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H finitely generated, cancellative, conmutative monoid

∆∗(H) = {min(∆(S))|S ⊂ H is a divisor closed, ∆(S) 6= ∅}.

I The lattice of divisor-closed submonoids of finitely generated,
cancellative and conmutative monoid H.

I If H is an affine semigroup, we give a geometrical
characterization of such submonoids in terms of its cone.

I Algorithm for computing ∆∗(H).
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Notations and Definitions

H monoid, a, b ∈ H,

a ≤H b if b = a + c , for some c ∈ H.

≤H is a congruence in H.

a ≤H b ⇐⇒ b ≥H a.

a|b ⇐⇒ a ≤H b.

Definition (Rosales-Garćıa, 99 )

A semigroup H is an Archimedean semigroup if for every
(x , y) ∈ H ×H, with x 6= y , there exit k ∈ N \ {0} and z ∈ H such
that kx = y + z .

If S is a numerical semigroup =⇒ S is Arquimedean semigroup.
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H monoide, a, b ∈ H,
aNb if there exist k , l ∈ N \ {0} such that ka ≥H b y lb ≥H a.

I N is a congruence over H.

H/N = {[a]N : a ∈ H}.

[a]N , Archimedean components of H.

Results: [Rosales-Garćıa,99]

I Let H be a monoid. The Archimedean components of H are
subsemigroups of H.

I Let H be a finitely generated monoid. Then H/N is a finite
monoid.

I Every finitely generated monoid is a finite lattice of
Arquimedean semigroups.
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I Let H be a monoid. The Archimedean components of H are
subsemigroups of H.

I Let H be a finitely generated monoid. Then H/N is a finite
monoid.

I Every finitely generated monoid is a finite lattice of
Arquimedean semigroups.



H monoide, a, b ∈ H,
aNb if there exist k , l ∈ N \ {0} such that ka ≥H b y lb ≥H a.

I N is a congruence over H.

H/N = {[a]N : a ∈ H}.

[a]N , Archimedean components of H.

Results: [Rosales-Garćıa,99]
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Divisor-closed submonoids

Definition (Geroldinger-Qinghai)

A submonoid S of H is called a divisor-closed submonoid (d.c.s)
of H if a ∈ S , b ∈ H, and b divides a imply that b ∈ S .

I {0} and H, are divisor-closed submonoids of H.

Definition
A submonoid S of H is (d.c.s) if b + c ∈ S =⇒ b, c ∈ S .

Example

H = 〈5, 7〉, S = 〈7〉 is not divisor-closed submonoid
35 = 5 + 5 + 5 + 5 + 5 + 5 + 5 ∈ S , then 5|35 but 5 /∈ S .

Example
(N2,+),

I S1 = 〈(1, 0)〉 ⊆ N2 . S is a divisor-closed submonoid.

I S2 = 〈(5, 0)〉 ⊆ N2 is not divisor-closed submonoid,
(2, 0) + (3, 0) = (5, 0) ∈ S2 but (2, 0) 6∈ S2.
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Proposition
Let H be a finitely generated monoid with G = {g1, . . . , gp} one of its
system of generators. Then, every divisor-closed submonoid of H is
finitely generated and has a system of generators contained in G.

Example

H = 〈g1, g2, g3〉

,

] (d.c.s)≤ 2n

H

〈g1, g2〉

::

〈g2, g3〉

ii

〈g1, g3〉

OO

〈g2〉

ii ;;

〈g1〉

OO

::

〈g3〉

OO

ii

{0}

ii

OO

;;
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S = ∪{S ′|S ′ is an Archimedean component of H and S ′ ≤ Ŝ} with ≤
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Corollary

I The set of divisor-closed submonoids of an Arquimedean
monoid H are {0} and H.

I Numerical semigroups not have any non-trivial divisor-closed
submonoids.

