Huneke-Wiegand Conjecture for Numerical Semigroup Rings

Raheleh Jafari
Kharazmi University
Tehran, Iran

International Meeting on
Numerical Semigroups with Applications

July 4-8, 2016
Levico Terme, Italy

Based on a joint work in progress with Pedro A. García-Sánchez and Micah Leamer

Torsions in Tensor products

If R is a commutative Noetherian domain and M is an R-module, then

$$
T(M):=\{m \in M ; r m=0 \text { for some non-zero } r \in R\}
$$

is an R-module and is called the torsion submodule of M.
We say that M is toresion free, when $T(M)=0$.

Question
When the tensor product of two modules over R is torsion-free?
More precisely, for which modules and which classes of rings, the assumption that $M \otimes_{R} N$ is torsion-free can be considered as a criterion for projectivity in either M or N ?

- Auslander (1961), gave a rather complete answer when R is an unramified regular local ring.
- Lichtenbaum (1966), proved the ramified case.

Torsions in Tensor products

If R is a commutative Noetherian domain and M is an R-module, then

$$
T(M):=\{m \in M ; r m=0 \text { for some non-zero } r \in R\}
$$

is an R-module and is called the torsion submodule of M.
We say that M is toresion free, when $T(M)=0$.
Question
When the tensor product of two modules over R is torsion-free?
More precisely, for which modules and which classes of rings, the assumption that $M \otimes_{R} N$ is torsion-free can be considered as a criterion for projectivity in either M or N ?

- Auslander (1961), gave a rather complete answer when R is an unramified regular local ring.
- Lichtenbaum (1966), proved the ramified case.

Torsions in Tensor products

If R is a commutative Noetherian domain and M is an R-module, then

$$
T(M):=\{m \in M ; r m=0 \text { for some non-zero } r \in R\}
$$

is an R-module and is called the torsion submodule of M.
We say that M is toresion free, when $T(M)=0$.

Question

When the tensor product of two modules over R is torsion-free?
More precisely, for which modules and which classes of rings, the assumption that $M \otimes_{R} N$ is torsion-free can be considered as a criterion for projectivity in either M or N ?

- Auslander (1961), gave a rather complete answer when R is an unramified regular local ring.
- Lichtenbaum (1966), proved the ramified case.

Torsions in Tensor products

If R is a commutative Noetherian domain and M is an R-module, then

$$
T(M):=\{m \in M ; r m=0 \text { for some non-zero } r \in R\}
$$

is an R-module and is called the torsion submodule of M.
We say that M is toresion free, when $T(M)=0$.

Question

When the tensor product of two modules over R is torsion-free?
More precisely, for which modules and which classes of rings, the assumption that $M \otimes_{R} N$ is torsion-free can be considered as a criterion for projectivity in either M or N ?

Auslander (1961), gave a rather complete answer when R is an
unramified regular local ring.

- Lichtenbaum (1966), proved the ramified case.

Torsions in Tensor products

If R is a commutative Noetherian domain and M is an R-module, then

$$
T(M):=\{m \in M ; r m=0 \text { for some non-zero } r \in R\}
$$

is an R-module and is called the torsion submodule of M.
We say that M is toresion free, when $T(M)=0$.

Question

When the tensor product of two modules over R is torsion-free?
More precisely, for which modules and which classes of rings, the assumption that $M \otimes_{R} N$ is torsion-free can be considered as a criterion for projectivity in either M or N ?

- Auslander (1961), gave a rather complete answer when R is an unramified regular local ring.
- Lichtenbaum (1966), proved the ramified case.

Conjecture (Huneke-Wiegand, 1994)

Let R be a one dimensional Gorenstein local domain and M be a finitely generated R-module. If M is not free, then

$$
T\left(M \otimes_{R} \operatorname{Hom}_{R}(M, R)\right) \neq 0 .
$$

> Conjecture (Auslander-Reiten, 1975) Let R be a commutative Noetherian local ring, and let M be a finitely generated R-module. If M is not free, then Ext ${ }_{R}(M, M \oplus R) \neq 0$ for some $i>0$.

> Theorem (Celikbas-Takahashi, 2009)
> If the Huneke-Wiegand Conjecture holds, then the Auslander-Reiten Conjecture holds over Gorenstein domains of any dimension.

