example
Arquimedean Components of $\left(\mathbb{N}^{2},+\right)$

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.
Example
$H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}, S=\langle(2,2)\rangle$,
$2(3,0)+2(0,3)=(6,6) \in S, 2(0,3) \mid(6,6)$, but $2(0,3) \notin S$,
S is not divisor-closed submonoid.
S is divisor-closed?, Arquimedean components.

- They are semigroups. They are not monoids.
- They are not finitely generated.

Example
Arquimedean Components of $\left(\mathbb{N}^{2},+\right)$

- $C_{0}=(0,0), C_{1}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \geq 1\right.$ and $\left.x_{2} \geq 1\right\}$,
- $C_{2}=\{(x, 0) \mid x \geq 1\}, C_{3}=\{(0, x) \mid x \geq 1\}$.

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.
Example
$H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}, S=\langle(2,2)\rangle$,
$2(3,0)+2(0,3)=(6,6) \in S, 2(0,3) \mid(6,6)$, but $2(0,3) \notin S$,
S is not divisor-closed submonoid.
S is divisor-closed?, Arquimedean components.

- They are semigroups. They are not monoids.
- They are not finitely generated.

Example
Arquimedean Components of $\left(\mathbb{N}^{2},+\right)$

- $C_{0}=(0,0), C_{1}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \geq 1\right.$ and $\left.x_{2} \geq 1\right\}$,
- $C_{2}=\{(x, 0) \mid x \geq 1\}, C_{3}=\{(0, x) \mid x \geq 1\}$.
$C_{1} \cup\{(0,0)\}, C_{2} \cup\{(0,0)\}$ and $C_{3} \cup\{(0,0)\}$, monoids.

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.
Example
$H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}, S=\langle(2,2)\rangle$,
$2(3,0)+2(0,3)=(6,6) \in S, 2(0,3) \mid(6,6)$, but $2(0,3) \notin S$,
S is not divisor-closed submonoid.
S is divisor-closed?, Arquimedean components.

- They are semigroups. They are not monoids.
- They are not finitely generated.

Example

Arquimedean Components of $\left(\mathbb{N}^{2},+\right)$

- $C_{0}=(0,0), C_{1}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \geq 1\right.$ and $\left.x_{2} \geq 1\right\}$,
- $C_{2}=\{(x, 0) \mid x \geq 1\}, C_{3}=\{(0, x) \mid x \geq 1\}$.
$C_{1} \cup\{(0,0)\}, C_{2} \cup\{(0,0)\}$ and $C_{3} \cup\{(0,0)\}$, monoids.
$C_{2} \cup\{(0,0)\}, C_{3} \cup\{(0,0)\}$ finitely generated monoid.

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.
Example
$H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}, S=\langle(2,2)\rangle$,
$2(3,0)+2(0,3)=(6,6) \in S, 2(0,3) \mid(6,6)$, but $2(0,3) \notin S$,
S is not divisor-closed submonoid.
S is divisor-closed?, Arquimedean components.

- They are semigroups. They are not monoids.
- They are not finitely generated.

Example

Arquimedean Components of $\left(\mathbb{N}^{2},+\right)$

- $C_{0}=(0,0), C_{1}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \geq 1\right.$ and $\left.x_{2} \geq 1\right\}$,
- $C_{2}=\{(x, 0) \mid x \geq 1\}, C_{3}=\{(0, x) \mid x \geq 1\}$.
$C_{1} \cup\{(0,0)\}, C_{2} \cup\{(0,0)\}$ and $C_{3} \cup\{(0,0)\}$, monoids.
$C_{2} \cup\{(0,0)\}, C_{3} \cup\{(0,0)\}$ finitely generated monoid.
$C_{1} \cup\{(0,0)\}$ is not finitely generated monoid.

Problem: $H=\langle A\rangle, S=\langle B\rangle \subseteq H, B \subseteq A, S$ is not divisor-closed.
Example
$H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}, S=\langle(2,2)\rangle$,
$2(3,0)+2(0,3)=(6,6) \in S, 2(0,3) \mid(6,6)$, but $2(0,3) \notin S$,
S is not divisor-closed submonoid.
S is divisor-closed?, Arquimedean components.

- They are semigroups. They are not monoids.
- They are not finitely generated.

Example

Arquimedean Components of $\left(\mathbb{N}^{2},+\right)$

- $C_{0}=(0,0), C_{1}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \geq 1\right.$ and $\left.x_{2} \geq 1\right\}$,
- $C_{2}=\{(x, 0) \mid x \geq 1\}, C_{3}=\{(0, x) \mid x \geq 1\}$.
$C_{1} \cup\{(0,0)\}, C_{2} \cup\{(0,0)\}$ and $C_{3} \cup\{(0,0)\}$, monoids.
$C_{2} \cup\{(0,0)\}, C_{3} \cup\{(0,0)\}$ finitely generated monoid.
$C_{1} \cup\{(0,0)\}$ is not finitely generated monoid.
Arquimedean components are not divisor-closed submonoids.

$(H,+)$ finitely generated monoid.

Archimedean components \leftrightarrow Divisor-closed submonoids

$(H,+)$ finitely generated monoid.
 Archimedean components \leftrightarrow Divisor-closed submonoids

Theorem
Every divisor-closed submonoid S of a finitely generated monoid H can be expressed as an union of Archimedean components of S. Furthermore, there exists an Archimedean component \hat{S} such that $S=\cup\left\{S^{\prime} \mid S^{\prime}\right.$ is an Archimedean component of H and $\left.S^{\prime} \leq \hat{S}\right\}$ with \leq the ordering in the lattice of Archimedean components of H .

$(H,+)$ finitely generated monoid.
 Archimedean components \leftrightarrow Divisor-closed submonoids

Theorem
Every divisor-closed submonoid S of a finitely generated monoid H can be expressed as an union of Archimedean components of S. Furthermore, there exists an Archimedean component \hat{S} such that $S=\cup\left\{S^{\prime} \mid S^{\prime}\right.$ is an Archimedean component of H and $\left.S^{\prime} \leq \hat{S}\right\}$ with \leq the ordering in the lattice of Archimedean components of H .

Example

$(H,+)$ finitely generated monoid.
 Archimedean components \leftrightarrow Divisor-closed submonoids

Theorem
Every divisor-closed submonoid S of a finitely generated monoid H can be expressed as an union of Archimedean components of S. Furthermore, there exists an Archimedean component \hat{S} such that
$S=\cup\left\{S^{\prime} \mid S^{\prime}\right.$ is an Archimedean component of H and $\left.S^{\prime} \leq \hat{S}\right\}$ with \leq the ordering in the lattice of Archimedean components of H .

