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Overview

1 The pingpong players: PS(x) and Φn(x)

2 First match
Semigroup polynomial P〈p,q〉(x)
Binary cyclotomic polynomials
Exponent gaps
Gapblocks

3 Second match
General cyclotomic polynomials
Cyclotomic numerical semigroups
Symmetric non-cyclotomic numerical semigroups
Counting cyclotomic semigroups of given Frobenius number

4 Polynomially related numerical semigroups
An Application
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Semigroup polynomials

We have HS(x) =
∑

s∈S x s = (1− x)−1 −
∑

s 6∈S x s .

Hence

PS(x) := (1− x)HS(x) = 1 + (x − 1)
∑
s 6∈S

x s .

Observe that PS(x) is a monic polynomial of degree F (S) + 1.

Lemma

Write PS(x) = a0 + a1x + · · ·+ akxk . Then, for j ∈ {0, . . . , k},

aj =


1 if j ∈ S and j − 1 6∈ S ;

−1 if j 6∈ S and j − 1 ∈ S ;

0 otherwise.

Corollary

The nonzero coefficients of PS(x) alternate between 1 and −1.
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Example

0 1 2 3 4 5 6 7 8 9 10 . . . . . .

1 0 0 1 0 1 1 0 1 1 1 . . . 1

1 -1 0 1 -1 1 0 -1 1 0 0 . . . 0

It follows that P〈3,5〉(X ) = 1− X + X 3 − X 4 + X 5 − X 7 + X 8

We have Φ15(X ) = 1− X + X 3 − X 4 + X 5 − X 7 + X 8

The equality is no coincidence!

Lemma (Folklore)

P〈p,q〉(x) = Φpq(x).

Corollary (Sylvester, 1884)

F (〈p, q〉) = deg(Φpq(X ))− 1 = (p − 1)(q − 1)− 1 = pq − p − q.

Corollary (Migotti, 1887)

Coefficients of Φpq(x) are in {−1, 0, 1}.
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Binary cyclotomic polynomials

Write 1 + pq = ρp + σq, 0 ≤ ρ ≤ q − 1, 0 ≤ σ ≤ p − 1.

Note that ρp ≡ 1 (mod q) and σq ≡ 1 (mod p).
Thus ρ is the inverse of p modulo q, σ the inverse of q modulo p.

Φpq(X ) =

ϕ(pq)∑
m=0

apq(m)xm =

ρ−1∑
i=0

X ip
σ−1∑
j=0

X jq − X−pq
q−1∑
i=ρ

X ip
p−1∑
j=σ

X jq

Lemma

apq(m) =


1 if m = ip + jq with 0 ≤ i ≤ ρ− 1, 0 ≤ j ≤ σ − 1;

−1 if m = ip + jq − pq with ρ ≤ i ≤ q − 1, σ ≤ j ≤ p − 1;

0 otherwise.
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Gapblocks

Let θ(n) denote the number of non-zero cyclotomic coefficients in Φn(x).

Lemma (Carlitz, 1966)

We have θ(pq) = 2ρσ − 1.

Proof.

The number of non-zero coefficients is ρσ+ (q− ρ)(p− σ) = 2ρσ− 1.

Corollary

The number of gapblocks in 〈p, q〉 equals ρσ − 1.

0 1 2 3 4 5 6 7 8 9 10 . . . . . .

1 1 1 1 2 1 1 3 1 1 1 . . . 1

ρ = 3−1 (mod 5) = 2, σ = 5−1 (mod 3) = 2,
g(〈p, q〉) = (p − 1)(q − 1)/2
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Sparse binary cyclotomic polynomials

Correspond to a NS having few (and hence large) gapblocks.

Put Hγ(x) := {m = pq ≤ x : θ(m) ≤ m1/2+γ}.
Bzdȩga (2012) showed:

c(ε, γ)x1/2+γ−ε ≤ Hγ(x) ≤ C (γ)x1/2+γ .