Conjecture (Huneke-Wiegand, 1994)

Let R be a one dimensional Gorenstein local domain and M be a finitely generated R-module. If M is not free, then

$$
T\left(M \otimes_{R} \operatorname{Hom}_{R}(M, R)\right) \neq 0 .
$$

Conjecture (Auslander-Reiten, 1975)
Let R be a commutative Noetherian local ring, and let M be a finitely generated R-module. If M is not free, then Ext ${ }_{R}{ }^{i}(M, M \oplus R) \neq 0$ for some $i>0$.

> Theorem (Celikbas-Takahashi, 2009)
> If the Huneke-Wiegand Conjecture holds, then the Auslander-Reiten Conjecture holds over Gorenstein domains of any dimension.

Conjecture (Huneke-Wiegand, 1994)
Let R be a one dimensional Gorenstein local domain and M be a finitely generated R-module. If M is not free, then

$$
T\left(M \otimes_{R} \operatorname{Hom}_{R}(M, R)\right) \neq 0 .
$$

Conjecture (Auslander-Reiten, 1975)
Let R be a commutative Noetherian local ring, and let M be a finitely generated R-module. If M is not free, then Ext ${ }_{R}{ }^{i}(M, M \oplus R) \neq 0$ for some $i>0$.

Theorem (Celikbas-Takahashi, 2009) If the Huneke-Wiegand Conjecture holds, then the Auslander-Reiten Conjecture holds over Gorenstein domains of any dimension.

Let R be a Cohen-Macaulay local ring of dimension one with a canonical module K_{R} and let / be a faithful ideal of R.

Conjecture (Goto-Takahashi-Taniguchi-Truong, 2015)
If $I \otimes_{R} \operatorname{Hom}_{R}\left(I, K_{R}\right)$ is torsion free, then I is isomorphic to either R or K_{R} as an R-module.

They answered to their conjecture as the following \checkmark Let \bar{R} be the integral closure of R in the total ring $Q(R)$ of fractions. If \bar{R} is a finitely generated R-module, the conjecture holds. \checkmark They have example that the result does not remain true, if we remove the finiteness condition on R.

Assume that $e(R) \leq 6$, where $e(R)$ is the multiplicity of R. Then the conjecture holds.

Let R be a Cohen-Macaulay local ring of dimension one with a canonical module K_{R} and let / be a faithful ideal of R.

Conjecture (Goto-Takahashi-Taniguchi-Truong, 2015)
If $I \otimes_{R} \operatorname{Hom}_{R}\left(I, K_{R}\right)$ is torsion free, then I is isomorphic to either R or K_{R} as an R-module.

They answered to their conjecture as the following :
\checkmark Let \bar{R} be the integral closure of R in the total ring $Q(R)$ of fractions. If R is a finitely generated R-module, the conjecture holds.
 conjecture holds.

Let R be a Cohen-Macaulay local ring of dimension one with a canonical module K_{R} and let I be a faithful ideal of R.

Conjecture (Goto-Takahashi-Taniguchi-Truong, 2015)
If $I \otimes_{R} \operatorname{Hom}_{R}\left(I, K_{R}\right)$ is torsion free, then I is isomorphic to either R or K_{R} as an R-module.

They answered to their conjecture as the following :
\checkmark Let \bar{R} be the integral closure of R in the total ring $Q(R)$ of fractions. If R is a finitely generated R-module, the conjecture holds.
\checkmark They have example that the result does not remain true, if we remove the finiteness condition on \bar{R}.

Assume that $e(R) \leq 6$, where $e(R)$ is the multiplicity of R. Then the

Let R be a Cohen-Macaulay local ring of dimension one with a canonical module K_{R} and let I be a faithful ideal of R.

Conjecture (Goto-Takahashi-Taniguchi-Truong, 2015)
If $I \otimes_{R} \operatorname{Hom}_{R}\left(I, K_{R}\right)$ is torsion free, then I is isomorphic to either R or K_{R} as an R-module.

