Numerical semigroups with
nice properties



J. J. Sylvester (1814-1897)




Sylvester studied in 1882 the numerical semigroups generated by two coprime
numbers p and ¢ with 2 < p < q. They have finitely many gaps which correspond
uniquely to the lattice points in the triangle Ay below.

'y:Z2—>Z ((a,b)l—>pq—(a+1)p—(b+1)Q)

induces a bijection
AgNN? 5 N\ < p,qg>
i.e.
v(Ap NN2) = set of gaps of < p,q >
v(0, 0) = Frobenius number of < p,q >



p=T,0=11
Frobenius number=>53



55

In the following let 3 < p. We are interested in the set R(p, q) of all numerical
semigroups H with
<p,q>C HC<p,qr1r>,

where
2 p even
ri=4q4 g even

9-;;‘1 p and q odd

In the terminology of Rosales and Garcia-Sanchez we have

<p,q,r >= %

For the semigroups in R(p, ¢) many questions which are difficult to answer for
arbitrary numerical semigroups have nice and easy answers. In the following
examples the semigroups are given by their minimal generators, and the lists
contain some of their invariants.



Examples

In the following lists g denotes the genus, F the Frobenius number, t the
type and d the deviation of the semigroups. Pf stands for the Pseudo-Frobenius

numbers different from F.

R(5,8), |R(5,8)| = (3) = 15

H g F t d PF
1. < 5,8 > 14 27 1 0 symmetric
2. <4. 5> 6 11 1 0 symmetric
3. <5,89> 8 1 | 2 1 12
4. < 5,8, 12 > 10 19 1 0 symmetric
5. < 5,8,14 > 10 e 2 1 11
6. £ 5,8, 17 > 11 19 2 1 12
T2 5,819 12 22 2 1 11 pseudo-symm.
B «3.,822 > 12 19 2 1 1%
9. <5,8 27 = 13 22 2 1 19
10. < 5,8,9,12 > 4 13 3 3 4,7
11. = 9.8, 12. 14 %= 8 13 3 3 7,9
12. = 5,8 12,19 > 9 14 9 3 Tl
13. «< 5,8, 14,17 >» 9 12 3 3 9,11
4. 5,8, 17,19 > 10 14 o 3 11,12
15. = 56.8,19,22 5 11 L7 3 3 11,14



R.(7,10), |R(7,10)| = (g)ﬁ = 56

1. 27,300 27 &3 1 (0] symmetric
2. =< 9, ¥ > 12 5 1 0 symmetric
3. = 7,100,132 > 15 25 . 1 23

4. < 7,10,15 > o 4 33 1 0 symmetric
5. =< 7,10,19 > 18 32 2 1 23

8. < 7,110,222 > 19 33 2 | 25

7. < 7,10,25 > 22 43 1 0 symmetric
B 7T,10,26 > 21 “*239 . 1 23
9,..<7,10,29 > 21 33 2 1 32

10. <7, 10,32 > 23 - 43 . 1 25 pseudosymim.
11. =< 7,10,38 = 24 46 2 1 23

12. = 7, 10,38 > 23 39 2 1 33

13. <= 7,10,89 > 24 43 2 1 32

14, <= 7,10,43 > 25 46 2 1 33

18, = 7,10,46 > 25 43 2 1 39

16. = 7,110,538 > 26 46 2 1 43

L. =T, 10,13 15 > 13 23 3 3 5, 18

18, =<=7,10,12. 256 > 14 23 3 3 15, 18

19 = 7,10,15,19 = 14 23 3 3 12, 18

20, =<7,10,15 26 > 15 23 3 3 18, 19

2L. <« 7,10,15. .33 > 16 26 3 3 18, 23

22. - F,. 10,19, 22 = 16 25 3 3 12, 23
23. << '7,10,19,25 = 16 23 3 3 18, 22
24, =< 7,10,19,32 > T 25 3 3 22, 28
25H. = 7,10, 32, 25 > 18 33 3 3 15, 18
26. =< 7,10,22,26 > 17 25 3 3 17, 23
27. < T, 10,22, 38 > 18 26 3 3 23, 25
28. = 7,10,25,26 > 18 29 3 3 18, 23
29. = 7,10,25,29 > 19 23 3 3 18, 22
30. =7,10,25,33 > 20 36 3 3 18, 23



31. < 7,10,25,36 > 20 33 3 3 18, 29
2 <« 7, 10,25, 43 = 21 36 3 3 18, 33
33, = 7, 10,26,29 > 19 32 3 3 19, 23
34. < 7,10,26,32 > 19 29 3 3 23, 25
35. < 7,10,26.39 > 20 32 3 3 23, 29
36. < 7,10,29 32 > 20 33 3 3 22 25
7. « 7, 10,29 33 = 20 39 3 3 23, 26
38. < 7,10,82,3%3 > 21 36 3 3 23 95
39. « 7,10,32,36 > 21 33 3 3 25. 29
40. < 7,10, 32,43 > 22 36 3 3 25, 33
41. < 7,10, 33,36 > 22 39 3 3 23, 26
42. <7, 10,33,39 > 22 36 3 3 23 39
43. < 7,10,33,46 > 25 38 3 3 23, 36
44. < 7,10, 36,39 > 55 33 3 % 29, 32
45. < 7,10, 39,43 > 23 36 3 3 32 33
46. < 7,10,43,46 > 24 39 3 3 33, 36
AT, = 7,10, 19,22 25 > 15 23 4 6 12, 15, 18
48. < 7,10,22,25,26 > 16 23 4 6 15, 18, 19
49. «'7,10,22 25,33 =~ 17 26 4 6 15, 18, 23
50. < 7,10, 25,26,29 > i 23 4 6 18, 19, 22
51. < 7,10,25,29,33 > 18 26 4 6 18, 22, 23
52. < 7,10,25,33,36 > 19 29 4 6 18, 23, 26
53. < 7,10,26,29,32 > 18 25 4 6 19, 22, 23
54. < 7,10,29,33,36 > 19 26 4 6 28 9% 95
55. < 7,10,82,3%,.36 > 20 29 4 6 23, 25, 26
56. < 7,10,33,36,39 > 21 32 4 6 23, 26, 29

