Huneke-Wiegand Conjecture for Numerical Semigroup Rings

Raheleh Jafari

Kharazmi University Tehran, Iran

International Meeting on Numerical Semigroups with Applications

July 4-8, 2016 Levico Terme, Italy Based on a joint work in progress with **Pedro A. García-Sánchez** and **Micah Leamer**

If *R* is a commutative Noetherian domain and *M* is an *R*-module, then

 $T(M) := \{m \in M ; rm = 0 \text{ for some non-zero } r \in R\}$

is an *R*-module and is called the torsion submodule of *M*.

We say that *M* is toresion free, when T(M) = 0.

Question

When the tensor product of two modules over *R* is torsion-free?

- Auslander (1961), gave a rather complete answer when *R* is an unramified regular local ring.
- Lichtenbaum (1966), proved the ramified case.

If R is a commutative Noetherian domain and M is an R-module, then

 $T(M) := \{m \in M ; rm = 0 \text{ for some non-zero } r \in R\}$

is an *R*-module and is called the torsion submodule of *M*.

We say that *M* is toresion free, when T(M) = 0.

Question

When the tensor product of two modules over *R* is torsion-free?

- Auslander (1961), gave a rather complete answer when *R* is an unramified regular local ring.
- Lichtenbaum (1966), proved the ramified case.

If R is a commutative Noetherian domain and M is an R-module, then

 $T(M) := \{m \in M ; rm = 0 \text{ for some non-zero } r \in R\}$

is an *R*-module and is called the torsion submodule of *M*.

We say that *M* is toresion free, when T(M) = 0.

Question

When the tensor product of two modules over R is torsion-free?

- Auslander (1961), gave a rather complete answer when *R* is an unramified regular local ring.
- Lichtenbaum (1966), proved the ramified case.

If R is a commutative Noetherian domain and M is an R-module, then

 $T(M) := \{m \in M ; rm = 0 \text{ for some non-zero } r \in R\}$

is an *R*-module and is called the torsion submodule of *M*.

We say that *M* is toresion free, when T(M) = 0.

Question

When the tensor product of two modules over R is torsion-free?

- Auslander (1961), gave a rather complete answer when *R* is an unramified regular local ring.
- Lichtenbaum (1966), proved the ramified case.

If R is a commutative Noetherian domain and M is an R-module, then

 $T(M) := \{m \in M ; rm = 0 \text{ for some non-zero } r \in R\}$

is an *R*-module and is called the torsion submodule of *M*.

We say that *M* is toresion free, when T(M) = 0.

Question

When the tensor product of two modules over R is torsion-free?

- Auslander (1961), gave a rather complete answer when *R* is an unramified regular local ring.
- Lichtenbaum (1966), proved the ramified case.

Conjecture (Huneke-Wiegand, 1994)

Let *R* be a one dimensional Gorenstein local domain and *M* be a finitely generated *R*-module. If *M* is not free, then $T(M \otimes_R \operatorname{Hom}_R(M, R)) \neq 0.$

Conjecture (Auslander-Reiten, 1975)

Let *R* be a commutative Noetherian local ring, and let *M* be a finitely generated *R*-module. If *M* is not free, then Ext ${}^{i}_{R}(M, M \oplus R) \neq 0$ for some i > 0.

Theorem (Celikbas-Takahashi, 2009)

If the Huneke-Wiegand Conjecture holds, then the Auslander-Reiten Conjecture holds over Gorenstein domains of any dimension.

Conjecture (Huneke-Wiegand, 1994)

Let *R* be a one dimensional Gorenstein local domain and *M* be a finitely generated *R*-module. If *M* is not free, then $T(M \otimes_R \operatorname{Hom}_R(M, R)) \neq 0.$

Conjecture (Auslander-Reiten, 1975)

Let *R* be a commutative Noetherian local ring, and let *M* be a finitely generated *R*-module. If *M* is not free, then $\text{Ext }_{R}^{i}(M, M \oplus R) \neq 0$ for some i > 0.

Theorem (Celikbas-Takahashi, 2009)

If the Huneke-Wiegand Conjecture holds, then the Auslander-Reiten Conjecture holds over Gorenstein domains of any dimension.