They answered to their conjecture as the following :
\checkmark Let \bar{R} be the integral closure of R in the total ring $Q(R)$ of fractions. If \bar{R} is a finitely generated R-module, the conjecture holds.
\checkmark They have example that the result does not remain true, if we remove the finiteness condition on \bar{R}.
\checkmark Assume that $e(R) \leq 6$, where $e(R)$ is the multiplicity of R. Then the conjecture holds.

Numerical semigroup interpretation

Numerical semigroup interpretation

- $S=\left\{r_{1} n_{1}+\cdots+r_{d} n_{d} ; r_{i} \geq 0\right\}$, numerical semigroup minimally generated by
$M(S)=\left\{n_{1}<\cdots<n_{d}\right\}$
the associated numerical semigroup ring.
- $A=\left\{a_{1}, \ldots, a_{n}\right\}+S$,
a relative ideal of S minimally generated by $n=\mu(A)$ elements of \mathbb{N}.
- $A^{-1}=\{s \in \mathbb{Z} ; s+a \in S$ for all $a \in A\}$,
is again a relative ideal of S.

Herzinger (1996)
Let $I=\operatorname{ta}_{1} R+\cdots+\tan ^{\text {an }} R$. If $\mu(A) \mu\left(A^{-1}\right)>\mu\left(A+A^{-1}\right)$, then
$T\left(I \otimes R \operatorname{Hom}_{R}(I, R)\right) \neq 0$.

Numerical semigroup interpretation

- $S=\left\{r_{1} n_{1}+\cdots+r_{d} n_{d} ; r_{i} \geq 0\right\}$, numerical semigroup minimally generated by $M(S)=\left\{n_{1}<\cdots<n_{d}\right\}$
- $R=k\left[t^{n_{1}}, \ldots, t^{n_{d}}\right]$,
the associated numerical semigroup ring.
a relative ideal of S minimally generated by $n=\mu(A)$ elements of
- $A^{-1}=\{s \in \mathbb{Z} ; s+a \in S$ for all $a \in A\}$,
is again a relative ideal of S.

Herzinger (1996)

Numerical semigroup interpretation

- $S=\left\{r_{1} n_{1}+\cdots+r_{d} n_{d} ; r_{i} \geq 0\right\}$, numerical semigroup minimally generated by
$M(S)=\left\{n_{1}<\cdots<n_{d}\right\}$
- $R=k\left[t^{n_{1}}, \ldots, t^{n_{d}}\right]$,
the associated numerical semigroup ring.
- $A=\left\{a_{1}, \ldots, a_{n}\right\}+S$,
a relative ideal of S minimally generated by $n=\mu(A)$ elements of \mathbb{N}.
- $A^{-1}=\{s \in \mathbb{Z} ; s+a \in S$ for all $a \in A\}$,
is again a relative ideal of S.

Numerical semigroup interpretation

- $S=\left\{r_{1} n_{1}+\cdots+r_{d} n_{d} ; r_{i} \geq 0\right\}$, numerical semigroup minimally generated by
$M(S)=\left\{n_{1}<\cdots<n_{d}\right\}$
- $R=k\left[t^{n_{1}}, \ldots, t^{n_{d}}\right]$,
the associated numerical semigroup ring.
- $A=\left\{a_{1}, \ldots, a_{n}\right\}+S$,
a relative ideal of S minimally generated by $n=\mu(A)$ elements of \mathbb{N}.
- $A^{-1}=\{s \in \mathbb{Z} ; s+a \in S$ for all $a \in A\}$,
is again a relative ideal of S.

$$
\mu(A) \mu\left(A^{-1}\right) \geq \mu\left(A+A^{-1}\right)
$$

Herzinger (1996)

Numerical semigroup interpretation

- $S=\left\{r_{1} n_{1}+\cdots+r_{d} n_{d} ; r_{i} \geq 0\right\}$, numerical semigroup minimally generated by
$M(S)=\left\{n_{1}<\cdots<n_{d}\right\}$
- $R=k\left[t^{n_{1}}, \ldots, t^{n_{d}}\right]$,
the associated numerical semigroup ring.
- $A=\left\{a_{1}, \ldots, a_{n}\right\}+S$,
a relative ideal of S minimally generated by $n=\mu(A)$ elements of N .
- $A^{-1}=\{s \in \mathbb{Z} ; s+a \in S$ for all $a \in A\}$, is again a relative ideal of S.