I The set of divisor-closed submonoids of a monoid is a finite
lattice with respect to inclusion.
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Divisor-closed submonoids of affine semigroups

Definition
Let H be an affine semigroup of Nn. Define the rational cone of
H as LQ+(H) = {

∑r
i=1 λi hi | r ∈ N, hi ∈ H, λi ∈ Q+}.

The set LQ+(H) ∩ Nn is denote by CH .

Every vector ω ∈ Rn determines a face of a cone, CH :

Fω(CH) = {x ∈ CH |x .ω ≥ y .ω for all y ∈ CH}, Fω(CH) = F.

[Schrijver, 99] (F(C),⊂) a complete finite lattice,

inf(A) = ∩{F ∈ F(C)|F ∈ A}
sup(A) = ∩{G ∈ F(C)|∀F ∈ A : F ⊂ G},

for every A ⊂ F(C).
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Theorem
Let H ⊂ Nn be an affine semigroup and let S be a submonoid of
H. Then, S is a divisor-closed submonoid of H if and only if there
exists a face F of LQ+(H) such that S = F ∩ H.
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H ⊆ Nn, affine semigroup,

I lattice of divisor-closed submonoids of H,

I lattice of Archimedean componentes of H,

I lattice of faces of cone LQ+(H).

Corollary

Let H be an affine semigroup of Nn. The lattice of divisor-closed
submonoids of H, the lattice of Archimedean components of H
and the lattice of faces of the cone LQ+(H) are isomorphic.
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Definition
An affine semigroup H ⊂ Nn is simplicial if the cone LQ+(H) is
generated by n linearly generators of H.

Corollary

Let H be a simplicial affine submonoid of Nn. The number of
divisor-closed submonoids of H is equal to 2n.
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Example

H = 〈(1, 0), (1, 2), (1, 3), (1, 7)〉 ⊆ N2,

LQ+(H) = 〈(1, 0), (1, 7)〉.

Faces:

I {(0, 0)},
I F1 = 〈(1, 0)〉, F2 = 〈(1, 7)〉,
I LQ+(H).

Divisor-closed submonoids of H:

I {(0, 0)},
I H ∩ F1 = 〈(1, 0)〉, H ∩ F2 = 〈(1, 7)〉,
I H.

H is simplicial, the number of d.c.s: 22.
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Projections of affine semigroups and divisor-closed
submonoids

H̃, finitely generated, cancellative, conmutative monoid,
H affine semigroup associated to H̃.
H̃ = Nn/ ∼M , M ≤ Zp,

Nn/ ∼M' 〈ã∗1, . . . , ã∗n〉 ⊆ Zd1 × · · · × Zdr × Zk .
ã∗j = ([a1j ]d1 , . . . , [arj ]dr , a(r+1)j , . . . , a(r+k)j ) ∈ Zd1×· · ·×Zdr×Zk ,

a∗j = (a1j , . . . , arj , a(r+1)j , . . . , a(r+k)j ) ∈ Nr+k ,

H = 〈a∗1, . . . , a∗n〉 ⊆ Nr+k , Affine semigroup associated to H̃

π : Nr+k → Zd1 × · · · × Zdr × Nk , π(a∗j ) = ã∗j , 1 ≤ j ≤ r + k.

I π(H) = H̃ and

I π|H : H → H̃, monoid morphism.
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I π(H) = H̃ and

I π|H : H → H̃, monoid morphism.



Projections of affine semigroups and divisor-closed
submonoids

H̃, finitely generated, cancellative, conmutative monoid,
H affine semigroup associated to H̃.

H̃ = Nn/ ∼M , M ≤ Zp,
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Nn/ ∼M' 〈ã∗1, . . . , ã∗n〉 ⊆ Zd1 × · · · × Zdr × Zk .
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Nn/ ∼M' 〈ã∗1, . . . , ã∗n〉 ⊆ Zd1 × · · · × Zdr × Zk .
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π|H : H → H̃,

Lemma
If S is a submonoid of H̃, then π−1(S) ∩ H is a submonoid of H.

