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H finitely generated, cancellative, conmutative monoid

A*(H) = {min(A(S))|S C H is a divisor closed, A(S) # 0}.

» The lattice of divisor-closed submonoids of finitely generated,
cancellative and conmutative monoid H.

» If H is an affine semigroup, we give a geometrical
characterization of such submonoids in terms of its cone.

» Algorithm for computing A*(H).
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H monoid, a,b € H,

a<ybif b=a+ c, for some c € H.
<y is a congruence in H.
a<y b<—b >y a.

alb <= a<yb.

Definition (Rosales-Garcia, 99 )

A semigroup H is an Archimedean semigroup if for every
(x,y) € Hx H, with x # y, there exit k € N\ {0} and z € H such
that kx =y + z.

If S is a numerical semigroup = S is Arquimedean semigroup.
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H monoide, a,b € H,
aNb if there exist k, | € N\ {0} such that ka >y by Ib>p a.

» N is a congruence over H.

H/N = {[a]y : a € H}.

[a]»s, Archimedean components of H.

Results: [Rosales-Garcia,99]

> Let H be a monoid. The Archimedean components of H are
subsemigroups of H.

» Let H be a finitely generated monoid. Then H/N is a finite
monoid.

» Every finitely generated monoid is a finite lattice of
Arquimedean semigroups.
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Divisor-closed submonoids

Definition (Geroldinger-Qinghai)
A submonoid S of H is called a divisor-closed submonoid (d.c.s)
of Hifa€ S, b€ H, and b divides a imply that b € S.

» {0} and H, are divisor-closed submonoids of H.
Definition
A submonoid S of His (d.c.s) if b+c€ S = b,c € S.
Example

H = (5,7), S = (7) is not divisor-closed submonoid
35=5+5+5+5+5+5+5€S, then 535 but5¢ S.

Example
(N2, +),
» S ={((1,0)) CN?. S is a divisor-closed submonoid.
» S, ={(5,0)) C N? is not divisor-closed submonoid,
(2,0) +(3,0) = (5,0) € S, but (2,0) & S,.
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Proposition

Let H be a finitely generated monoid with G = {g1,...,8p} one of its
system of generators. Then, every divisor-closed submonoid of H is
finitely generated and has a system of generators contained in G.

Example
H = <g17g2,g3>, ﬁ (dCS)S 27

/ y \
(&1, 82) <g2 £3)

(g1, 83) g2>

(e1) \\[\ (g3)
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Arquimedean components are not divisor-closed submonoids.
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Theorem

Every divisor-closed submonoid S of a finitely generated monoid H can
be expressed as an union of Archimedean components of S. Furthermore,
there exists an Archimedean component S such that

S =U{S'|S’ is an Archimedean component of H and S’ < §} with <
the ordering in the lattice of Archimedean components of H.

Example

H= <(37 0)7 (Ov 3)7 (2’ 2)> - N2

Arquimedean components :

{(0,0)}, {(3x,0)|x > 1}, {(0,3x)|x > 1} and H.

Divisor-closed submonoids:

{(0,0)}, {(3x,0)|x > 1} U{(0,0)}, {(0,3x)|x > 1} U{(0,0)} and H.
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Corollary

» The set of divisor-closed submonoids of an Arquimedean
monoid H are {0} and H.

» Numerical semigroups not have any non-trivial divisor-closed
submonoids.

» The set of divisor-closed submonoids of a monoid is a finite
lattice with respect to inclusion.
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Divisor-closed submonoids of affine semigroups

Definition

Let H be an affine semigroup of N”. Define the rational cone of
H as L@+(H) = {Zle Aihi | re N hj € H A € Q4 }.

The set Lo, (H) N N" is denote by Cy.

Every vector w € R" determines a face of a cone, Cy:

Fu(CH) = {x € Cy|x.w > y.w for all y € Cy}, Fu(Cy) =F.

[Schrijver, 99] (F(C), C) a complete finite lattice,

inf(2A) = N{F € F(C)|F € A}
sup(2) =N{G € F(C)|VF e A : F C G},

for every 2 C §(C).
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Theorem

Let H C N" be an affine semigroup and let S be a submonoid of
H. Then, S is a divisor-closed submonoid of H if and only if there
exists a face F of Lo, (H) such that S = FN H.
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H C N", affine semigroup,

> lattice of divisor-closed submonoids of H,
> lattice of Archimedean componentes of H,

> lattice of faces of cone Lg, (H).

Corollary

Let H be an affine semigroup of N". The lattice of divisor-closed
submonoids of H, the lattice of Archimedean components of H
and the lattice of faces of the cone Lg, (H) are isomorphic.
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An affine semigroup H C N” is simplicial if the cone Lg, (H) is
generated by n linearly generators of H.



Definition
An affine semigroup H C N” is simplicial if the cone Lg, (H) is
generated by n linearly generators of H.

