Delta Set for Numerical Semigroup with Embedding Dimension 3

David Llena Carrasco

Departament of Mathematics
University Of Almería

International Meeting on Numerical Semigroup with Applications
Levico (Trento), July 4-8, 2016

This is a joint work with

- Pedro García Sánchez (Universidad de Granada)
- Alessio Moscariello (Università di Catania)

The talk is based in two papers:

- Delta Sets for numerical semigroups with embedding dimension three, arXiv:1504.02116
- Delta Sets for symmetric numerical semigroups with embedding dimension three, in progress

Numerical Semigroups with embedding dimension three

The numerical semigroups we consider here have embedding dimension three.

$$
\begin{gathered}
S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle \subset \mathbb{N} \text { with } \operatorname{gcd}\left(n_{1}, n_{2}, n_{3}\right)=1 \\
S=\left\{a_{1} n_{1}+a_{2} n_{2}+a_{3} n_{3} \mid a_{1}, a_{2}, a_{3} \in \mathbb{N} \cup\{0\}\right\}
\end{gathered}
$$

Factorizations of an element $s \in S$
$Z(s)=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{N}^{3} \mid\right.$ with $\left.s=z_{1} n_{1}+z_{2} n_{2}+z_{3} n_{3}\right\}$
Length of a factorization $\mathbf{z}=\left(z_{1}, z_{2}, z_{3}\right)$

$$
\ell(\mathbf{z})=z_{1}+z_{2}+z_{3}
$$

Sets of length of factorizations of $s \in S$

$$
\mathrm{L}(s)=\{\ell(\mathbf{z}) \mid \mathbf{z} \in Z(s)\}, s \in S
$$

Delta Sets

Delta Set

We order the set $\mathrm{L}(s)$ which is always finite

$$
\mathrm{L}(s)=\left\{l_{1}<l_{2}<\cdots<l_{n}\right\}
$$

And define the Delta sets as

- $\Delta(s)=\left\{l_{i}-l_{i-1} \mid i=2, \ldots, n\right\}$.
- $\Delta(S)=\cup_{s \in S} \Delta(s)$.

We will focus in the set $\Delta(S)$.

Geroldinger (1991)

Let S be a numerical semigroup, then

$$
\min \Delta(S)=\operatorname{gcd} \Delta(S)
$$

Set $d=\operatorname{gcd} \Delta(S)$. There exists $k \in \mathbb{N} \backslash\{0\}$ such that

$$
\Delta(S) \subseteq\{d, 2 d, \ldots, k d\}
$$

Example

Let $S=\langle 3,5,7\rangle=\{0,3,5,6,7,8,9,10,11, \ldots\}$
In this case, except $0,3,5,6,7,8,9,11$, the other elements in S have more than one factorization.

$$
\begin{gathered}
\mathrm{Z}(10)=\{(1,0,1),(0,2,0)\} \quad \mathrm{L}(10)=\{2\} \\
\mathrm{Z}(12)=\{(0,1,1),(4,0,0)\} \mathrm{L}(12)=\{2,4\} \\
\mathrm{Z}(14)=\{(0,0,2),(3,1,0)\} \quad \mathrm{L}(14)=\{2,4\} \\
\mathrm{Z}(30)=\{(0,6,0),(1,4,1),(2,2,2),(3,0,3),(5,3,0),(6,1,1),(10,0,0)\} \\
\mathrm{L}(30)=\{6,8,10\} \\
\Delta(10)=\emptyset, \quad \Delta(12)=\{2\}, \quad \Delta(14)=\{2\}, \quad \Delta(30)=\{2\}
\end{gathered}
$$

The aim of this work is to prove that $\Delta(S)$ can be constructed from only two elements, and then we give and fast algorithm to compute it.