$$
\mu(A) \mu\left(A^{-1}\right) \geq \mu\left(A+A^{-1}\right)
$$

Herzinger (1996)

Numerical semigroup interpretation

- $S=\left\{r_{1} n_{1}+\cdots+r_{d} n_{d} ; r_{i} \geq 0\right\}$,
numerical semigroup minimally generated by
$M(S)=\left\{n_{1}<\cdots<n_{d}\right\}$
- $R=k\left[t^{n_{1}}, \ldots, t^{n_{d}}\right]$,
the associated numerical semigroup ring.
- $A=\left\{a_{1}, \ldots, a_{n}\right\}+S$,
a relative ideal of S minimally generated by $n=\mu(A)$ elements of \mathbb{N}.
- $A^{-1}=\{s \in \mathbb{Z} ; s+a \in S$ for all $a \in A\}$,
is again a relative ideal of S.

$$
\mu(A) \mu\left(A^{-1}\right) \geq \mu\left(A+A^{-1}\right)
$$

Herzinger (1996)

Let $I=t^{a_{1}} R+\cdots+t^{a_{n}} R$. If $\mu(A) \mu\left(A^{-1}\right)>\mu\left(A+A^{-1}\right)$, then $T\left(I \otimes_{R} \operatorname{Hom}_{R}(I, R)\right) \neq 0$.

- $A=\{0, y\}+S$
the relative ideal of S generated by $\{0, y>0\}$.
- $A_{0}^{-1}=A^{-1} \cup\{0\}=\{0, s \in S ; s+y \in S\}$, considered as a numerical semigroup with minimal generating set $M\left(A_{0}^{-1}\right)$.

$$
\left|M\left(A_{0}^{-1}\right)\right| \geq \mu\left(A^{-1}\right) .
$$

Theorem
 Iet $I-R+t^{\prime} R$. Then the length of $T\left(/ Q_{R} H_{R}(I, R)\right)$ is equal to the number of elements $x \in M\left(A_{0}^{-1}\right)$ such that $x+2 y \in S$.

- $A=\{0, y\}+S$
the relative ideal of S generated by $\{0, y>0\}$.
- $A_{0}^{-1}=A^{-1} \cup\{0\}=\{0, s \in S ; s+y \in S\}$,
considered as a numerical semigroup with minimal generating set $M\left(A_{0}^{-1}\right)$.

$$
\left|M\left(A_{0}^{-1}\right)\right| \geq \mu\left(A^{-1}\right)
$$

- $A=\{0, y\}+S$
the relative ideal of S generated by $\{0, y>0\}$.
- $A_{0}^{-1}=A^{-1} \cup\{0\}=\{0, s \in S ; s+y \in S\}$,
considered as a numerical semigroup with minimal generating set $M\left(A_{0}^{-1}\right)$.

$$
\left|M\left(A_{0}^{-1}\right)\right| \geq \mu\left(A^{-1}\right)
$$

- $A=\{0, y\}+S$
the relative ideal of S generated by $\{0, y>0\}$.
- $A_{0}^{-1}=A^{-1} \cup\{0\}=\{0, s \in S ; s+y \in S\}$,
considered as a numerical semigroup with minimal generating set $M\left(A_{0}^{-1}\right)$.

$$
\left|M\left(A_{0}^{-1}\right)\right| \geq \mu\left(A^{-1}\right)
$$

Theorem

Let $I=R+t^{y} R$. Then the length of $T\left(I \otimes_{R} \operatorname{Hom}_{R}(I, R)\right)$ is equal to the number of elements $x \in M\left(A_{0}^{-1}\right)$ such that $x+2 y \in S$.

Herzinger (1999), Herzinger-Sanford (2004)

If the multiplicity of S is smaller than or equal to 8 and $\mu(A) \geq 2$, then $\mu(A) \mu\left(A^{-1}\right)>\mu\left(A+A^{-1}\right)$.

Example

Let $S=\langle 10,14,15,21\rangle$ and $A=\{0,1\}+S$. Then

$$
S=\{\quad 0,10,14,15,20,21,24,25,28,29,30,31,34,35,36,38,
$$ $39,40,41,42,43,44,45,46,48, \rightarrow\}$.