Fouvry (2013): For γ ∈ (1225 ,
1
2) we have

Hγ(x) ∼ D(γ)
x1/2+γ

log x
,

with D(γ) an explicit constant.
-Bounds for Kloosterman-Ramanujan sums over primes
-Bombieri-Vinogradov theorem
-Two-dimensional sieve
-Linnik’s famous theorem concerning the least prime in AP

Pieter Moree Cyclotomic Numerical Semigroups II Levico Terme, July 7, 2016 8 / 30



Sparse binary cyclotomic polynomials

Correspond to a NS having few (and hence large) gapblocks.
Put Hγ(x) := {m = pq ≤ x : θ(m) ≤ m1/2+γ}.

Bzdȩga (2012) showed:

c(ε, γ)x1/2+γ−ε ≤ Hγ(x) ≤ C (γ)x1/2+γ .

Fouvry (2013): For γ ∈ (1225 ,
1
2) we have

Hγ(x) ∼ D(γ)
x1/2+γ

log x
,

with D(γ) an explicit constant.
-Bounds for Kloosterman-Ramanujan sums over primes
-Bombieri-Vinogradov theorem
-Two-dimensional sieve
-Linnik’s famous theorem concerning the least prime in AP

Pieter Moree Cyclotomic Numerical Semigroups II Levico Terme, July 7, 2016 8 / 30



Sparse binary cyclotomic polynomials

Correspond to a NS having few (and hence large) gapblocks.
Put Hγ(x) := {m = pq ≤ x : θ(m) ≤ m1/2+γ}.
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Exponent gaps after Hong et al.

We describe some work of Hong-Lee-Lee-Park (2012).

Definition (Maximum gap)

Given f (x) = c1xe1 + · · ·+ ctx
et ∈ Z[x ],with ci 6= 0 and e1 < · · · < et , we

define the maximum gap of f as

g(f ) = max
1≤i<t

(ei+1 − ei ).

Initiated the study of g(Φn) and g(Ψn) and reduced the study of
these gaps to the case when n is square-free and odd.

Simple and exact formula for the minimum Miller loop length in the
Atei pairing arising in elliptic curve cryptography.

More manageable when turned into a problem involving the maximum
gaps of inverse cyclotomic polynomials.
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Inverse cyclotomic polynomials

Definition (Inverse cyclotomic polynomial)

Ψn(x) =
∏

d |n, d<n

Φd(x) =
X n − 1

Φn(X )
=
∞∑
k=0

cn(k)X k .

Put B(n) = max{|cn(k)| : k ≥ 0}, A(n) = max{|an(k)| : k ≥ 0}
We have B(n) = 1 for n < 561, in contrast A(n) = 1 for n < 105.

Theorem (Moree, JNTh, 2009)

We have B(pqr) ≤ p − 1 and equality holds if and only if

q ≡ r ≡ ±1 (mod p) and r <
p − 1

p − 2
(q − 1)

In contrast: (2/3− ε)p ≤ A(pqr) ≤ 3p/4.
Conjecturally A(pqr) ≤ 2p/3.
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Exponent gaps

g(Φp) = 1, g(Ψp) = 1, g(Φpq) = p − 1, g(Ψpq) = q − p + 1

Hong-Lee-Lee-Park
Put Q3 = {n = pqr : 2 < p < q < r primes} (ternary integers)
Put R3 = {n ∈ Q3 : 4(p − 1) > q, p2 > r}

g(Ψn) =
2n

p
− deg(Ψn) if n 6∈ R3

Claimed without proof that R3(x) = o(Q3(x)),
where R3(x) = #{n ∈ R3 : n ≤ x} and Q3(x) is defined similarly.
Camburu, Ciolan, Luca, M., Shparlinski

R3(x) =
cx

(log x)2
+ O

(
x log log x

(log x)3

)
, c = (1 + log 4) log 4.

Compare witht the classical estimate (Gauss, Landau)

Q3(x) = (1 + o(1))
x(log log x)2

2 log x
.
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Gapblocks

Lemma

Let p < q be primes. Then g(Φpq) = p − 1.

Proof.

Since S = 〈p, q〉 is symmetric, there is a one to one correspondence
between k-gapblocks and k-elementblocks. We have that g(Φpq) equals
the largest gap block in S . Presence of 〈p〉 in S = 〈p, q〉 ensures that
g(Φpq) ≤ p − 1. Since S = {1, p, . . .}, we have g(Φpq) = p − 1.