The Betti elements and the M_{S} group

Betti elements

For $s \in S$ we consider a graph

- Vertices are elements \mathbf{z} in $Z(s)$
- There exists an edge between \mathbf{z} and \mathbf{z}^{\prime} if and only if $\mathbf{z} \cdot \mathbf{z}^{\prime} \neq 0$

We say that $s \in S$ is a Betti element if its graph is not connected.
For embedding dimension 3 , \#Betti $(S) \in\{1,2,3\}$
In the last example $\operatorname{Betti}(\langle 3,5,7\rangle)=\{10,12,14\}$.
$Z(10)=\{(1,0,1),(0,2,0)\}, Z(12)=\{(4,0,0),(0,1,1)\}, Z(14)=\{(3,1,0),(0,0,2)\}$

The group associated to a numerical semigroup

- $M_{S}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{Z}^{3} \mid x_{1} n_{1}+x_{2} n_{2}+x_{3} n_{3}=0\right\}$.
- $\mathbf{v}_{1}=(4,-1,-1)$ and $\mathbf{v}_{2}=(3,1,-2)$ span M_{S} as a group.
- $\delta_{1}=\ell\left(\mathbf{v}_{1}\right)$ and $\delta_{2}=\ell\left(\mathbf{v}_{2}\right)$.

The Euclid's set

For δ_{1} and δ_{2} non-negative coprime integer, define

$$
\eta_{1}=\max \left\{\delta_{1}, \delta_{2}\right\}, \eta_{2}=\min \left\{\delta_{1}, \delta_{2}\right\}, \text { and } \eta_{3}=\eta_{1} \bmod \eta_{2}
$$

In general for $i>2, \eta_{i+2}=\eta_{i}-\left\lfloor\frac{\eta_{i}}{\eta_{i+1}}\right\rfloor \eta_{i+1}=\eta_{i} \bmod \eta_{i+1}$. As in Euclid's algorithm.

Euclid's set

Set
$\mathrm{D}\left(\eta_{1}, \eta_{2}\right)=\left\{\eta_{1}, \eta_{1}-\eta_{2}, \ldots, \eta_{1} \bmod \eta_{2}=\eta_{3}\right\}$,
$\mathrm{D}\left(\eta_{2}, \eta_{3}\right)=\left\{\eta_{2}, \eta_{2}-\eta_{3}, \ldots, \eta_{2} \bmod \eta_{3}=\eta_{4}\right\}$,
$\mathrm{D}\left(\eta_{3}, \eta_{4}\right)=\left\{\eta_{3}-\eta_{4}, \ldots, \eta_{3} \bmod \eta_{4}=\eta_{5}\right\}$,
$\mathrm{D}\left(\eta_{i}, \eta_{i+1}\right)=\left\{\eta_{i}-\eta_{i+1}, \ldots, \eta_{i} \bmod \eta_{i+1}=\eta_{i+2}=0\right\}$.
The Euclid's set for δ_{1} and δ_{2} is

$$
\operatorname{Euc}\left(\delta_{1}, \delta_{2}\right)=\bigcup_{i \in I} \mathrm{D}\left(\eta_{i}, \eta_{i+1}\right)
$$

Theorem

For $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ we have:

$$
\bigcup_{s \in S} \Delta(s)=\Delta(S)=\operatorname{Euc}\left(\delta_{1}, \delta_{2}\right)=\bigcup_{i \in I} \mathrm{D}\left(\eta_{i}, \eta_{i+1}\right)
$$

Moreover, for every $\delta_{1} \neq \delta_{2}$ there exists a numerical semigroup with $\Delta(S)=\operatorname{Euc}\left(\delta_{1}, \delta_{2}\right)$.

This result does not hold true for higher embedding dimensions.

Corollary

As a consequence of the above result, if $1 \in \Delta(S)$, then $\{2,3\} \in \Delta(S)$.
This solves a conjecture proposed by Chapman in the three generated case.

More about the Betti set for $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$

We know that, in our setting, M_{S} is spanned by two vectors, say $\mathbf{v}_{1}, \mathbf{v}_{2}$. We going to define $\mathbf{v}_{1}, \mathbf{v}_{2} \in M_{S}$ depending on $\# \operatorname{Betti}(S)$.