$A^{-1}=\{14,20\}+S$ and $A+A^{-1}=\{14,15,20,21\}+S$. Hence

$$
\mu(A)=\mu\left(A^{-1}\right)=2, \mu\left(A+A^{-1}\right)=4 .
$$

$A_{0}^{-1}=\langle 14,20,24,29,30,35,39,41,45,51\rangle$ and

$$
\{29,39,41,51\}=\left\{x \in M\left(A_{0}^{-1}\right) ; x+2 \in S\right\} .
$$

and so the ideal $I=R+t^{y} R$ satisfies the conjecture.
S is called symmetric if $S=\{F(S)-s ; s \in \mathbb{Z} \backslash S\}$, where $F(S)=\max (\mathbb{Z} \backslash S)$ is the Frobenius number of S. It is well known that R is Gorenestein if and only if S is symmetric (Kunz, 1970).

Problem 1

For every (symmetric) numerical semigroup S and any integer $y>0$ there exists an element in the minimal set of generators of $(\{0, y\}+S)_{0}^{-1}$ such that $x+2 y \in S$.

Solving the above problem
介
proving the Huneke-Wiegand Conjecture
for two generated monomial ideals over numerical semigroup rings.

Let $S=\left\langle m_{1}<\cdots<m_{d}\right\rangle$, with Frobenius number $F(S)$. For an integer $y>0$, we are looking for an element $x \in M\left(A_{0}^{-1}\right)$ such that $x+2 y \in S$.

Let $S=\left\langle m_{1}<\cdots<m_{d}\right\rangle$, with Frobenius number $F(S)$. For an integer $y>0$, we are looking for an element $x \in M\left(A_{0}^{-1}\right)$ such that $x+2 y \in S$.
\checkmark If $y>F$ or $m_{d}>F$, then $m_{d}+y, m_{d}+2 y \in S$ and $x:=m_{d}$.

Let $a=\min \{s \in S: s+y \in S\}$ and $b=\min \{s \in S: s+2 y \in S\}$. If $b \leq a\left(\right.$ e.g. $\left.m_{1}+2 y \in S\right)$, then

belongs to $M\left(A_{0}^{-1}\right)$ and $x+2 y \in S$.

Let $S=\left\langle m_{1}<\cdots<m_{d}\right\rangle$, with Frobenius number $F(S)$. For an integer $y>0$, we are looking for an element $x \in M\left(A_{0}^{-1}\right)$ such that $x+2 y \in S$.
\checkmark If $y>F$ or $m_{d}>F$, then $m_{d}+y, m_{d}+2 y \in S$ and $x:=m_{d}$.

Let $a=\min \{s \in S: s+y \in S\}$ and $b=\min \{s \in S: s+2 y \in S\}$. If $b \leq a\left(\right.$ e.g. $\left.m_{1}+2 y \in S\right)$, then

belongs to $M\left(A_{0}^{-1}\right)$ and $x+2 y \in S$.

Let $S=\left\langle m_{1}<\cdots<m_{d}\right\rangle$, with Frobenius number $F(S)$. For an integer $y>0$, we are looking for an element $x \in M\left(A_{0}^{-1}\right)$ such that $x+2 y \in S$.
\checkmark If $y>F$ or $m_{d}>F$, then $m_{d}+y, m_{d}+2 y \in S$ and $x:=m_{d}$.
\checkmark Let $T:=S \cup F(S)$. Then $F(S)>F(T)$ is an element of the minimal generating set of T, with $F(S)+y, F(S)+2 y \in T$.

Let $a=\min \{s \in S: s+y \in S\}$ and $b=\min \{s \in S: s+2 y \in S\}$. If $b \leq a\left(\right.$ e.g. $m_{1}+2 y \in S$), then

belongs to $M\left(A_{0}^{-1}\right)$ and $x+2 y \in S$.

