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This is a joint work with

I Pedro Garcı́a Sánchez (Universidad de Granada)

I Alessio Moscariello (Università di Catania)

The talk is based in two papers:
I Delta Sets for numerical semigroups with embedding dimension

three, arXiv:1504.02116
I Delta Sets for symmetric numerical semigroups with embedding

dimension three, in progress
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Numerical Semigroups with embedding dimension three

The numerical semigroups we consider here have embedding dimension
three.

S = 〈n1, n2, n3〉 ⊂ N with gcd(n1, n2, n3) = 1

S = {a1n1 + a2n2 + a3n3 | a1, a2, a3 ∈ N ∪ {0}}

Factorizations of an element s ∈ S
Z(s) = {(z1, z2, z3) ∈ N3 | with s = z1n1 + z2n2 + z3n3}

Length of a factorization z = (z1, z2, z3)

`(z) = z1 + z2 + z3

Sets of length of factorizations of s ∈ S

L(s) = {`(z) | z ∈ Z(s)}, s ∈ S
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Delta Sets
Delta Set
We order the set L(s) which is always finite

L(s) = {l1 < l2 < · · · < ln}

And define the Delta sets as
I ∆(s) = {li − li−1 | i = 2, . . . , n}.
I ∆(S ) = ∪s∈S ∆(s).

We will focus in the set ∆(S ).

Geroldinger (1991)

Let S be a numerical semigroup, then

min ∆(S ) = gcd ∆(S ).

Set d = gcd ∆(S ). There exists k ∈ N \ {0} such that

∆(S ) ⊆ {d, 2d, . . . , kd}.
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Example

Let S = 〈3, 5, 7〉 = {0, 3, 5, 6, 7, 8, 9, 10, 11, . . .}

In this case, except 0, 3, 5, 6, 7, 8, 9, 11, the other elements in S have more
than one factorization.

Z(10) = {(1, 0, 1), (0, 2, 0)} L(10) = {2}
Z(12) = {(0, 1, 1), (4, 0, 0)} L(12) = {2, 4}
Z(14) = {(0, 0, 2), (3, 1, 0)} L(14) = {2, 4}

Z(30) = {(0, 6, 0), (1, 4, 1), (2, 2, 2), (3, 0, 3), (5, 3, 0), (6, 1, 1), (10, 0, 0)}
L(30) = {6, 8, 10}

∆(10) = ∅, ∆(12) = {2}, ∆(14) = {2}, ∆(30) = {2}

The aim of this work is to prove that ∆(S ) can be constructed from only two
elements, and then we give and fast algorithm to compute it.
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The Betti elements and the MS group

Betti elements
For s ∈ S we consider a graph
I Vertices are elements z in Z(s)
I There exists an edge between z and z′ if and only if z · z′ , 0

We say that s ∈ S is a Betti element if its graph is not connected.

For embedding dimension 3, #Betti(S ) ∈ {1, 2, 3}

In the last example Betti(〈3, 5, 7〉) = {10, 12, 14}.
Z(10) = {(1, 0, 1), (0, 2, 0)}, Z(12) = {(4, 0, 0), (0, 1, 1)}, Z(14) = {(3, 1, 0), (0, 0, 2)}

The group associated to a numerical semigroup

I MS = {(x1, x2, x3) ∈ Z3 | x1n1 + x2n2 + x3n3 = 0}.
I v1 = (4,−1,−1) and v2 = (3, 1,−2) span MS as a group.
I δ1 = `(v1) and δ2 = `(v2).
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The Euclid’s set
For δ1 and δ2 non-negative coprime integer, define

η1 = max{δ1, δ2}, η2 = min{δ1, δ2}, and η3 = η1 mod η2

In general for i > 2, ηi+2 = ηi −
⌊
ηi
ηi+1

⌋
ηi+1 = ηi mod ηi+1. As in Euclid’s

algorithm.

Euclid’s set
Set
D(η1, η2) = {η1, η1 − η2, . . . , η1 mod η2 = η3},
D(η2, η3) = {η2, η2 − η3, . . . , η2 mod η3 = η4},
D(η3, η4) = {η3 − η4, . . . , η3 mod η4 = η5},
· · ·

D(ηi, ηi+1) = {ηi − ηi+1, . . . , ηi mod ηi+1 = ηi+2 = 0}.