\#Betti(()	1	2
$\left\langle n_{1}, n_{2}, n_{3}\right\rangle$	$\left\langle s_{2} s_{3}, s_{1} s_{3}, s_{1} s_{2}\right\rangle$	$\left\langle a m_{1}, a m_{2}, b m_{1}+c m_{2}\right\rangle$
Betti(S)	$\left\{s_{1} s_{2} s_{3}\right\}$	$\left\{a m_{1} m_{2}, a\left(b m_{1}+c m_{2}\right)\right\}$
$\mathrm{Z}\left(\right.$ betti $\left.{ }_{1}\right)$	$\left\{\left(s_{1}, 0,0\right),\left(0, s_{2}, 0\right),\left(0,0, s_{3}\right)\right\}$	$\left\{\left(m_{2}, 0,0\right),\left(0, m_{1}, 0\right)\right\}$
Z (betti ${ }^{\text {a }}$)	$s_{1}>s_{2}>s_{3}$	$\begin{gathered} m_{2}>m_{1} \\ \left\{(b, c, 0),\left(b+m_{2}, c-m_{1}, 0\right), \ldots\right. \\ \left(b+i m_{2}, c-i m_{1}, 0\right),\left(b-m_{2}, c+m_{1}, 0\right) \ldots \\ \left.\left(b-j m_{2}, c+j m_{1}, 0\right),(0,0, a)\right\} \end{gathered}$
v_{1}	$\left(s_{1},-s_{2}, 0\right)=(+,-, 0)$	$\left(m_{2},-m_{1}, 0\right)=(+,-, 0)$
\mathbf{v}_{2}	$\left(0, s_{2},-s_{3}\right)=(0,+,-)$	$\left(b+\lambda m_{2}, c-\lambda m_{1},-a\right)=(+,+,-)$
$\left(\ell\left(\mathbf{v}_{1}\right), \ell\left(\mathbf{v}_{2}\right)\right)$	$(+,+)$	(+,?)
	Symmetric	Symmetric

More about the Betti set for $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$

The table continues with the nonsymmetric case (three Betti elements).

\#Betti (S)	3
$\left\langle n_{1}, n_{2}, n_{3}\right\rangle$	$\left\langle n_{1}, n_{2}, n_{3}\right\rangle$
$\operatorname{Betti}(S)$	$\left\{c_{1} n_{1}, c_{2} n_{2}, c_{3} n_{3}\right\}$
$\mathrm{Z}\left(\right.$ betti $\left._{1}\right)$	$\left\{\left(c_{1}, 0,0\right),\left(0, r_{12}, r_{13}\right)\right\}$
	$c_{1}>r_{12}+r_{13}$
$\mathrm{Z}\left(\right.$ betti $\left._{2}\right)$	$\left\{\left(0, c_{2}, 0\right),\left(r_{21}, 0, r_{23}\right)\right\}$
$\mathrm{Z}\left(\right.$ betti $\left._{3}\right)$	$\left\{\left(0,0, c_{3}\right),\left(r_{31}, r_{32}, 0\right)\right\}$
	$c_{3}<r_{31}+r_{32}$
\mathbf{v}_{1}	$\left(c_{1},-r_{12},-r_{13}\right)=(+,-,-)$
\mathbf{v}_{2}	$\left(r_{31}, r_{32},-c_{3}\right)=(+,+,-)$
$\left(\ell\left(\mathbf{v}_{1}\right), \ell\left(\mathbf{v}_{2}\right)\right)$	$(+,+)$
	Non-symmetric

To unify the notation, we consider

$$
\sigma=\operatorname{sg}\left(\ell\left(\mathbf{v}_{2}\right)\right)
$$

The idea

For any $x \in\left\{1, \ldots, \max \left\{\delta_{1}, \delta_{2}\right\}\right\}$ we consider the following coordinates with respect to δ_{1}, δ_{2}