Let $S=\left\langle m_{1}<\cdots<m_{d}\right\rangle$, with Frobenius number $F(S)$. For an integer $y>0$, we are looking for an element $x \in M\left(A_{0}^{-1}\right)$ such that $x+2 y \in S$.
\checkmark If $y>F$ or $m_{d}>F$, then $m_{d}+y, m_{d}+2 y \in S$ and $x:=m_{d}$.
\checkmark Let $T:=S \cup F(S)$. Then $F(S)>F(T)$ is an element of the minimal generating set of T, with $F(S)+y, F(S)+2 y \in T$.

If $b \leq a\left(e . g . m_{1}+2 y \in S\right.$), then

belongs to $M\left(A_{0}^{-1}\right)$ and $x+2 y \in S$.

Let $S=\left\langle m_{1}<\cdots<m_{d}\right\rangle$, with Frobenius number $F(S)$. For an integer $y>0$, we are looking for an element $x \in M\left(A_{0}^{-1}\right)$ such that $x+2 y \in S$.
\checkmark If $y>F$ or $m_{d}>F$, then $m_{d}+y, m_{d}+2 y \in S$ and $x:=m_{d}$.
\checkmark Let $T:=S \cup F(S)$. Then $F(S)>F(T)$ is an element of the minimal generating set of T, with $F(S)+y, F(S)+2 y \in T$.
\checkmark Let $a=\min \{s \in S: s+y \in S\}$ and $b=\min \{s \in S: s+2 y \in S\}$. If $b \leq a\left(e . g . m_{1}+2 y \in S\right)$, then

$$
x:= \begin{cases}a & \text { if } a=b ; \\ a+b & \text { if } a<b\end{cases}
$$

belongs to $M\left(A_{0}^{-1}\right)$ and $x+2 y \in S$.
\checkmark Let $m_{1} \leq 8$, then the conjecture holds for all monomial ideals of R (Herzinger, 1999 \& Herzinger-Sanford, 2004).

If S is a complete intersection, then the conjecture holds for two generated monomial ideals of S (García Sánchez-Leamer, 2013).

```
\checkmark If S = <a,a+1,\ldots,2a-2\rangle, for a\geq3, then the conjecture holds
for all monomial ideals of R (Goto-Takahashi-Taniguchi-Truong,
2015).
Let m}\mp@subsup{m}{1}{}\leq7\mathrm{ and I be a non-zero monomial ideal of R. If
I \otimes}\mp@subsup{Q}{R}{}\mp@subsup{\operatorname{Hom}}{R}{}(I,\mp@subsup{K}{R}{})\mathrm{ is torsionfree, then one has either I}\congR or
I\cong K
```

\checkmark Let $m_{1} \leq 8$, then the conjecture holds for all monomial ideals of R (Herzinger, 1999 \& Herzinger-Sanford, 2004).

If S is a complete intersection, then the conjecture holds for two generated monomial ideals of S (García Sánchez-Leamer, 2013).

If $S=\langle a, a+1, \ldots, 2 a-2\rangle$, for $a \geq 3$, then the conjecture holds for all monomial ideals of R (Goto-Takahashi-Taniguchi-Truong, 2015).

Let $m_{1} \leq 7$ and l be a non-zero monomial ideal of R. If $I \otimes_{R} \operatorname{Hom}_{R}\left(I, K_{R}\right)$ is torsionfree, then one has either $I \cong R$ or $I \cong K_{R}$ (Goto-Takahashi-Taniguchi-Truong, 2015).
\checkmark Let $m_{1} \leq 8$, then the conjecture holds for all monomial ideals of R (Herzinger, 1999 \& Herzinger-Sanford, 2004).
\checkmark If S is a complete intersection, then the conjecture holds for two generated monomial ideals of S (García Sánchez-Leamer, 2013).

Let $m_{1} \leq 7$ and l be a non-zero monomial ideal of R. If $I \otimes_{R} \operatorname{Hom}_{R}\left(I, K_{R}\right)$ is torsionfree, then one has either $I \cong R$ or $I \cong K_{R}$ (Goto-Takahashi-Taniguchi-Truong, 2015).
\checkmark Let $m_{1} \leq 8$, then the conjecture holds for all monomial ideals of R (Herzinger, 1999 \& Herzinger-Sanford, 2004).
\checkmark If S is a complete intersection, then the conjecture holds for two generated monomial ideals of S (García Sánchez-Leamer, 2013).