Theorem

(i) g (Φpq) = p − 1 and the number of maximum gaps equals 2 [q/p];

(ii) Φpq contains the sequence of consecutive coefficients ±1, {0}m,∓1
for all m = 0, 1, . . . , p − 2 iff q ≡ ±1 (mod p).

The notation {0}m indicates a string 0, . . . , 0︸ ︷︷ ︸
m

of m consecutive zeros.
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Gapblocks

Suppose S = 〈a, b〉 with a and b coprime.

In this case

PS(x) =
(1− x)(1− xab)

(1− xa)(1− xb)
=

∏
d |ab, d -a,d -b

Φd(x)

is an inclusion-exclusion polynomial (Bachman, 2010).

Theorem

Let 2 ≤ a < b be coprime positive integers. Then

(i) the maximum gap in ∏
d |ab, d -a,d -b

Φd(x)

equals a− 1 and it occurs precisely 2 [b/a] times;

(ii) the polynomial in (i) contains the sequence of consecutive coefficients
±1, {0}m,∓1 for all m = 0, 1, . . . , a− 2 if and only if b ≡ ±1
(mod a).
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(ii) the polynomial in (i) contains the sequence of consecutive coefficients
±1, {0}m,∓1 for all m = 0, 1, . . . , a− 2 if and only if b ≡ ±1
(mod a).
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Φn(x) with more than two prime factors

Φn(x) with n = 4849845 = 3 · 5 · 7 · 11 · 13 · 17 · 19

Φn(x) with n = 3234846615 = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29
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Calculation of Φn(1)

Lemma (Value at 1)

Φn(1) =


0 if n = 1;

p if n = pm;

1 otherwise.

We have
xn − 1

x − 1
=

∏
d |n, d>1

Φd(x).

Thus n =
∏

d |n, d>1 Φd(1). We see that p = Φp(1). Furthermore,

pf = Φp(1)Φp2(1) · · ·Φpf (1). Hence, by induction Φpf (1) = p. Next, note
that

pq = Φp(1)Φq(1)Φpq(1) = pqΦpq(1).

Hence, Φpq(1) = 1 = P〈p,q〉(1). Now proceed with induction on the total
number of prime factors.
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Calculation of Φn(±1)

For n > 1, we have log(Φn(1)) = Λ(n), with Λ the von Mangoldt
function.

The Prime Number Theorem asserts that

π(x) :=
∑
p≤x

1 ∼ x

log x
, or equivalently

∑
n≤x

Λ(n) ∼ x .

One also has
∏

1<n≤m Φn(1) = lcm(1, . . . ,m).

Lemma (Value at −1)

Φn(−1) =

{
p if n = 2pm;

1 otherwise.

Φ2n(x) = Φn(−x) if 2 - n.

Calculation of Φn(ζ) with ζ a general root of unity.
Not much known. Work in progress.
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Consequences for cyclotomic ns

As we have seen, if a NS is cyclotomic, then

PS(x) =
∏
d∈D

Φd(x)ed , with ed > 0 uniquely determined.

Restrictions on the set D?

Lemma (Cyclotomic restriction)

The set D does not contain 1 or prime powers.

Proof.

Since PS(1) = 1 and Φ1(x) = x − 1 we infer that e1 = 0. Let pm be a
prime power in D. Then by the value at 1 lemma we have
p|Φpm(1)|PS(1). Contradiction.
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Semigroup Polynomials

Lemma (Connection with genus)

Let S 6= N be a numerical semigroup. Then P ′S(1) = g(S).

Proof.

There exist 2 ≤ k1 < · · · < k2n+1 such that

PS(x) = 1− x + xk1 − xk2 + · · · − xk2n + xk2n+1 .

In fact, k1 = m(S) > 1 and k2n+1 = F (S) + 1. Gapblock correspondence:

N\S = [1, k1 − 1] ∪ [k2, k3 − 1] ∪ . . . ∪ [k2n, k2n+1 − 1] (1)

P ′S(x) = (−1 + k1xk1−1) + · · ·+ (−k2nxk2n−1 + k2n+1xk2n+1−1)

P ′S(1) = (k1 − 1) + (k3 − k2) + · · ·+ (k2n+1 − k2n). (2)

The conclusion now follows on comparing (1) and (2).
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Semigroup Polynomials

Lemma

Let S be a cyclotomic numerical semigroup and p > 2 a prime. Then

p | PS(−1)⇔ Φ2pk (x) | PS(x)

for some k ≥ 1.