Example
$H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}$

$(H,+)$ finitely generated monoid.

Archimedean components \leftrightarrow Divisor-closed submonoids

Theorem
Every divisor-closed submonoid S of a finitely generated monoid H can be expressed as an union of Archimedean components of S. Furthermore, there exists an Archimedean component \hat{S} such that
$S=\cup\left\{S^{\prime} \mid S^{\prime}\right.$ is an Archimedean component of H and $\left.S^{\prime} \leq \hat{S}\right\}$ with \leq the ordering in the lattice of Archimedean components of H .

Example
$H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}$

Arquimedean components :

$\{(0,0)\},\{(3 x, 0) \mid x>1\},\{(0,3 x) \mid x>1\}$ and H.

$(H,+)$ finitely generated monoid.

Archimedean components \leftrightarrow Divisor-closed submonoids

Theorem

Every divisor-closed submonoid S of a finitely generated monoid H can be expressed as an union of Archimedean components of S. Furthermore, there exists an Archimedean component \hat{S} such that
$S=\cup\left\{S^{\prime} \mid S^{\prime}\right.$ is an Archimedean component of H and $\left.S^{\prime} \leq \hat{S}\right\}$ with \leq the ordering in the lattice of Archimedean components of H .

Example
$H=\langle(3,0),(0,3),(2,2)\rangle \subseteq \mathbb{N}^{2}$
Arquimedean components :
$\{(0,0)\},\{(3 x, 0) \mid x>1\},\{(0,3 x) \mid x>1\}$ and H.
Divisor-closed submonoids:
$\{(0,0)\},\{(3 x, 0) \mid x>1\} \cup\{(0,0)\},\{(0,3 x) \mid x>1\} \cup\{(0,0)\}$ and H.

Corollary

Corollary

- The set of divisor-closed submonoids of an Arquimedean monoid H are $\{0\}$ and H.

Corollary

- The set of divisor-closed submonoids of an Arquimedean monoid H are $\{0\}$ and H.
- Numerical semigroups not have any non-trivial divisor-closed submonoids.

Corollary

- The set of divisor-closed submonoids of an Arquimedean monoid H are $\{0\}$ and H.
- Numerical semigroups not have any non-trivial divisor-closed submonoids.
- The set of divisor-closed submonoids of a monoid is a finite lattice with respect to inclusion.

Divisor-closed submonoids of affine semigroups

Divisor-closed submonoids of affine semigroups

Definition
Let H be an affine semigroup of \mathbb{N}^{n}. Define the rational cone of H as $\mathrm{L}_{\mathbb{Q}_{+}}(H)=\left\{\sum_{i=1}^{r} \lambda_{i} h_{i} \mid r \in \mathbb{N}, h_{i} \in H, \lambda_{i} \in \mathbb{Q}+\right\}$.

Divisor-closed submonoids of affine semigroups

Definition
Let H be an affine semigroup of \mathbb{N}^{n}. Define the rational cone of H as $\mathrm{L}_{\mathbb{Q}_{+}}(H)=\left\{\sum_{i=1}^{r} \lambda_{i} h_{i} \mid r \in \mathbb{N}, h_{i} \in H, \lambda_{i} \in \mathbb{Q}+\right\}$.
The set $\mathrm{L}_{\mathbb{Q}_{+}}(H) \cap \mathbb{N}^{n}$ is denote by \mathcal{C}_{H}.

Divisor-closed submonoids of affine semigroups

Definition

Let H be an affine semigroup of \mathbb{N}^{n}. Define the rational cone of H as $\mathrm{L}_{\mathbb{Q}_{+}}(H)=\left\{\sum_{i=1}^{r} \lambda_{i} h_{i} \mid r \in \mathbb{N}, h_{i} \in H, \lambda_{i} \in \mathbb{Q}+\right\}$.
The set $\mathrm{L}_{\mathbb{Q}_{+}}(H) \cap \mathbb{N}^{n}$ is denote by \mathcal{C}_{H}.
Every vector $\omega \in \mathbb{R}^{n}$ determines a face of a cone, \mathcal{C}_{H} :

Divisor-closed submonoids of affine semigroups

Definition

Let H be an affine semigroup of \mathbb{N}^{n}. Define the rational cone of H as $\mathrm{L}_{\mathbb{Q}_{+}}(H)=\left\{\sum_{i=1}^{r} \lambda_{i} h_{i} \mid r \in \mathbb{N}, h_{i} \in H, \lambda_{i} \in \mathbb{Q}+\right\}$.
The set $\mathrm{L}_{\mathbb{Q}_{+}}(H) \cap \mathbb{N}^{n}$ is denote by \mathcal{C}_{H}.
Every vector $\omega \in \mathbb{R}^{n}$ determines a face of a cone, \mathcal{C}_{H} :

$$
\mathrm{F}_{\omega}\left(\mathcal{C}_{H}\right)=\left\{x \in \mathcal{C}_{H} \mid x . \omega \geq y . \omega \text { for all } y \in \mathcal{C}_{H}\right\}
$$

Divisor-closed submonoids of affine semigroups

Definition

Let H be an affine semigroup of \mathbb{N}^{n}. Define the rational cone of H as $\mathrm{L}_{\mathbb{Q}_{+}}(H)=\left\{\sum_{i=1}^{r} \lambda_{i} h_{i} \mid r \in \mathbb{N}, h_{i} \in H, \lambda_{i} \in \mathbb{Q}+\right\}$.
The set $\mathrm{L}_{\mathbb{Q}_{+}}(H) \cap \mathbb{N}^{n}$ is denote by \mathcal{C}_{H}.
Every vector $\omega \in \mathbb{R}^{n}$ determines a face of a cone, \mathcal{C}_{H} :

$$
\mathrm{F}_{\omega}\left(\mathcal{C}_{H}\right)=\left\{x \in \mathcal{C}_{H} \mid x . \omega \geq y . \omega \text { for all } y \in \mathcal{C}_{H}\right\}, \mathrm{F}_{\omega}\left(\mathcal{C}_{H}\right)=\mathrm{F}
$$

Divisor-closed submonoids of affine semigroups

Definition

Let H be an affine semigroup of \mathbb{N}^{n}. Define the rational cone of H as $\mathrm{L}_{\mathbb{Q}_{+}}(H)=\left\{\sum_{i=1}^{r} \lambda_{i} h_{i} \mid r \in \mathbb{N}, h_{i} \in H, \lambda_{i} \in \mathbb{Q}+\right\}$.
The set $\mathrm{L}_{\mathbb{Q}_{+}}(H) \cap \mathbb{N}^{n}$ is denote by \mathcal{C}_{H}.
Every vector $\omega \in \mathbb{R}^{n}$ determines a face of a cone, \mathcal{C}_{H} :

$$
\mathrm{F}_{\omega}\left(\mathcal{C}_{H}\right)=\left\{x \in \mathcal{C}_{H} \mid x . \omega \geq y . \omega \text { for all } y \in \mathcal{C}_{H}\right\}, \mathrm{F}_{\omega}\left(\mathcal{C}_{H}\right)=\mathrm{F}
$$