Proposition

Let S be a submonoid of H̃. Then, S is a divisor-closed submonoid
of H̃ if and only if π−1(S) ∩ H is a divisor-closed submonoid of H.

Corollary

The set of divisor-closed submonoid of H̃ is equal to

D = {π(S) | S is a d.c.s H and (π−1 ◦ π)(S) ∩ H = S}.
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Computing the set of minimal distances

Definition

H = 〈g1, . . . , gp〉, h ∈ H,

I Set of factorizations of h:
Z(h) = {(x1, . . . , xp) ∈ Np |

∑p
i=1 xi gi = h},

I Set of lengths of h: L(h) = {
∑p

i=1 xi | (x1, . . . , xp) ∈ Z(h)},

L(h) is bounded, L(h) = {l1 < · · · < lk},
I Delta set of h: ∆(h) = {li − li−1 : 2 ≤ i ≤ k},
I Delta set of H: ∆(H) =

⋃
h∈H ∆(h),

I The set of minimal distances of H,

∆∗(H) = {min(∆(S))|S ⊂ H is a d.c.s ∆(S) 6= ∅}.

Consequences:

I ∆∗(H) ⊂ ∆(H),

I ∆∗(H) = ∅ ⇐⇒ ∆(H) = ∅,
I If H is numerical semigroup =⇒ ∆∗(H) = {min(∆(H))}.
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min(∆(S)), where S is a finitely generated submonoid of H,

Lemma
Let H = 〈h1, . . . , hp〉 ∼= Np/ ∼M be a monoid with {m1, . . . ,mr} a
system of generators of M. Then

min(∆(H)) = min{|m| : |m| > 0, m ∈ M} = gcd(|m1|, . . . , |mr |).

Algorithm

Input: H ∼= Np/ ∼M . Output: ∆∗(H).

1. Compute the lattice F(H) of divisor-closed submonoids of H.

2. For every S ∈ F(H), if {[ei1 ]∼M
, . . . , [eit ]∼M

} is a system of
generators of S, compute a system of generators GS of the
group obtained from the intersection of M with
{(x1, . . . , xp) ∈ Zp | xi = 0 for all i 6∈ {i1, . . . , it}}.

3. For every S ∈ F(H), compute
|GS | = {

∑p
i=1 |mi | : (m1, . . . ,mp) ∈ GS} and dS = gcd(|GS |).

4. Return {dS | S ∈ F(H)}.
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Example

H = 〈(5, 9, 0), (10, 11, 0), (15, 5, 0), (0, 0, 1), (10, 0, 1)〉 ⊆ N3,
H ' N5/ ∼M , M ≤ Z5, 5 10 15 0 10

9 11 5 0 0
0 0 0 1 1

 .

 x1

...
x5

 =

 0
...
0

 .

A system of generators of M,

{m1 = (19,−16, 1,−5, 5),m2 = (22,−18, 0,−7, 7)}
with |m1| = |m2| = 4. min(∆(H)) = 4

.

Divisor-closed submonoids of H:
S1 = {(0, 0, 0)}, S2 = 〈(5, 9, 0)〉, S3 = 〈(15, 5, 0)〉, S4 = 〈(0, 0, 1)〉,
S5 = 〈(10, 0, 1)〉, S6 = 〈(5, 9, 0), (10, 11, 0), (15, 5, 0)〉,
S7 = 〈(15, 5, 0), (10, 0, 1)〉, S8 = 〈(10, 0, 1), (0, 0, 1)〉,
S9 = 〈(0, 0, 1), (5, 9, 0)〉, and H.
Si , i 6= 6, GSi

= 0, ∆(Si ) = ∅.
GS6 = 〈(23,−22, 7)〉, min(∆(S6)) = 23− 22 + 7 = 8,
Therefore ∆∗(H) = {4, 8}.
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Thanks for your attention!!
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