Proof.

“⇐”. The assumption Φ2pk (x) | PS(x) implies that Φ2pk (−1) | PS(−1).
Now invoke the Lemma “Value at −1”.
“⇒”. We must have p | Φn(−1) for some n and Φn(x) | PS(x). By the
Lemma “Cyclotomic restriction” we must have n > 2 (in fact n ≥ 6) and
n is not a power of two. By the Lemma “Value at −1” it now follows that
n = 2pk for some k ≥ 1.

Example. Take S = 〈6, 9, 11〉. Then PS(−1) = 3 and PS = Φ18Φ33.
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Lemma “Cyclotomic restriction” we must have n > 2 (in fact n ≥ 6) and
n is not a power of two.

By the Lemma “Value at −1” it now follows that
n = 2pk for some k ≥ 1.

Example. Take S = 〈6, 9, 11〉. Then PS(−1) = 3 and PS = Φ18Φ33.
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Even beats odd

We let g(a, d) := #{g 6∈ S : g ≥ 0, g ≡ a (mod d)}.

We have

PS(−1) = 1− 2
∑
s 6∈S

(−1)s = 1− 2(g(0, 2)− g(1, 2))

= 1− 2g(0, 2) + 2g(1, 2) = 1 + 2g(S)− 4g(0, 2),

where g(S) = g(0, 2) + g(1, 2) = genus of S

Lemma (Even beats odd)

If g(1, 2) < g(0, 2), then S is not cyclotomic.

Proof.

This inequality is equivalent with PS(−1) < 0. If S were cyclotomic, then
by the value at −1 lemma always Φn(−1) ≥ 0 and hence PS(−1) ≥ 0.
This contradiction finishes the proof.
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Even beats odd in practice

Is the criterion actually of any practical use?

YES. Suprisingly so!

For S = 〈3, 5〉 we have G = {1, 2, 4, 7} and so g(0, 2) = g(1, 2) = 2

S = 〈3, 5, 7〉. We have g(0, 2) = 2 and g(1, 2) = 1 and so S is not
cyclotomic.

S = 〈5, 6, 7, 8〉 is not cyclotomic. We have g(0, 2) = 2 and
g(1, 2) = 3. Thus Lemma “Even beats odd” is not if and only if.

We took all numerical semigroups S that are symmetric and not
complete intersection with F (S) ≤ k and determined how often on
average Lemma “Even beats odd” applies. Our computations (with
k ≤ 69) indicate that likely an average exists and is in [0.8, 0.85].

Pieter Moree Cyclotomic Numerical Semigroups II Levico Terme, July 7, 2016 21 / 30



Even beats odd in practice

Is the criterion actually of any practical use?
YES. Suprisingly so!

For S = 〈3, 5〉 we have G = {1, 2, 4, 7} and so g(0, 2) = g(1, 2) = 2

S = 〈3, 5, 7〉. We have g(0, 2) = 2 and g(1, 2) = 1 and so S is not
cyclotomic.

S = 〈5, 6, 7, 8〉 is not cyclotomic. We have g(0, 2) = 2 and
g(1, 2) = 3. Thus Lemma “Even beats odd” is not if and only if.

We took all numerical semigroups S that are symmetric and not
complete intersection with F (S) ≤ k and determined how often on
average Lemma “Even beats odd” applies. Our computations (with
k ≤ 69) indicate that likely an average exists and is in [0.8, 0.85].

Pieter Moree Cyclotomic Numerical Semigroups II Levico Terme, July 7, 2016 21 / 30



Even beats odd in practice

Is the criterion actually of any practical use?
YES. Suprisingly so!

For S = 〈3, 5〉 we have G = {1, 2, 4, 7} and so g(0, 2) = g(1, 2) = 2

S = 〈3, 5, 7〉. We have g(0, 2) = 2 and g(1, 2) = 1 and so S is not
cyclotomic.