[Schrijver, 99] ($\mathfrak{F}(\mathbf{C}), \subset)$

Divisor-closed submonoids of affine semigroups

Definition

Let H be an affine semigroup of \mathbb{N}^{n}. Define the rational cone of H as $\mathrm{L}_{\mathbb{Q}_{+}}(H)=\left\{\sum_{i=1}^{r} \lambda_{i} h_{i} \mid r \in \mathbb{N}, h_{i} \in H, \lambda_{i} \in \mathbb{Q}+\right\}$.
The set $\mathrm{L}_{\mathbb{Q}_{+}}(H) \cap \mathbb{N}^{n}$ is denote by \mathcal{C}_{H}.
Every vector $\omega \in \mathbb{R}^{n}$ determines a face of a cone, \mathcal{C}_{H} :

$$
\mathrm{F}_{\omega}\left(\mathcal{C}_{H}\right)=\left\{x \in \mathcal{C}_{H} \mid x . \omega \geq y . \omega \text { for all } y \in \mathcal{C}_{H}\right\}, \mathrm{F}_{\omega}\left(\mathcal{C}_{H}\right)=\mathrm{F}
$$

[Schrijver, 99] ($\mathfrak{F}(\mathbf{C}), \subset)$ a complete finite lattice,

Divisor-closed submonoids of affine semigroups

Definition

Let H be an affine semigroup of \mathbb{N}^{n}. Define the rational cone of H as $\mathrm{L}_{\mathbb{Q}_{+}}(H)=\left\{\sum_{i=1}^{r} \lambda_{i} h_{i} \mid r \in \mathbb{N}, h_{i} \in H, \lambda_{i} \in \mathbb{Q}+\right\}$.
The set $\mathrm{L}_{\mathbb{Q}_{+}}(H) \cap \mathbb{N}^{n}$ is denote by \mathcal{C}_{H}.
Every vector $\omega \in \mathbb{R}^{n}$ determines a face of a cone, \mathcal{C}_{H} :

$$
\mathrm{F}_{\omega}\left(\mathcal{C}_{H}\right)=\left\{x \in \mathcal{C}_{H} \mid x . \omega \geq y . \omega \text { for all } y \in \mathcal{C}_{H}\right\}, \mathrm{F}_{\omega}\left(\mathcal{C}_{H}\right)=\mathrm{F}
$$

[Schrijver, 99] ($\mathfrak{F}(\mathbf{C}), \subset)$ a complete finite lattice,

$$
\begin{gathered}
\inf (\mathfrak{A})=\cap\{F \in \mathfrak{F}(\mathbf{C}) \mid F \in \mathfrak{A}\} \\
\sup (\mathfrak{A})=\cap\{G \in \mathfrak{F}(\mathbf{C}) \mid \forall F \in \mathfrak{A}: F \subset G\},
\end{gathered}
$$

for every $\mathfrak{A} \subset \mathfrak{F}(\mathbf{C})$.

Theorem
Let $H \subset \mathbb{N}^{n}$ be an affine semigroup and let S be a submonoid of H. Then, S is a divisor-closed submonoid of H if and only if there exists a face F of $\mathrm{L}_{\mathbb{Q}_{+}}(H)$ such that $S=F \cap H$.
$H \subseteq \mathbb{N}^{n}$, affine semigroup,
$H \subseteq \mathbb{N}^{n}$, affine semigroup,

- lattice of divisor-closed submonoids of H,
$H \subseteq \mathbb{N}^{n}$, affine semigroup,
- lattice of divisor-closed submonoids of H,
- lattice of Archimedean componentes of H,
$H \subseteq \mathbb{N}^{n}$, affine semigroup,
- lattice of divisor-closed submonoids of H,
- lattice of Archimedean componentes of H,
- lattice of faces of cone $\mathrm{L}_{\mathbb{Q}_{+}}(H)$.
$H \subseteq \mathbb{N}^{n}$, affine semigroup,
- lattice of divisor-closed submonoids of H,
- lattice of Archimedean componentes of H,
- lattice of faces of cone $\mathrm{L}_{\mathbb{Q}_{+}}(H)$.

Corollary

Let H be an affine semigroup of \mathbb{N}^{n}. The lattice of divisor-closed submonoids of H, the lattice of Archimedean components of H and the lattice of faces of the cone $\mathrm{L}_{\mathbb{Q}_{+}}(H)$ are isomorphic.

Definition
An affine semigroup $H \subset \mathbb{N}^{n}$ is simplicial if the cone $L_{\mathbb{Q}_{+}}(H)$ is generated by n linearly generators of H.

Definition

An affine semigroup $H \subset \mathbb{N}^{n}$ is simplicial if the cone $\mathrm{L}_{\mathbb{Q}_{+}}(H)$ is generated by n linearly generators of H.

Corollary
Let H be a simplicial affine submonoid of \mathbb{N}^{n}. The number of divisor-closed submonoids of H is equal to 2^{n}.

Example

Example

$$
H=\langle(1,0),(1,2),(1,3),(1,7)\rangle \subseteq \mathbb{N}^{2}
$$

Example

$$
\begin{aligned}
& H=\langle(1,0),(1,2),(1,3),(1,7)\rangle \subseteq \mathbb{N}^{2} \\
& \mathrm{~L}_{\mathbb{Q}_{+}}(H)=\langle(1,0),(1,7)\rangle
\end{aligned}
$$

Example

$$
\begin{aligned}
& H=\langle(1,0),(1,2),(1,3),(1,7)\rangle \subseteq \mathbb{N}^{2} \\
& \mathrm{~L}_{\mathbb{Q}_{+}}(H)=\langle(1,0),(1,7)\rangle
\end{aligned}
$$

Faces:

- $\{(0,0)\}$,
- $\mathrm{F}_{1}=\langle(1,0)\rangle, \mathrm{F}_{2}=\langle(1,7)\rangle$,
- $\mathrm{L}_{\mathbb{Q}_{+}}(H)$.

Example

$$
\begin{aligned}
& H=\langle(1,0),(1,2),(1,3),(1,7)\rangle \subseteq \mathbb{N}^{2} \\
& \mathrm{~L}_{\mathbb{Q}_{+}}(H)=\langle(1,0),(1,7)\rangle
\end{aligned}
$$

Faces:

- $\{(0,0)\}$,
- $\mathrm{F}_{1}=\langle(1,0)\rangle, \mathrm{F}_{2}=\langle(1,7)\rangle$,
- $\mathrm{L}_{\mathbb{Q}_{+}}(H)$.