The Euclid’s set for δ1 and δ2 is

Euc(δ1, δ2) =
⋃
i∈I

D(ηi, ηi+1)
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Theorem
For S = 〈n1, n2, n3〉 we have:⋃

s∈S

∆(s) =∆(S ) = Euc(δ1, δ2)=
⋃
i∈I

D(ηi, ηi+1)

Moreover, for every δ1 , δ2 there exists a numerical semigroup with
∆(S ) = Euc(δ1, δ2).

This result does not hold true for higher embedding dimensions.

Corollary

As a consequence of the above result, if 1 ∈ ∆(S ), then {2, 3} ∈ ∆(S ).

This solves a conjecture proposed by Chapman in the three generated
case.
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More about the Betti set for S = 〈n1, n2, n3〉

We know that, in our setting, MS is spanned by two vectors, say v1, v2.

We going to define v1, v2 ∈ MS depending on #Betti(S ).

#Betti(S ) 1 2
〈n1, n2, n3〉 〈s2 s3, s1 s3, s1 s2〉 〈am1, am2, bm1 + cm2〉

Betti(S ) {s1 s2 s3} {am1m2, a(bm1 + cm2)}
Z(betti1) {(s1, 0, 0), (0, s2, 0), (0, 0, s3)} {(m2, 0, 0), (0,m1, 0)}

s1 > s2 > s3 m2 > m1
Z(betti2) {(b, c, 0), (b + m2, c − m1, 0), . . .

(b + im2, c − im1, 0), (b − m2, c + m1, 0) . . .
(b − jm2, c + jm1, 0), (0, 0, a)}

Z(betti3)

v1 (s1,−s2, 0) = (+,−, 0) (m2,−m1, 0) = (+,−, 0)
v2 (0, s2,−s3) = (0,+,−) (b + λm2, c − λm1,−a) = (+,+,−)

(`(v1), `(v2)) (+,+) (+, ?)
Symmetric Symmetric
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More about the Betti set for S = 〈n1, n2, n3〉

The table continues with the nonsymmetric case (three Betti elements).

#Betti(S ) 3
〈n1, n2, n3〉 〈n1, n2, n3〉

Betti(S ) {c1n1, c2n2, c3n3}

Z(betti1) {(c1, 0, 0), (0, r12, r13)}
c1 > r12 + r13

Z(betti2) {(0, c2, 0), (r21, 0, r23)}
Z(betti3) {(0, 0, c3), (r31, r32, 0)}

c3 < r31 + r32
v1 (c1,−r12,−r13) = (+,−,−)
v2 (r31, r32,−c3) = (+,+,−)

(`(v1), `(v2)) (+,+)
Non-symmetric

To unify the notation, we consider

σ = sg(`(v2))
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The idea

For any x ∈ {1, . . . ,max{δ1, δ2}} we consider the following coordinates with
respect to δ1, δ2

x = (x1, x2) x = x1δ1 + x2δ2 with −δ1 < x2 ≤ 0 < x1 ≤ δ2 vx = x1v1 + σx2v2

x = (x′1, x
′
2) x = x′1δ1 + x′2δ2 with −δ2 < x′1 ≤ 0 < x′2 ≤ δ1 v′x = x′1v1 + σx′2v2

Observe that `(vx) = `(v′x) = x. And the signs of these vectors are

Symmetric case Non symmetric case
σ vx v′x delta vx v′x
1 (?,−,+) (?,+,−) δ1 > δ2 (?,+,−) (?,−,+)
-1 (+, ?,−) (−, ?,+) δ2 > δ1 (−,+, ?) (+,−, ?)
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An example

Let S = 〈2015, 7124, 84940〉

v1 = (548,−155, 0), v2 = (0, 155,−13), and so: δ1 = 393, δ2 = 142.