$x=\left(x_{1}, x_{2}\right)$	$x=x_{1} \delta_{1}+x_{2} \delta_{2}$ with $-\delta_{1}<x_{2} \leq 0<x_{1} \leq \delta_{2}$	$\mathbf{v}_{x}=x_{1} \mathbf{v}_{1}+\sigma x_{2} \mathbf{v}_{2}$
$x=\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$	$x=x_{1}^{\prime} \delta_{1}+x_{2}^{\prime} \delta_{2}$ with $-\delta_{2}<x_{1}^{\prime} \leq 0<x_{2}^{\prime} \leq \delta_{1}$	$\mathbf{v}_{x}^{\prime}=x_{1}^{\prime} \mathbf{v}_{1}+\sigma x_{2}^{\prime} \mathbf{v}_{2}$

Observe that $\ell\left(\mathbf{v}_{x}\right)=\ell\left(\mathbf{v}_{x}^{\prime}\right)=x$. And the signs of these vectors are

Symmetric case			Non symmetric case		
σ	\mathbf{v}_{x}	\mathbf{v}_{x}^{\prime}	delta	\mathbf{v}_{x}	\mathbf{v}_{x}^{\prime}
1	$(?,-,+)$	$(?,+,-)$	$\delta_{1}>\delta_{2}$	$(?,+,-)$	$(?,-,+)$
-1	$(+, ?,-)$	$(-, ?,+)$	$\delta_{2}>\delta_{1}$	$(-,+, ?)$	$(+,-, ?)$

An example

$$
\begin{aligned}
& \text { Let } S=\langle 2015,7124,84940\rangle \\
& \mathbf{v}_{1}=(548,-155,0), \mathbf{v}_{2}=(0,155,-13) \text {, and so: } \delta_{1}=393, \delta_{2}=142 \text {. } \\
& \delta_{1}=393 \quad \delta_{2}=142 \\
& \begin{array}{lccc}
\\
\mathrm{D}\left(\delta_{1}, \delta_{2}\right)= & (1,0) & (1,-1) & (1,-2) \\
& 393 & 251 & 109 \\
& (0,1) & (-1,3) &
\end{array} \\
& \mathrm{D}\left(\delta_{2}, \delta_{3}\right)=142 \quad 33 \\
& \begin{array}{ccccc}
\mathrm{D}\left(\delta_{3}, \delta_{4}\right)= & (1,-2) & (2,-5) & (3,-8) & (4,-11) \\
& 109 & 76 & 43 & 10 \\
\mathrm{D}\left(\delta_{4}, \delta_{5}\right)= & 33 & (-1,3) & (-5,14) & (-9,25) \\
(-13,36) \\
& 33 & 13 & 3
\end{array} \\
& \begin{array}{ccccc}
\mathrm{D}\left(\delta_{5}, \delta_{6}\right)= & (4,-11) & (17,-47) & (30,-83) & (43,-119) \\
\mathrm{D}\left(\delta_{6}, \delta_{7}\right)= & 3 & 7 & 4 & 1 \\
(-13,36) & (-56,155) & (-99,274) & (-142,393) \\
& 3 & 2 & 1 & 0
\end{array}
\end{aligned}
$$

$\operatorname{Euc}\left(\delta_{1}, \delta_{2}\right)=\{1,2,3,4,7,10,13,23,33,43,76,109,142,251,393\}$.

The same example with vectors

Recall that $S=\langle 2015,7124,84940\rangle$			
$\mathbf{v}_{1}=(548,-155,0), \mathbf{v}_{2}=(0,155,-13)$, and so: $\delta_{1}=393, \delta_{2}=142$.			
(548,-155,0)	(548,-310,13)	(548,-465,26)	
393	251	109	
(0,155,-13)	(-548,620,-39)		
142	33		
(548,-465,26)	(1096,-1085,65)	(1644,-1705,104)	(2192,-2325,143)
109	76	43	10
(-548,620,-39)	(-2740,2945,-182)	(-4932,5270,-325)	(-7124,7595,-468)
33	23	13	3
(2192,-2325,143)	(9316,-9920,611)	(16440,-17515,1079)	(23564,-25110,1547)
10	7	4	1
(-7124,7595,-468)	(-30688,32705,-2015)	(-54252,57815,-3562)	(-77816,82925,-5109)
3	2	1	0

The inclusion $\operatorname{Euc}\left(\delta_{1}, \delta_{2}\right) \subseteq \Delta(S)$

In the above example take, for instance, $43 \in \operatorname{Euc}\left(\delta_{1}, \delta_{2}\right)$:

$$
\mathbf{v}_{43}=(1644,-1705,104)
$$

Then, we consider $1705 \cdot n_{2} \in S=\langle 2015,7124,84940\rangle$,
to obtain that: $(1644,0,104)$ and $(0,1705,0)$ are two factorizations of $1705 \cdot n_{2}$ with difference of lengths equal to 43.