IR(73,83)| = (%5) = 35000417292158999098110



Semigroups H containing p and q are obtained from < p,q > by closing some
of its gaps. The closed gaps correspond to the lattice points in the area bounded
by the coordinate axis and a lattice path having only left and downward steps
(the shaded region in the figure below).

The big dots are called the corners of the lattice path or the semigroup,
the crossed points the interesting points of H.

The ~y-values of the corners together with p and ¢ form a system of generators
of H, those of the interesting points are candidates for the pseudo-Frobenius
numbers of H. The interesting point on the left-most parallel to gg gives the
Frobenius number.



H =< 13,14,15,16,17,18,20,22,23 >, p = 13,9 = 14
PF = {19,21,24, 25}



pi=151¢ = 3]

The shaded rectangle defines 5%‘13, the lattice paths in the rectangle are in
one-to-one correspondence to the semigroups in R(p, q).
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The ~y-values of the corners are minimal generators of H. Together with p
and g they form a minimal system of generators of H (except when p or ¢ is
even, which occurs only for H =< p/2,q > or H =<p,q/2 >).

(Geometrical illustration of numerical semigroups and of some of their invari-
ants. Semigroup Forum 89 (2014) 664-691) ‘

If R(p, q) with edim(H) = 3 is not symmetric or edim(H) > 4, then the
v-values of the interesting points x are pseudo-Frobenius numbers. Therefore

Theorem t(H) = edim(H) — 1 for these semigroups H and H is uniquely
determind by its pseudo-Frobenius numbers.

In R. Froberg, C. Gottlieb and H. Haggkvist, On numerical semigroups.
Semigroup Forum 35 (1987) 63-83 it was shown that Wilf’s question has a
positive answer if t(H) < edim(H). This is the case in R(p, q).



In the rectangle there are (p,;_,q,) lattice paths, hence

IR(p, 9)| = (p’; ql)-

For each s € {1,...,p'} there are exactly

P\ (4

s s
lattice paths with s corners and therefore as many H € R(p, ¢) with edim(H) =
s+ 2 (one less for s = 1 if p or q is even).

The maximal embedding dimension of an H € R(p, q) is p’ + 2 and there are
(Z,) semigroups with this embedding dimension.



Let K be a field and K[[H]] = K[[{t"}rcx]] the completed semigroup al-
gebra of a numerical semigroup H over K and let {h1,...,h,} be a system of
generators of H. If I is the kernel of the K-homomorphism

K[[Xy,..., X,]] = K[[H]] (X; — th)
and p(7) its minimal number of generators, then
d(H) := p(I) — (n - 1)

is called the deviation of H (or of the affine monomial curve defined by the t"+).
It does not depend on the choice of the system of generators of H.



Theorem. For H € R(p, q) with edim(H) >4 let (a;,b;) € N? (i =1,...,s:=
edim(H') — 2) be the corners of the lattice path of H. Then the relation ideal I
of K[[H]] in K[[X,Y, X1,...,X,]] for (X = tP,Y s 9, X; s t7(20:0:)) hag the
following minimal system of generators

B R CE LR L TR
U{Ybi—bi+lXi = XaHlkaiXile}i:l,...,s—l
U{yp—bl—le _ Xa1+1’ YstrlXS = Xq—as—l}.
Note that the exponents ¢ — a; — aj—2€ Nand p—b, —b; —2 € N for
H € R(p, q). Counting the minimal relations we obtain

Corollary. For non-symmetric H € R(p, q) with edim(H) = 3 and all H with
edim(H) > 4 we have '

BT (edim(é—[) = 1) ~ (t(;i))



Sketch of proof

a) The polynomials belong to the relation ideal since they correspond to relations
in H:

(b — bys1 )g 4+ (s, b)) = (@ip1 —a)p+ Y(asra, b)) G=1,...,8—1)

(p—b1—1)g= (a1 + 1)p+y(ai,by)
(bs %+ 1)Q+ '7(a3a bs) = (q — Qg — I)P-



b) If the polynomials generate I they are a minimal system of generators: When
we set X = 0 we get the monomials

X'LXJ (7”] = 1) o e ,S’i Sj),Ybi_bi+1Xi ('L — 1,. ce, 8 — 1)’Yp—b1-1’Ybs-+-lXS

which are independent. By Nakayama the original polynomials are independent,
too.



c) Let I’ C I be the ideal they generate. Use that

K[[H]] = K[[t7, 9] & €D Kt”
yell

where I' is the set of closed gaps of H. With some calculation one finds that
X9 —YP € I’ and that the canonical surjection

K[[X,Y, X1,..., X:]|/I' = K[[t*,t7]] & P Kt”
~yel'

is bijective, hence I’ = I.



Corrections
Slide 16: In the theorem replace the polynomial YP~b1-1X; — X1 +1 by

YP*blfl _ Xa1+1X1'

Slide 18: Replace Y?P~?1=1 X, by yP—b1—1,