Let $m_{1} \leq 7$ and l be a non-zero monomial ideal of R. If $I \otimes_{R} \operatorname{Hom}_{R}\left(I, K_{R}\right)$ is torsionfree, then one has either $I \cong R$ or $I \cong K_{R}$ (Goto-Takahashi-Taniguchi-Truong, 2015).
\checkmark Let $m_{1} \leq 8$, then the conjecture holds for all monomial ideals of R (Herzinger, 1999 \& Herzinger-Sanford, 2004).
\checkmark If S is a complete intersection, then the conjecture holds for two generated monomial ideals of S (García Sánchez-Leamer, 2013).

If $S=\langle a, a+1, \ldots, 2 a-2\rangle$, for $a \geq 3$, then the conjecture holds for all monomial ideals of R (Goto-Takahashi-Taniguchi-Truong, 2015).

\checkmark Let $m_{1} \leq 8$, then the conjecture holds for all monomial ideals of R (Herzinger, 1999 \& Herzinger-Sanford, 2004).
\checkmark If S is a complete intersection, then the conjecture holds for two generated monomial ideals of S (García Sánchez-Leamer, 2013).
\checkmark If $S=\langle a, a+1, \ldots, 2 a-2\rangle$, for $a \geq 3$, then the conjecture holds for all monomial ideals of R (Goto-Takahashi-Taniguchi-Truong, 2015).

\checkmark Let $m_{1} \leq 8$, then the conjecture holds for all monomial ideals of R (Herzinger, 1999 \& Herzinger-Sanford, 2004).
\checkmark If S is a complete intersection, then the conjecture holds for two generated monomial ideals of S (García Sánchez-Leamer, 2013).
\checkmark If $S=\langle a, a+1, \ldots, 2 a-2\rangle$, for $a \geq 3$, then the conjecture holds for all monomial ideals of R (Goto-Takahashi-Taniguchi-Truong, 2015).
\checkmark Let $m_{1} \leq 7$ and I be a non-zero monomial ideal of R. If $I \otimes_{R} \operatorname{Hom}_{R}\left(I, K_{R}\right)$ is torsionfree, then one has either $I \cong R$ or $I \cong K_{R}$ (Goto-Takahashi-Taniguchi-Truong, 2015).

Lemma

Let S be a numerical semigroup and $y>0$ be an integer. Then

$$
T=\{0\} \cup\{x \in S: x+y \in S \text { or } x-y \in S\}
$$

is a numerical semigroup and $\{0, y\}+S$ is Huneke-Wiegand if and only if $\{0, y\}+T$ is Huneke-Wiegand.

Let $A=\{0, y\}+S$, then we may assume that

$$
S=\left\langle a_{1}, a_{1}+y, \ldots, a_{n}, a_{n}+y\right\rangle,
$$

for some $a_{1}, \ldots, a_{n} \in A^{-1}$.

As $F\left(A_{0}^{-1}\right)=F(S)$, we state the following problem:

Problem 2

Let $S_{1}=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be a numerical semigroup, $y>0$ be an integer such that $a_{i}+y \notin S_{1}$ for all $i=1, \ldots, n$ and let $S=S_{1}+\left\langle a_{1}+y, \ldots, a_{n}+y\right\rangle$. Then

$$
F\left(S_{1}\right) \supsetneqq F(S) .
$$

Problem $2 \Rightarrow$ Problem 1

For every numerical semigroup S and any integer $y>0$ there exists an element in the minimal set of generators of $(\{0, y\}+S)_{0}^{-1}$ such that

As $F\left(A_{0}^{-1}\right)=F(S)$, we state the following problem:

Problem 2

Let $S_{1}=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be a numerical semigroup, $y>0$ be an integer such that $a_{i}+y \notin S_{1}$ for all $i=1, \ldots, n$ and let $S=S_{1}+\left\langle a_{1}+y, \ldots, a_{n}+y\right\rangle$. Then

$$
F\left(S_{1}\right) \supsetneqq F(S) .
$$

Problem $2 \Rightarrow$ Problem 1

Problem 1

For every numerical semigroup S and any integer $y>0$ there exists an element in the minimal set of generators of $(\{0, y\}+S)_{0}^{-1}$ such that $x+2 y \in S$.