δ1 = 393 δ2 = 142
(1,0) (1,−1) (1,−2)

D(δ1, δ2) = 393 251 109
(0,1) (−1,3)

D(δ2, δ3) = 142 33
(1,−2) (2,−5) (3,−8) (4,−11)

D(δ3, δ4) = 109 76 43 10
(−1,3) (−5,14) (−9,25) (−13,36)

D(δ4, δ5) = 33 23 13 3
(4,−11) (17,−47) (30,−83) (43,−119)

D(δ5, δ6) = 10 7 4 1
(−13,36) (−56,155) (−99,274) (−142,393)

D(δ6, δ7) = 3 2 1 0

Euc(δ1, δ2) = {1, 2, 3, 4, 7, 10, 13, 23, 33, 43, 76, 109, 142, 251, 393}.
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The same example with vectors

Recall that S = 〈2015, 7124, 84940〉

v1 = (548,−155, 0), v2 = (0, 155,−13), and so: δ1 = 393, δ2 = 142.

(548,−155,0) (548,−310,13) (548,−465,26)
393 251 109

(0,155,−13) (−548,620,−39)
142 33

(548,−465,26) (1096,−1085,65) (1644,−1705,104) (2192,−2325,143)
109 76 43 10

(−548,620,−39) (−2740,2945,−182) (−4932,5270,−325) (−7124,7595,−468)
33 23 13 3

(2192,−2325,143) (9316,−9920,611) (16440,−17515,1079) (23564,−25110,1547)
10 7 4 1

(−7124,7595,−468) (−30688,32705,−2015) (−54252,57815,−3562) (−77816,82925,−5109)
3 2 1 0

∆(S ) = {1, 2, 3, 4, 7, 10, 13, 23, 33, 43, 76, 109, 142, 251, 393}.
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The inclusion Euc(δ1, δ2) ⊆ ∆(S )

In the above example take, for instance, 43 ∈ Euc(δ1, δ2):

v43 = (1644,−1705, 104)

Then, we consider 1705 · n2 ∈ S = 〈2015, 7124, 84940〉,
to obtain that: (1644, 0, 104) and (0, 1705, 0) are two factorizations of
1705 · n2 with difference of lengths equal to 43.

Remain to prove

that there is no other factorization of the element with length between
them.

`(0, 1705, 0) = 1705 < 1748 = `(1644, 0, 104)

Big problem!! All these element have same length: `(v) = 43

v = v43 + r · v0 with r ∈ Z
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The inclusion ∆(S ) ⊆ Euc(δ1, δ2) The symmetric case

Suppose s ∈ S , z and z′ in Z(s) with `(z) − `(z′) < Euc(δ1, δ2).
We argue as follow:

I We need to find another factorization z′′ ∈ Z(s) such that
`(z′) < `(z′′) < `(z).

I Take x = `(z − z′), and consider d maximum in Euc(δ1, δ2) such that
0 < d < x.

I Then, choose vx or v′x in MS , depending on the signs of z − z′. And
look for vd ∈ MS . Actually, this vd is the element to choose,
commented in the last slide.

I We always have that `(z′) < `(vd + z′) < `(z) and
`(z′) < `(z − vd) < `(z).

I But can happen that vd + z′, z − vd, have some coordinate smaller
than zero.

I Controlling two coordinates of vd, and vx or v′x, we can assure that
one of the vd + z′ or z − vd is a factorization of s.

I Is important to say that the element d will be different depending on
vx or v′x.
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The inclusion ∆(S ) ⊆ Euc(δ1, δ2) The non-symmetric case

The above argument don’t work for the non-symmetric case.

I Here, we need to argue with the couples (x1, x2) or (x′1, x
′
2)

respectively. Looking for special couples called irreducible on the
role of the element d.

I Working with positive or negative components of the vector
associated to this irreducible couple, in a similar way as above, we
can find the desired factorization.

I Later, we need to relate these irreducible couples with the Euclid’s
set.
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Higher dimensions

The Colton and Kaplan’s example

S = 〈14, 29, 30, 32, 36〉

∆(S ) = {1, 4}

If we apply our results, necessarily {2, 3} have to belongs to the Delta set
of 〈14, 29, 30, 32, 36〉 !!!
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THANKS FOR YOUR ATTENTION!!
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