Corollary

Let H be a simplicial affine submonoid of N". The number of
divisor-closed submonoids of H is equal to 2".
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> LQ+(H)

Divisor-closed submonoids of H:
> {(0,0)},
> HﬂF1:<(1,0)>, HﬂF2:<(1,7)>,
> H.



Example
H = {(1,0),(1,2),(1,3),(1,7)) C N?,

LQ+(H) = <(1’ 0)7 (1a 7))

> {(0,0)},
» F1=((1,0)), F2 = ((1,7)),
> LQ+(H)

Divisor-closed submonoids of H:

> {(0,0)},
» HNF1 = {(1,0)), HNFy = ((1,7)),
> H.

H is simplicial, the number of d.c.s: 2.
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Projections of affine semigroups and divisor-closed
submonoids

ﬁ, finitely generated, canceIIative,Nconmutative monoid,
H affine semigroup associated to H.
H=N"/r~p, M<ZP,

Nn/ NMz <5*1a e 75*"> g Zdl X X Zdr X Zk'

E*J = ([alj]d17 ey [arj]d,; a(r-}-l)jv ceey a(r+k)j) € Zdl Xoeee XZd, XZk;
ayj = (alj7 e Ars A(r41)js - - s a(,+k)j) S Nr+k,

H = (a,1,...,asn) C Ntk Affine semigroup associated to H

TiNTE S Ty x o X Ly, x N¥, m(ayj) =34, 1< j < r+ k.

» 7(H) = H and

TR H— Fl monoid morphism.
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7T|H2H—>::I,

Lemma N
If S is a submonoid of H, then m=1(S) N H is a submonoid of H.

Proposition

Let . S be a submonoid of H. Then, S is a divisor-closed submonoid
of H if and only if 7=X(S) N H is a divisor-closed submonoid of H.

Corollary

The set of divisor-closed submonoid of H is equal to

D={n(S)|SisadcsHand (x ton)(S)NH =S}
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Computing the set of minimal distances

Definition
H=(gi,...,8), he H,

» Set of factorizations of h:
Z(h) = {(a.-- . xp) € NP | S22, xigi = ),
Set of lengths of h: L(h) = {}_"_; xi | (x1,...,xp) € Z(h)},
L(h) is bounded, L(h) ={h < -+ < Ik},
Delta set of h: A(h) ={li — i1 :2 <i <k},
Delta set of H: A(H) = [Jpcpy A(h),
The set of minimal distances of H,

A*(H) = {min(A(S))|S C H is a d.c.s A(S) # 0}.

v

v

v

v

Consequences:
» A*(H) C A(H),
» A*(H) =0 < A(H) =0,
» If H is numerical semigroup = A*(H) = {min(A(H))}.



Q>



min(A(S)), where S is a finitely generated submonoid of H,



min(A(S)), where S is a finitely generated submonoid of H,

Lemma
Let H= (h1,..., hp) = NP/ ~p be a monoid with {my,...,m,} a
system of generators of M. Then

min(A(H)) = min{|m| : |[m| >0, m € M} = gcd(|m1],...,|m.]).



min(A(S)), where S is a finitely generated submonoid of H,

Lemma
Let H= (h1,..., hp) = NP/ ~p be a monoid with {my,...,m,} a
system of generators of M. Then

min(A(H)) = min{|m| : |[m| >0, m € M} = gcd(|m1],...,|m.]).

Algorithm
Input: H= NP/ ~p. Output: A*(H).
1. Compute the lattice F(H) of divisor-closed submonoids of H.
2. Forevery S € §(H), if {[eil~p,---:[€i]l~y} is a system of
generators of S, compute a system of generators Gs of the
group obtained from the intersection of M with
{(Xl,...,Xp) € ZP | x; =0 for all i ¢ {il,...,it}}.
3. For every S € §(H), compute
|G5| = {Z?zl |m,-| : (ml, RN mp) € Gs} and d5 = gcd(|65]).
4. Return {ds | S € F(H)}.
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H = <(5797 O)’ (107 11’0)7 (15’ 5’ 0)7 (07 0’ 1)7 (10’ 0’ 1)> g N3’
H~NS/ ~py, M<Z8,

A system of generators of M,
{my = (19, -16,1,-5,5), m, = (22, —18,0,—7,7)}
with [m1] = |mz| = 4. min(A(H)) = 4.
Divisor-closed submonoids of H:
51 =1{(0,0,0)}, S =((5,9,0)), 53 = ((15,5,0)), Sa = ((0,0,1)),
Ss = ((10,0,1)), S = ((5,9,0),(10,11,0),(15,5,0)),
S7 ={((15,5,0),(10,0,1)), Sg = ((10,0,1),(0,0,1)),
So =((0,0,1),(5,9,0)), and H.
Si, i #6, Gs, =0, A(S;) = 0.
Gs, = ((23,-22,7)), min(A(S)) =23 — 22 +7 =8,
Therefore A*(H) = {4,8}.



Thanks for your attention!!
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