Irreducible numerical semigroups

A numerical semigroup is called irreducible, if it cannot be written as the intersection of two numerical semigroups properly containing it.

Symmetric numerical semigroups are those irreducible ones S, such that $F(S)$ is odd and $F(S)-x \in S$ for all $x \in \mathbb{Z} \backslash S$.

Blanco-Rosales, 2013
By adding and removing certain elements of an irreducible numerical semigroup S, one may get a new irreducible numerical semigroup S with the same Frobenius number $F:=F(\bar{S})=F(S)$ and larger multiplicity $m(\bar{S})>m(S)$, provided $m(S)$ Continuing in this way, we get the numerical semigroup

Irreducible numerical semigroups

A numerical semigroup is called irreducible, if it cannot be written as the intersection of two numerical semigroups properly containing it.
Symmetric numerical semigroups are those irreducible ones S, such that $F(S)$ is odd and $F(S)-x \in S$ for all $x \in \mathbb{Z} \backslash S$.

Blanco-Rosales, 2013

By adding and removing certain elements of an irreducible numerical semigroup S, one may get a new irreducible numerical semigroup \bar{S} with the same Frobenius number $F:=F(\bar{S})=F(S)$ and larger multiplicity $m(\bar{S})>m(S)$, provided $m(S)<\frac{F(S)}{2}$. Continuing in this way, we get the numerical semigroup

$$
C(F)= \begin{cases}\left\{0, \frac{F(S)+1}{F(S)}, \rightarrow\right\} \backslash\{F\} & \text { if } F \text { is odd, } \\ \left\{0, \frac{F(2)}{2}+1, \rightarrow\right\} \backslash\{F\} & \text { if } F \text { is even. }\end{cases}
$$

Consider the directed graph $\mathcal{G}(F)=(V, E)$ where V is the set of all irreducible numerical semigroups with Frobenius number F and $(T, S) \in E$ if $m(T)<\frac{F}{2}$ and $S=\bar{T}$.

Blanco-Rosales, 2013

$\mathcal{G}(F)$ is a tree with root $C(F)$ and the children of each vertex T are those \bar{T} coming from the above procedure
$\mathcal{G}(11):$

Theorem
Let S be an irreducible numerical semigroup with Frobenius number $F=F(S)$. If S is not a leaf of the tree $\mathcal{G}(F)$, then any two generated relative ideal of S satisfies the Huneke-Wiegand Conjecture.

Theorem

Let S be an irreducible numerical semigroup with Frobenius number $F=F(S)$. If S is not a leaf of the tree $\mathcal{G}(F)$, then any two generated relative ideal of S satisfies the Huneke-Wiegand Conjecture.

Test computations by GAP

Our equivalent statement of the conjecture,
"finding a minimal generator x of $(\{0, y\}+S)_{0}^{-1}$ such that $x+2 y \in S$ ", can be easily implemented in GAP to see that the conjecture holds for all numerical semigroup with Frobenius number at most 31.

SOME REFERENCES

目 M. Auslander, Modules over unramified regular local rings. Illinois J. Math. 5 (1961), 631-647.

R V. Blanco and J.C. Rosales, The tree of irreducible numerical semigroups with fixed Frobenius number. Forum Math. 25 (2013), 1249-1261.
: P.A. García-Sánchez and M. J. Leamer, Huneke-Wiegand Conjecture for complete intersection numerical semigroup rings. J. Algebra 391 (2013), 114-124.

目 S. Goto, R. Takahashi, N. Taniguchi and H.L. Hoang Le Truong, Huneke-Wiegand conjecture and change of rings. J. Algebra 422 (2015), 33-52.

雷 K. Herzinger, Torsion in the tensor product of an ideal with its inverse. Comm. Algebra 24 (1996), 3065-3083.
國 K. Herzinger and R. Sanford, Minimal Generating Sets for Relative Ideals in Numerical Semigroups of Multiplicity Eight. Comm. Alg. 32 (2004), no. 12, 4713-4731.
© C. Huneke and R. Wiegand, Tensor products of modules and the rigidity of Tor. Math. Ann. 299 (1994), 449-476.