Divisor-closed submonoids of H :

- $\{(0,0)\}$,
- $H \cap F_{1}=\langle(1,0)\rangle, \quad H \cap F_{2}=\langle(1,7)\rangle$,
- H.

Example

$$
\begin{aligned}
& H=\langle(1,0),(1,2),(1,3),(1,7)\rangle \subseteq \mathbb{N}^{2} \\
& \mathrm{~L}_{\mathbb{Q}_{+}}(H)=\langle(1,0),(1,7)\rangle
\end{aligned}
$$

Faces:

- $\{(0,0)\}$,
- $\mathrm{F}_{1}=\langle(1,0)\rangle, \mathrm{F}_{2}=\langle(1,7)\rangle$,
- $\mathrm{L}_{\mathbb{Q}_{+}}(H)$.

Divisor-closed submonoids of H :

- $\{(0,0)\}$,
- $H \cap F_{1}=\langle(1,0)\rangle, \quad H \cap F_{2}=\langle(1,7)\rangle$,
- H.
H is simplicial, the number of d.c.s: 2^{2}.

Projections of affine semigroups and divisor-closed submonoids

Projections of affine semigroups and divisor-closed submonoids
\widetilde{H}, finitely generated, cancellative, conmutative monoid,

Projections of affine semigroups and divisor-closed submonoids

\widetilde{H}, finitely generated, cancellative, conmutative monoid, H affine semigroup associated to \widetilde{H}.

Projections of affine semigroups and divisor-closed

 submonoids\widetilde{H}, finitely generated, cancellative, conmutative monoid, $\underset{\sim}{H}$ affine semigroup associated to H.
$\widetilde{H}=\mathbb{N}^{n} / \sim_{M}, M \leq \mathbb{Z}^{p}$,

Projections of affine semigroups and divisor-closed submonoids
\widetilde{H}, finitely generated, cancellative, conmutative monoid, $\underset{\sim}{H}$ affine semigroup associated to \widetilde{H}.
$\widetilde{H}=\mathbb{N}^{n} / \sim_{M}, M \leq \mathbb{Z}^{p}$,
$\mathbb{N}^{n} / \sim_{M} \simeq\left\langle\widetilde{a}_{* 1}, \ldots, \widetilde{a}_{* n}\right\rangle \subseteq \mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{k}$.

Projections of affine semigroups and divisor-closed submonoids

\widetilde{H}, finitely generated, cancellative, conmutative monoid, $\underset{\sim}{H}$ affine semigroup associated to \widetilde{H}.
$\widetilde{H}=\mathbb{N}^{n} / \sim_{M}, M \leq \mathbb{Z}^{p}$,

$$
\begin{aligned}
& \mathbb{N}^{n} / \sim M \simeq\left\langle\widetilde{a}_{* 1}, \ldots, \widetilde{a}_{* n}\right\rangle \subseteq \mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{k} \\
& \widetilde{a}_{* j}=\left(\left[a_{1 j}\right]_{d_{1}}, \ldots,\left[a_{r j}\right]_{d_{r}}, a_{(r+1) j}, \ldots, a_{(r+k) j}\right) \in \mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{k}
\end{aligned}
$$

Projections of affine semigroups and divisor-closed submonoids

\widetilde{H}, finitely generated, cancellative, conmutative monoid, $\underset{\sim}{H}$ affine semigroup associated to \widetilde{H}.
$\widetilde{H}=\mathbb{N}^{n} / \sim_{M}, M \leq \mathbb{Z}^{p}$,

$$
\begin{aligned}
& \mathbb{N}^{n} / \sim M \simeq\left\langle\widetilde{a}_{* 1}, \ldots, \widetilde{a}_{* n}\right\rangle \subseteq \mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{k} \\
& \widetilde{a}_{* j}=\left(\left[a_{1 j}\right]_{d_{1}}, \ldots,\left[a_{r j}\right]_{d_{r}}, a_{(r+1) j}, \ldots, a_{(r+k) j}\right) \in \mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{k}, \\
& a_{* j}=\left(a_{1 j}, \ldots, a_{r j}, a_{(r+1) j}, \ldots, a_{(r+k) j}\right) \in \mathbb{N}^{r+k}
\end{aligned}
$$

Projections of affine semigroups and divisor-closed submonoids

\widetilde{H}, finitely generated, cancellative, conmutative monoid, $\underset{\sim}{H}$ affine semigroup associated to \widetilde{H}.
$\widetilde{H}=\mathbb{N}^{n} / \sim_{M}, M \leq \mathbb{Z}^{p}$,

$$
\begin{aligned}
& \mathbb{N}^{n} / \sim M \simeq\left\langle\widetilde{a}_{* 1}, \ldots, \widetilde{a}_{* n}\right\rangle \subseteq \mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{k} \\
& \widetilde{a}_{* j}=\left(\left[a_{1 j}\right]_{d_{1}}, \ldots,\left[a_{r j}\right]_{d_{r}}, a_{(r+1) j}, \ldots, a_{(r+k) j}\right) \in \mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{k} \\
& a_{* j}=\left(a_{1 j}, \ldots, a_{r j}, a_{(r+1) j}, \ldots, a_{(r+k) j}\right) \in \mathbb{N}^{r+k}
\end{aligned}
$$

$$
H=\left\langle a_{* 1}, \ldots, a_{* n}\right\rangle \subseteq \mathbb{N}^{r+k}
$$

Projections of affine semigroups and divisor-closed submonoids

\widetilde{H}, finitely generated, cancellative, conmutative monoid, $\underset{\sim}{H}$ affine semigroup associated to \widetilde{H}.
$\widetilde{H}=\mathbb{N}^{n} / \sim_{M}, M \leq \mathbb{Z}^{p}$,
$\mathbb{N}^{n} / \sim_{M} \simeq\left\langle\widetilde{a}_{* 1}, \ldots, \widetilde{a}_{* n}\right\rangle \subseteq \mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{k}$.
$\widetilde{a}_{* j}=\left(\left[a_{1 j}\right]_{d_{1}}, \ldots,\left[a_{r j}\right]_{d_{r}}, a_{(r+1) j}, \ldots, a_{(r+k) j}\right) \in \mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{k}$,
$a_{* j}=\left(a_{1 j}, \ldots, a_{r j}, a_{(r+1) j}, \ldots, a_{(r+k) j}\right) \in \mathbb{N}^{r+k}$,
$H=\left\langle a_{* 1}, \ldots, a_{* n}\right\rangle \subseteq \mathbb{N}^{r+k}$, Affine semigroup associated to \widetilde{H}