Remain to prove

that there is no other factorization of the element with length between them.

$$
\ell(0,1705,0)=1705<1748=\ell(1644,0,104)
$$

Big problem!! All these element have same length: $\ell(\mathbf{v})=43$
$\mathbf{v}=\mathbf{v}_{43}+r \cdot \mathbf{v}_{0}$ with $r \in \mathbb{Z}$

The inclusion $\Delta(S) \subseteq \operatorname{Euc}\left(\delta_{1}, \delta_{2}\right)$ The symmetric case

Suppose $s \in S, \mathbf{z}$ and \mathbf{z}^{\prime} in $\mathbf{Z}(s)$ with $\ell(\mathbf{z})-\ell\left(\mathbf{z}^{\prime}\right) \notin \operatorname{Euc}\left(\delta_{1}, \delta_{2}\right)$. We argue as follow:

- We need to find another factorization $\mathbf{z}^{\prime \prime} \in Z(s)$ such that $\ell\left(\mathbf{z}^{\prime}\right)<\ell\left(\mathbf{z}^{\prime \prime}\right)<\ell(\mathbf{z})$.
- Take $x=\ell\left(\mathbf{z}-\mathbf{z}^{\prime}\right)$, and consider d maximum in $\operatorname{Euc}\left(\delta_{1}, \delta_{2}\right)$ such that $0<d<x$.
- Then, choose \mathbf{v}_{x} or \mathbf{v}_{x}^{\prime} in M_{S}, depending on the signs of $\mathbf{z}-\mathbf{z}^{\prime}$. And look for $\mathbf{v}_{d} \in M_{S}$. Actually, this \mathbf{v}_{d} is the element to choose, commented in the last slide.
- We always have that $\ell\left(\mathbf{z}^{\prime}\right)<\ell\left(\mathbf{v}_{d}+\mathbf{z}^{\prime}\right)<\ell(\mathbf{z})$ and $\ell\left(\mathbf{z}^{\prime}\right)<\ell\left(\mathbf{z}-\mathbf{v}_{d}\right)<\ell(\mathbf{z})$.
- But can happen that $\mathbf{v}_{d}+\mathbf{z}^{\prime}, \mathbf{z}-\mathbf{v}_{d}$, have some coordinate smaller than zero.
- Controlling two coordinates of \mathbf{v}_{d}, and \mathbf{v}_{x} or \mathbf{v}_{x}^{\prime}, we can assure that one of the $\mathbf{v}_{d}+\mathbf{z}^{\prime}$ or $\mathbf{z}-\mathbf{v}_{d}$ is a factorization of s.
- Is important to say that the element d will be different depending on \mathbf{v}_{x} or \mathbf{v}_{x}^{\prime}.

The inclusion $\Delta(S) \subseteq \operatorname{Euc}\left(\delta_{1}, \delta_{2}\right)$ The non-symmetric case

The above argument don't work for the non-symmetric case.

- Here, we need to argue with the couples $\left(x_{1}, x_{2}\right)$ or $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ respectively. Looking for special couples called irreducible on the role of the element d.
- Working with positive or negative components of the vector associated to this irreducible couple, in a similar way as above, we can find the desired factorization.
- Later, we need to relate these irreducible couples with the Euclid's set.

Higher dimensions

The Colton and Kaplan's example

$$
\begin{gathered}
S=\langle 14,29,30,32,36\rangle \\
\Delta(S)=\{1,4\}
\end{gathered}
$$

If we apply our results, necessarily $\{2,3\}$ have to belongs to the Delta set of $\langle 14,29,30,32,36\rangle$!!!

THANKS FOR YOUR ATTENTION！！