S = 〈5, 6, 7, 8〉 is not cyclotomic. We have g(0, 2) = 2 and
g(1, 2) = 3. Thus Lemma “Even beats odd” is not if and only if.

We took all numerical semigroups S that are symmetric and not
complete intersection with F (S) ≤ k and determined how often on
average Lemma “Even beats odd” applies. Our computations (with
k ≤ 69) indicate that likely an average exists and is in [0.8, 0.85].

Pieter Moree Cyclotomic Numerical Semigroups II Levico Terme, July 7, 2016 21 / 30



Even beats odd in practice

Is the criterion actually of any practical use?
YES. Suprisingly so!

For S = 〈3, 5〉 we have G = {1, 2, 4, 7} and so g(0, 2) = g(1, 2) = 2

S = 〈3, 5, 7〉. We have g(0, 2) = 2 and g(1, 2) = 1 and so S is not
cyclotomic.

S = 〈5, 6, 7, 8〉 is not cyclotomic. We have g(0, 2) = 2 and
g(1, 2) = 3. Thus Lemma “Even beats odd” is not if and only if.

We took all numerical semigroups S that are symmetric and not
complete intersection with F (S) ≤ k and determined how often on
average Lemma “Even beats odd” applies. Our computations (with
k ≤ 69) indicate that likely an average exists and is in [0.8, 0.85].

Pieter Moree Cyclotomic Numerical Semigroups II Levico Terme, July 7, 2016 21 / 30



Even beats odd in practice

Is the criterion actually of any practical use?
YES. Suprisingly so!

For S = 〈3, 5〉 we have G = {1, 2, 4, 7} and so g(0, 2) = g(1, 2) = 2

S = 〈3, 5, 7〉. We have g(0, 2) = 2 and g(1, 2) = 1 and so S is not
cyclotomic.

S = 〈5, 6, 7, 8〉 is not cyclotomic. We have g(0, 2) = 2 and
g(1, 2) = 3. Thus Lemma “Even beats odd” is not if and only if.

We took all numerical semigroups S that are symmetric and not
complete intersection with F (S) ≤ k and determined how often on
average Lemma “Even beats odd” applies. Our computations (with
k ≤ 69) indicate that likely an average exists and is in [0.8, 0.85].

Pieter Moree Cyclotomic Numerical Semigroups II Levico Terme, July 7, 2016 21 / 30



Even beats odd in practice

Is the criterion actually of any practical use?
YES. Suprisingly so!

For S = 〈3, 5〉 we have G = {1, 2, 4, 7} and so g(0, 2) = g(1, 2) = 2

S = 〈3, 5, 7〉. We have g(0, 2) = 2 and g(1, 2) = 1 and so S is not
cyclotomic.

S = 〈5, 6, 7, 8〉 is not cyclotomic. We have g(0, 2) = 2 and
g(1, 2) = 3. Thus Lemma “Even beats odd” is not if and only if.

We took all numerical semigroups S that are symmetric and not
complete intersection with F (S) ≤ k and determined how often on
average Lemma “Even beats odd” applies. Our computations (with
k ≤ 69) indicate that likely an average exists and is in [0.8, 0.85].

Pieter Moree Cyclotomic Numerical Semigroups II Levico Terme, July 7, 2016 21 / 30



PS(ζ)

Let ζ = ζm be a primitive m-th root of unity.

We have

PS(ζ) = 1 +
∑

0≤a≤m−1
(g(a− 1,m)− g(a,m))ζam

We have PS(ζ) ∈ Z[ζ], the ring of integers of the cyclotomic field
Q(ζ) ∼= Q[x ]/(Φm(x)), which is of degree ϕ(m).

Theorem

If PS(−1) ≡ 1 (mod 4) and PS(i) is not a real number, then S is not
cyclotomic.

Work in progress...
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Symmetric non-cyclotomic ns with e(S) ≥ 4

Theorem

If e(S) ≤ 3, then S is cyclotomic iff S is symmetric.

Question

What about e(S) ≥ 4?

For k ≥ 5 put Sk = {0, k, k + 1, . . . , 2k − 2, 2k,→}. Note that

PSk (x) = 1− x + xk − x2k−1 + x2k .