Projections of affine semigroups and divisor-closed submonoids

\widetilde{H}, finitely generated, cancellative, conmutative monoid, H affine semigroup associated to \mathcal{H}.

$$
\begin{aligned}
& \widetilde{H}=\mathbb{N}^{n} / \sim M, M \leq \mathbb{Z}^{p} \\
& \mathbb{N}^{n} / \sim M \simeq\left\langle\widetilde{a}_{* 1}, \ldots, \widetilde{a}_{* n}\right\rangle \subseteq \mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{k} \\
& \widetilde{a}_{* j}=\left(\left[a_{1 j}\right]_{d_{1}}, \ldots,\left[a_{r j}\right]_{d_{r}}, a_{(r+1) j}, \ldots, a_{(r+k) j}\right) \in \mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{k}, \\
& a_{* j}=\left(a_{1 j}, \ldots, a_{r j}, a_{(r+1) j}, \ldots, a_{(r+k) j}\right) \in \mathbb{N}^{r+k},
\end{aligned}
$$

$$
H=\left\langle a_{* 1}, \ldots, a_{* n}\right\rangle \subseteq \mathbb{N}^{r+k}, \text { Affine semigroup associated to } \widetilde{H}
$$

$$
\pi: \mathbb{N}^{r+k} \rightarrow \mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{N}^{k}, \pi\left(a_{* j}\right)=\widetilde{a}_{* j}, 1 \leq j \leq r+k
$$

Projections of affine semigroups and divisor-closed submonoids

\widetilde{H}, finitely generated, cancellative, conmutative monoid, H affine semigroup associated to \mathcal{H}.
$\widetilde{H}=\mathbb{N}^{n} / \sim_{M}, M \leq \mathbb{Z}^{p}$,
$\mathbb{N}^{n} / \sim_{M} \simeq\left\langle\widetilde{a}_{* 1}, \ldots, \widetilde{a}_{* n}\right\rangle \subseteq \mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{k}$.
$\widetilde{a}_{* j}=\left(\left[a_{1 j}\right]_{d_{1}}, \ldots,\left[a_{r j}\right]_{d_{r}}, a_{(r+1) j}, \ldots, a_{(r+k) j}\right) \in \mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{k}$,
$a_{* j}=\left(a_{1 j}, \ldots, a_{r j}, a_{(r+1) j}, \ldots, a_{(r+k) j}\right) \in \mathbb{N}^{r+k}$,
$H=\left\langle a_{* 1}, \ldots, a_{* n}\right\rangle \subseteq \mathbb{N}^{r+k}$, Affine semigroup associated to \widetilde{H}
$\pi: \mathbb{N}^{r+k} \rightarrow \mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{N}^{k}, \pi\left(a_{* j}\right)=\widetilde{a}_{* j}, 1 \leq j \leq r+k$.

- $\pi(H)=\widetilde{H}$ and
- $\pi_{\mid H}: H \rightarrow \widetilde{H}$, monoid morphism.

$$
\pi_{\mid H}: H \rightarrow \widetilde{H}
$$

$\pi_{\mid H}: H \rightarrow \widetilde{H}$,
Lemma
If S is a submonoid of \widetilde{H}, then $\pi^{-1}(S) \cap H$ is a submonoid of H.
$\pi_{\mid H}: H \rightarrow \widetilde{H}$,
Lemma
If S is a submonoid of \widetilde{H}, then $\pi^{-1}(S) \cap H$ is a submonoid of H.

Proposition

Let S be a submonoid of \widetilde{H}. Then, S is a divisor-closed submonoid of \widetilde{H} if and only if $\pi^{-1}(S) \cap H$ is a divisor-closed submonoid of H.
$\pi_{\mid H}: H \rightarrow \widetilde{H}$,
Lemma
If S is a submonoid of \widetilde{H}, then $\pi^{-1}(S) \cap H$ is a submonoid of H.

Proposition

Let S be a submonoid of \widetilde{H}. Then, S is a divisor-closed submonoid of \widetilde{H} if and only if $\pi^{-1}(S) \cap H$ is a divisor-closed submonoid of H.

Corollary
The set of divisor-closed submonoid of \widetilde{H} is equal to

$$
\mathfrak{D}=\left\{\pi(S) \mid S \text { is a d.c.s } H \text { and }\left(\pi^{-1} \circ \pi\right)(S) \cap H=S\right\} .
$$

Computing the set of minimal distances

Computing the set of minimal distances

Definition

Computing the set of minimal distances

Definition
$H=\left\langle g_{1}, \ldots, g_{p}\right\rangle, h \in H$,

Computing the set of minimal distances

Definition
$H=\left\langle g_{1}, \ldots, g_{p}\right\rangle, h \in H$,

- Set of factorizations of h :

$$
Z(h)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{N}^{p} \mid \sum_{i=1}^{p} x_{i} g_{i}=h\right\},
$$

Computing the set of minimal distances

Definition

$H=\left\langle g_{1}, \ldots, g_{p}\right\rangle, h \in H$,

- Set of factorizations of h :

$$
\mathrm{Z}(h)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{N}^{p} \mid \sum_{i=1}^{p} x_{i} g_{i}=h\right\},
$$

- Set of lengths of $h: \mathcal{L}(h)=\left\{\sum_{i=1}^{p} x_{i} \mid\left(x_{1}, \ldots, x_{p}\right) \in Z(h)\right\}$,

Computing the set of minimal distances

Definition

$H=\left\langle g_{1}, \ldots, g_{p}\right\rangle, h \in H$,

- Set of factorizations of h :
$\mathrm{Z}(h)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{N}^{p} \mid \sum_{i=1}^{p} x_{i} g_{i}=h\right\}$,
- Set of lengths of $h: \mathcal{L}(h)=\left\{\sum_{i=1}^{p} x_{i} \mid\left(x_{1}, \ldots, x_{p}\right) \in Z(h)\right\}$, $\mathcal{L}(h)$ is bounded, $\mathcal{L}(h)=\left\{I_{1}<\cdots<I_{k}\right\}$,

Computing the set of minimal distances

Definition

$H=\left\langle g_{1}, \ldots, g_{p}\right\rangle, h \in H$,

- Set of factorizations of h :
$\mathrm{Z}(h)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{N}^{p} \mid \sum_{i=1}^{p} x_{i} g_{i}=h\right\}$,
- Set of lengths of $h: \mathcal{L}(h)=\left\{\sum_{i=1}^{p} x_{i} \mid\left(x_{1}, \ldots, x_{p}\right) \in Z(h)\right\}$,
$\mathcal{L}(h)$ is bounded, $\mathcal{L}(h)=\left\{l_{1}<\cdots<I_{k}\right\}$,
- Delta set of $h: \Delta(h)=\left\{I_{i}-I_{i-1}: 2 \leq i \leq k\right\}$,

Computing the set of minimal distances

Definition

$H=\left\langle g_{1}, \ldots, g_{p}\right\rangle, h \in H$,

- Set of factorizations of h :
$Z(h)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{N}^{p} \mid \sum_{i=1}^{p} x_{i} g_{i}=h\right\}$,
- Set of lengths of $h: \mathcal{L}(h)=\left\{\sum_{i=1}^{p} x_{i} \mid\left(x_{1}, \ldots, x_{p}\right) \in Z(h)\right\}$,
$\mathcal{L}(h)$ is bounded, $\mathcal{L}(h)=\left\{l_{1}<\cdots<I_{k}\right\}$,
- Delta set of $h: \Delta(h)=\left\{I_{i}-I_{i-1}: 2 \leq i \leq k\right\}$,
- Delta set of $H: \Delta(H)=\bigcup_{h \in H} \Delta(h)$,

Computing the set of minimal distances

Definition
$H=\left\langle g_{1}, \ldots, g_{p}\right\rangle, h \in H$,

- Set of factorizations of h :
$\mathrm{Z}(h)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{N}^{p} \mid \sum_{i=1}^{p} x_{i} g_{i}=h\right\}$,
- Set of lengths of $h: \mathcal{L}(h)=\left\{\sum_{i=1}^{p} x_{i} \mid\left(x_{1}, \ldots, x_{p}\right) \in \mathrm{Z}(h)\right\}$,
$\mathcal{L}(h)$ is bounded, $\mathcal{L}(h)=\left\{I_{1}<\cdots<I_{k}\right\}$,
- Delta set of $h: \Delta(h)=\left\{I_{i}-I_{i-1}: 2 \leq i \leq k\right\}$,
- Delta set of $H: \Delta(H)=\bigcup_{h \in H} \Delta(h)$,
- The set of minimal distances of H,

$$
\Delta^{*}(H)=\{\min (\Delta(S)) \mid S \subset H \text { is a d.c.s } \Delta(S) \neq \emptyset\} .
$$

Computing the set of minimal distances

Definition
$H=\left\langle g_{1}, \ldots, g_{p}\right\rangle, h \in H$,

- Set of factorizations of h : $\mathrm{Z}(h)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{N}^{p} \mid \sum_{i=1}^{p} x_{i} g_{i}=h\right\}$,
- Set of lengths of $h: \mathcal{L}(h)=\left\{\sum_{i=1}^{p} x_{i} \mid\left(x_{1}, \ldots, x_{p}\right) \in Z(h)\right\}$,
$\mathcal{L}(h)$ is bounded, $\mathcal{L}(h)=\left\{I_{1}<\cdots<I_{k}\right\}$,
- Delta set of $h: \Delta(h)=\left\{I_{i}-I_{i-1}: 2 \leq i \leq k\right\}$,
- Delta set of $H: \Delta(H)=\bigcup_{h \in H} \Delta(h)$,
- The set of minimal distances of H,

$$
\Delta^{*}(H)=\{\min (\Delta(S)) \mid S \subset H \text { is a d.c.s } \Delta(S) \neq \emptyset\} .
$$

Consequences:

Computing the set of minimal distances

Definition
$H=\left\langle g_{1}, \ldots, g_{p}\right\rangle, h \in H$,

- Set of factorizations of h : $\mathrm{Z}(h)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{N}^{p} \mid \sum_{i=1}^{p} x_{i} g_{i}=h\right\}$,
- Set of lengths of $h: \mathcal{L}(h)=\left\{\sum_{i=1}^{p} x_{i} \mid\left(x_{1}, \ldots, x_{p}\right) \in Z(h)\right\}$,
$\mathcal{L}(h)$ is bounded, $\mathcal{L}(h)=\left\{I_{1}<\cdots<I_{k}\right\}$,
- Delta set of $h: \Delta(h)=\left\{I_{i}-I_{i-1}: 2 \leq i \leq k\right\}$,
- Delta set of $H: \Delta(H)=\bigcup_{h \in H} \Delta(h)$,
- The set of minimal distances of H,

$$
\Delta^{*}(H)=\{\min (\Delta(S)) \mid S \subset H \text { is a d.c.s } \Delta(S) \neq \emptyset\} .
$$

Consequences:

- $\Delta^{*}(H) \subset \Delta(H)$,

Computing the set of minimal distances

Definition
$H=\left\langle g_{1}, \ldots, g_{p}\right\rangle, h \in H$,

- Set of factorizations of h : $\mathrm{Z}(h)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{N}^{p} \mid \sum_{i=1}^{p} x_{i} g_{i}=h\right\}$,
- Set of lengths of $h: \mathcal{L}(h)=\left\{\sum_{i=1}^{p} x_{i} \mid\left(x_{1}, \ldots, x_{p}\right) \in Z(h)\right\}$,
$\mathcal{L}(h)$ is bounded, $\mathcal{L}(h)=\left\{I_{1}<\cdots<I_{k}\right\}$,
- Delta set of $h: \Delta(h)=\left\{I_{i}-I_{i-1}: 2 \leq i \leq k\right\}$,
- Delta set of $H: \Delta(H)=\bigcup_{h \in H} \Delta(h)$,
- The set of minimal distances of H,

$$
\Delta^{*}(H)=\{\min (\Delta(S)) \mid S \subset H \text { is a d.c.s } \Delta(S) \neq \emptyset\} .
$$

Consequences:

- $\Delta^{*}(H) \subset \Delta(H)$,
- $\Delta^{*}(H)=\emptyset \Longleftrightarrow \Delta(H)=\emptyset$,

Computing the set of minimal distances

Definition
$H=\left\langle g_{1}, \ldots, g_{p}\right\rangle, h \in H$,

- Set of factorizations of h :
$\mathrm{Z}(h)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{N}^{p} \mid \sum_{i=1}^{p} x_{i} g_{i}=h\right\}$,
- Set of lengths of $h: \mathcal{L}(h)=\left\{\sum_{i=1}^{p} x_{i} \mid\left(x_{1}, \ldots, x_{p}\right) \in Z(h)\right\}$,
$\mathcal{L}(h)$ is bounded, $\mathcal{L}(h)=\left\{I_{1}<\cdots<I_{k}\right\}$,
- Delta set of $h: \Delta(h)=\left\{I_{i}-I_{i-1}: 2 \leq i \leq k\right\}$,
- Delta set of $H: \Delta(H)=\bigcup_{h \in H} \Delta(h)$,
- The set of minimal distances of H,

$$
\Delta^{*}(H)=\{\min (\Delta(S)) \mid S \subset H \text { is a d.c.s } \Delta(S) \neq \emptyset\} .
$$