Thus Sk is a symmetric ns with F (S) = 2k − 1.
We have Sk = 〈k, k + 1, . . . , 2k − 2〉 and e(Sk) = k − 1.

Example

S = 〈5, 6, 7, 8〉, with F (S) = 9 is the symmetric ns with the smallest
Frobenius number that is not cyclotomic.
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Symmetric non-cyclotomic ns with e(S) ≥ 4

Conjecture

Put PSk (x) = 1− x + xk − x2k−1 + x2k . For every k ≥ 5 this polynomial
has a root not on the unit circle.

Corollary

For every k ≥ 5 the symmetric ns Sk is non-cyclotomic and has embedding
dimension e(Sk) = k − 1 ≥ 4.

Expect that the conjecture can be proved using the methods B. Gross, E.
Hironaka and C. McMullen used in 2009 to study the cyclotomic factors of
the Coxeter polynomial

En(x) =
xn−2(x3 − x − 1) + x3 + x2 − 1

x − 1

They use results on linear relations between roots of unity.
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Counting cyclotomic ns of given Frobenius number

Theorem (Upper bound)

Let k ≥ 1 be odd and N(k) denote the number of cyclotomic numerical

semigroups having Frobenius number k.

Then N(k) < e3.577
√
k for all k

large enough.

On the other hand:

Theorem (Backelin)

For all odd k large enough there are > e(log 2)bk/8c symmetric numerical
semigroups having Frobenius number k.

It follows that there are abundantly many symmetric numerical semigroups
that are not cyclotomic.
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Counting cyclotomic ns of given Frobenius number

Sketch of proof of Theorem “Upper bound”.

Let S be a cyclotomic ns
with F (S) = k . Write

PS(x) =
∏
d∈D

Φd(x)ed ,

with ed ≥ 1. From this identity we obtain that
F (s) + 1 = k + 1 =

∑
d∈D edϕ(d), which is a cyclotomic partition of

k + 1. The number of cyclotomic partitions of n we denote by c(n). We
infer that N(k) ≤ c(k + 1).

Theorem (Boyd and Montgomery, 1988)

c(n) ∼ A
eB
√
n

n
√

log n
, n→∞.
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Polynomially Related Numerical Semigroups

Definition

We say that the numerical semigroup S is polynomially related to the
numerical semigroup T , and denote this by S ≤P T , if there exist
f (x) ∈ Z[x ] and an integer w ≥ 1 such that

HS(xw )f (x) = HT (x),

or equivalently, PS(xw )f (x) = PT (x)(1 + x + · · ·+ xw−1).

Example

a) 〈pa, qb〉 ≤P 〈pm, qn〉 if 1 ≤ a ≤ m and 1 ≤ b ≤ n.

b) 〈pa, qb〉 ≤P Bn(p, q) if a, b ≥ 1 and 2 ≤ a + b ≤ n + 1.

Problem

Find necessary and sufficient conditions such that S ≤P T .
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Polynomially Related Numerical Semigroups

In proving the following, we make repeated use of the fact that PS(1) = 1
and P ′S(1) = g(S).

Lemma

Suppose that HS(xw )f (x) = HT (x) holds with S ,T numerical
semigroups. Then

a) f (0) = 1.

b) f (1) = w.

c) f ′(1) = w(g(T )− wg(S) + (w − 1)/2).

d) F (T ) = wF (S) + deg f .

e) If w is even, then f (−1) = 0.

f) If w is odd, then f (−1) = PT (−1)/PS(−1).

g) If T is cyclotomic, then so is S.

h) If S is cyclotomic, then T is cyclotomic iff f is Kronecker.
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An Application

Theorem

Let p 6= q be primes and m, n positive integers. The quotient

Q(x) = P〈pm,qn〉(x)/Φpmqn(x)

is in Z[x ], is monic and has constant coefficient 1. Its non-zero coefficients
alternate between 1 and −1.

In fact, a more general result holds.

Theorem

Suppose that S and T are numerical semigroups with
HS(xw )f (x) = HT (x) for some w ≥ 1 and f ∈ N[x ]. Put
Q(x) = PT (x)/PS(xw ). Then Q(0) = 1 and Q(x) is a monic polynomial
having non-zero coefficients that alternate between 1 and −1.
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Thank you for attention!
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