Consequences:

- $\Delta^{*}(H) \subset \Delta(H)$,
- $\Delta^{*}(H)=\emptyset \Longleftrightarrow \Delta(H)=\emptyset$,
- If H is numerical semigroup $\Longrightarrow \Delta^{*}(H)=\{\min (\Delta(H))\}$.
$\min (\Delta(S))$, where S is a finitely generated submonoid of H,
$\min (\Delta(S))$, where S is a finitely generated submonoid of H,

Lemma

Let $H=\left\langle h_{1}, \ldots, h_{p}\right\rangle \cong \mathbb{N}^{p} / \sim_{M}$ be a monoid with $\left\{m_{1}, \ldots, m_{r}\right\}$ a system of generators of M. Then

$$
\min (\Delta(H))=\min \{|m|:|m|>0, m \in M\}=\operatorname{gcd}\left(\left|m_{1}\right|, \ldots,\left|m_{r}\right|\right)
$$

$\min (\Delta(S))$, where S is a finitely generated submonoid of H,

Lemma

Let $H=\left\langle h_{1}, \ldots, h_{p}\right\rangle \cong \mathbb{N}^{p} / \sim_{M}$ be a monoid with $\left\{m_{1}, \ldots, m_{r}\right\}$ a system of generators of M. Then

$$
\min (\Delta(H))=\min \{|m|:|m|>0, m \in M\}=\operatorname{gcd}\left(\left|m_{1}\right|, \ldots,\left|m_{r}\right|\right)
$$

Algorithm

Input: $H \cong \mathbb{N}^{P} / \sim_{M}$. Output: $\Delta^{*}(H)$.

1. Compute the lattice $\mathfrak{F}(H)$ of divisor-closed submonoids of H.
2. For every $S \in \mathfrak{F}(H)$, if $\left\{\left[e_{i_{1}}\right]_{\sim_{M}}, \ldots,\left[e_{i_{t}}\right]_{\sim_{M}}\right\}$ is a system of generators of S, compute a system of generators G_{S} of the group obtained from the intersection of M with

$$
\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{Z}^{p} \mid x_{i}=0 \text { for all } i \notin\left\{i_{1}, \ldots, i_{t}\right\}\right\}
$$

3. For every $S \in \mathfrak{F}(H)$, compute

$$
\left|G_{S}\right|=\left\{\sum_{i=1}^{p}\left|m_{i}\right|:\left(m_{1}, \ldots, m_{p}\right) \in G_{S}\right\} \text { and } \mathrm{d}_{S}=\operatorname{gcd}\left(\left|G_{S}\right|\right)
$$

4. Return $\left\{d_{S} \mid S \in \mathfrak{F}(H)\right\}$.

Example

Example

$$
H=\langle(5,9,0),(10,11,0),(15,5,0),(0,0,1),(10,0,1)\rangle \subseteq \mathbb{N}^{3}
$$

Example

$$
\begin{aligned}
& H=\langle(5,9,0),(10,11,0),(15,5,0),(0,0,1),(10,0,1)\rangle \subseteq \mathbb{N}^{3}, \\
& H \simeq \mathbb{N}^{5} / \sim_{M},
\end{aligned}
$$

Example

$$
\begin{aligned}
& H=\langle(5,9,0),(10,11,0),(15,5,0),(0,0,1),(10,0,1)\rangle \subseteq \mathbb{N}^{3}, \\
& H \simeq \mathbb{N}^{5} / \sim M, M \leq \mathbb{Z}^{5},
\end{aligned}
$$

$$
\left(\begin{array}{ccccc}
5 & 10 & 15 & 0 & 10 \\
9 & 11 & 5 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) .
$$

Example $H=\langle(5,9,0),(10,11,0),(15,5,0),(0,0,1),(10,0,1)\rangle \subseteq \mathbb{N}^{3}$, $H \simeq \mathbb{N}^{5} / \sim_{M}, \quad M \leq \mathbb{Z}^{5}$,

$$
\left(\begin{array}{ccccc}
5 & 10 & 15 & 0 & 10 \\
9 & 11 & 5 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) .
$$

A system of generators of M,
$\left\{m_{1}=(19,-16,1,-5,5), m_{2}=(22,-18,0,-7,7)\right\}$

Example
$H=\langle(5,9,0),(10,11,0),(15,5,0),(0,0,1),(10,0,1)\rangle \subseteq \mathbb{N}^{3}$, $H \simeq \mathbb{N}^{5} / \sim_{M}, \quad M \leq \mathbb{Z}^{5}$,

$$
\left(\begin{array}{ccccc}
5 & 10 & 15 & 0 & 10 \\
9 & 11 & 5 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) .
$$

A system of generators of M,
$\left\{m_{1}=(19,-16,1,-5,5), m_{2}=(22,-18,0,-7,7)\right\}$
with $\left|m_{1}\right|=\left|m_{2}\right|=4$.

Example
$H=\langle(5,9,0),(10,11,0),(15,5,0),(0,0,1),(10,0,1)\rangle \subseteq \mathbb{N}^{3}$, $H \simeq \mathbb{N}^{5} / \sim_{M}, \quad M \leq \mathbb{Z}^{5}$,

$$
\left(\begin{array}{ccccc}
5 & 10 & 15 & 0 & 10 \\
9 & 11 & 5 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) .
$$

A system of generators of M,
$\left\{m_{1}=(19,-16,1,-5,5), m_{2}=(22,-18,0,-7,7)\right\}$
with $\left|m_{1}\right|=\left|m_{2}\right|=4 . \quad \min (\Delta(H))=4$.

Example

$H=\langle(5,9,0),(10,11,0),(15,5,0),(0,0,1),(10,0,1)\rangle \subseteq \mathbb{N}^{3}$,
$H \simeq \mathbb{N}^{5} / \sim_{M}, M \leq \mathbb{Z}^{5}$,

$$
\left(\begin{array}{ccccc}
5 & 10 & 15 & 0 & 10 \\
9 & 11 & 5 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) .
$$

A system of generators of M,
$\left\{m_{1}=(19,-16,1,-5,5), m_{2}=(22,-18,0,-7,7)\right\}$
with $\left|m_{1}\right|=\left|m_{2}\right|=4 . \quad \min (\Delta(H))=4$.
Divisor-closed submonoids of H :
$S_{1}=\{(0,0,0)\}, S_{2}=\langle(5,9,0)\rangle, S_{3}=\langle(15,5,0)\rangle, S_{4}=\langle(0,0,1)\rangle$,
$S_{5}=\langle(10,0,1)\rangle, S_{6}=\langle(5,9,0),(10,11,0),(15,5,0)\rangle$,
$S_{7}=\langle(15,5,0),(10,0,1)\rangle, S_{8}=\langle(10,0,1),(0,0,1)\rangle$,
$S_{9}=\langle(0,0,1),(5,9,0)\rangle$, and H.

Example

$H=\langle(5,9,0),(10,11,0),(15,5,0),(0,0,1),(10,0,1)\rangle \subseteq \mathbb{N}^{3}$,
$H \simeq \mathbb{N}^{5} / \sim_{M}, \quad M \leq \mathbb{Z}^{5}$,

$$
\left(\begin{array}{ccccc}
5 & 10 & 15 & 0 & 10 \\
9 & 11 & 5 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) .
$$

A system of generators of M,
$\left\{m_{1}=(19,-16,1,-5,5), m_{2}=(22,-18,0,-7,7)\right\}$
with $\left|m_{1}\right|=\left|m_{2}\right|=4 . \quad \min (\Delta(H))=4$.
Divisor-closed submonoids of H :
$S_{1}=\{(0,0,0)\}, S_{2}=\langle(5,9,0)\rangle, S_{3}=\langle(15,5,0)\rangle, S_{4}=\langle(0,0,1)\rangle$,
$S_{5}=\langle(10,0,1)\rangle, S_{6}=\langle(5,9,0),(10,11,0),(15,5,0)\rangle$,
$S_{7}=\langle(15,5,0),(10,0,1)\rangle, S_{8}=\langle(10,0,1),(0,0,1)\rangle$,
$S_{9}=\langle(0,0,1),(5,9,0)\rangle$, and H.
$S_{i}, i \neq 6, G_{S_{i}}=0, \Delta\left(S_{i}\right)=\emptyset$.

Example

$H=\langle(5,9,0),(10,11,0),(15,5,0),(0,0,1),(10,0,1)\rangle \subseteq \mathbb{N}^{3}$,
$H \simeq \mathbb{N}^{5} / \sim_{M}, \quad M \leq \mathbb{Z}^{5}$,

$$
\left(\begin{array}{ccccc}
5 & 10 & 15 & 0 & 10 \\
9 & 11 & 5 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) .
$$

A system of generators of M,
$\left\{m_{1}=(19,-16,1,-5,5), m_{2}=(22,-18,0,-7,7)\right\}$
with $\left|m_{1}\right|=\left|m_{2}\right|=4 . \quad \min (\Delta(H))=4$.
Divisor-closed submonoids of H :
$S_{1}=\{(0,0,0)\}, S_{2}=\langle(5,9,0)\rangle, S_{3}=\langle(15,5,0)\rangle, S_{4}=\langle(0,0,1)\rangle$,
$S_{5}=\langle(10,0,1)\rangle, S_{6}=\langle(5,9,0),(10,11,0),(15,5,0)\rangle$,
$S_{7}=\langle(15,5,0),(10,0,1)\rangle, S_{8}=\langle(10,0,1),(0,0,1)\rangle$,
$S_{9}=\langle(0,0,1),(5,9,0)\rangle$, and H.
$S_{i}, i \neq 6, G_{S_{i}}=0, \Delta\left(S_{i}\right)=\emptyset$.
$G_{S_{6}}=\langle(23,-22,7)\rangle$,

Example

$H=\langle(5,9,0),(10,11,0),(15,5,0),(0,0,1),(10,0,1)\rangle \subseteq \mathbb{N}^{3}$,
$H \simeq \mathbb{N}^{5} / \sim_{M}, \quad M \leq \mathbb{Z}^{5}$,

$$
\left(\begin{array}{ccccc}
5 & 10 & 15 & 0 & 10 \\
9 & 11 & 5 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) .
$$

A system of generators of M,
$\left\{m_{1}=(19,-16,1,-5,5), m_{2}=(22,-18,0,-7,7)\right\}$
with $\left|m_{1}\right|=\left|m_{2}\right|=4 . \quad \min (\Delta(H))=4$.
Divisor-closed submonoids of H :
$S_{1}=\{(0,0,0)\}, S_{2}=\langle(5,9,0)\rangle, S_{3}=\langle(15,5,0)\rangle, S_{4}=\langle(0,0,1)\rangle$,
$S_{5}=\langle(10,0,1)\rangle, S_{6}=\langle(5,9,0),(10,11,0),(15,5,0)\rangle$,
$S_{7}=\langle(15,5,0),(10,0,1)\rangle, S_{8}=\langle(10,0,1),(0,0,1)\rangle$,
$S_{9}=\langle(0,0,1),(5,9,0)\rangle$, and H.
$S_{i}, i \neq 6, G_{S_{i}}=0, \Delta\left(S_{i}\right)=\emptyset$.
$G_{S_{6}}=\langle(23,-22,7)\rangle, \quad \min \left(\Delta\left(S_{6}\right)\right)=23-22+7=8$,

Example

$H=\langle(5,9,0),(10,11,0),(15,5,0),(0,0,1),(10,0,1)\rangle \subseteq \mathbb{N}^{3}$,
$H \simeq \mathbb{N}^{5} / \sim_{M}, \quad M \leq \mathbb{Z}^{5}$,

$$
\left(\begin{array}{ccccc}
5 & 10 & 15 & 0 & 10 \\
9 & 11 & 5 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) .
$$

A system of generators of M,
$\left\{m_{1}=(19,-16,1,-5,5), m_{2}=(22,-18,0,-7,7)\right\}$
with $\left|m_{1}\right|=\left|m_{2}\right|=4 . \quad \min (\Delta(H))=4$.
Divisor-closed submonoids of H :
$S_{1}=\{(0,0,0)\}, S_{2}=\langle(5,9,0)\rangle, S_{3}=\langle(15,5,0)\rangle, S_{4}=\langle(0,0,1)\rangle$,
$S_{5}=\langle(10,0,1)\rangle, S_{6}=\langle(5,9,0),(10,11,0),(15,5,0)\rangle$,
$S_{7}=\langle(15,5,0),(10,0,1)\rangle, S_{8}=\langle(10,0,1),(0,0,1)\rangle$,
$S_{9}=\langle(0,0,1),(5,9,0)\rangle$, and H.
$S_{i}, i \neq 6, G_{S_{i}}=0, \Delta\left(S_{i}\right)=\emptyset$.
$G_{S_{6}}=\langle(23,-22,7)\rangle, \quad \min \left(\Delta\left(S_{6}\right)\right)=23-22+7=8$,
Therefore $\Delta^{*}(H)=\{4,8\}$.

Thanks for your attention!!