Conjecture (Huneke-Wiegand, 1994)

Let *R* be a one dimensional Gorenstein local domain and *M* be a finitely generated *R*-module. If *M* is not free, then $T(M \otimes_R \operatorname{Hom}_R(M, R)) \neq 0.$

Conjecture (Auslander-Reiten, 1975)

Let *R* be a commutative Noetherian local ring, and let *M* be a finitely generated *R*-module. If *M* is not free, then $\text{Ext }_{R}^{i}(M, M \oplus R) \neq 0$ for some i > 0.

Theorem (Celikbas-Takahashi, 2009)

If the Huneke-Wiegand Conjecture holds, then the Auslander-Reiten Conjecture holds over Gorenstein domains of any dimension.

Conjecture (Goto-Takahashi-Taniguchi-Truong, 2015) If $I \otimes_R \operatorname{Hom}_R(I, K_R)$ is torsion free, then *I* is isomorphic to either *R* or K_R as an *R*-module.

They answered to their conjecture as the following :

 \checkmark Let \overline{R} be the integral closure of R in the total ring Q(R) of fractions. If \overline{R} is a finitely generated R-module, the conjecture holds.

 \checkmark They have example that the result does not remain true, if we remove the finiteness condition on \overline{R} .

Conjecture (Goto-Takahashi-Taniguchi-Truong, 2015) If $I \otimes_R \operatorname{Hom}_R(I, K_R)$ is torsion free, then *I* is isomorphic to either *R* or K_R as an *R*-module.

They answered to their conjecture as the following :

✓ Let \overline{R} be the integral closure of R in the total ring Q(R) of fractions. If \overline{R} is a finitely generated R-module, the conjecture holds.

 \checkmark They have example that the result does not remain true, if we remove the finiteness condition on \overline{R} .

Conjecture (Goto-Takahashi-Taniguchi-Truong, 2015) If $I \otimes_R \operatorname{Hom}_R(I, K_R)$ is torsion free, then *I* is isomorphic to either *R* or K_R as an *R*-module.

They answered to their conjecture as the following :

✓ Let \overline{R} be the integral closure of R in the total ring Q(R) of fractions. If \overline{R} is a finitely generated R-module, the conjecture holds.

 \checkmark They have example that the result does not remain true, if we remove the finiteness condition on \overline{R} .

Conjecture (Goto-Takahashi-Taniguchi-Truong, 2015) If $I \otimes_R \operatorname{Hom}_R(I, K_R)$ is torsion free, then *I* is isomorphic to either *R* or K_R as an *R*-module.

They answered to their conjecture as the following :

✓ Let \overline{R} be the integral closure of R in the total ring Q(R) of fractions. If \overline{R} is a finitely generated R-module, the conjecture holds.

 \checkmark They have example that the result does not remain true, if we remove the finiteness condition on \overline{R} .

- $S = \{r_1 n_1 + \dots + r_d n_d; r_l \ge 0\},$ numerical semigroup minimally generated by $M(S) = \{n_1 < \dots < n_d\}$
- R = k[tⁿ,...,tⁿ], the associated numerical semigroup ring.
- A = {a₁,..., a_n} + S, a relative ideal of S minimally generated by n = μ(A) elements of N.
- $A^{-1} = \{s \in \mathbb{Z} : s + a \in S \text{ for all } a \in A\},$ is again a relative ideal of S. $\mu(A)\mu(A^{-1}) \ge \mu(A + A^{-1})$

Herzinger (1996)

Let $I = t^{a_1}R + \dots + t^{a_n}R$. If $\mu(A)\mu(A^{-1}) > \mu(A + A^{-1})$, then $T(I \otimes_R \operatorname{Hom}_R(I, R)) \neq 0$.

- $S = \{r_1 n_1 + \dots + r_d n_d; r_i \ge 0\},$ numerical semigroup minimally generated by $M(S) = \{n_1 < \dots < n_d\}$
- $R = k[t^{n_1}, \dots, t^{n_d}]$, the associated numerical semigroup ring.
- A = {a₁,..., a_n} + S, a relative ideal of S minimally generated by n = μ(A) elements of N.
- $A^{-1} = \{s \in \mathbb{Z} ; s + a \in S \text{ for all } a \in A\},$ is again a relative ideal of *S*. $\mu(A)\mu(A^{-1}) \ge \mu(A + A^{-1})$

Herzinger (1996)

Let $I = t^{a_1}R + \dots + t^{a_n}R$. If $\mu(A)\mu(A^{-1}) > \mu(A + A^{-1})$, then $T(I \otimes_R \operatorname{Hom}_R(I, R)) \neq 0$.

- $S = \{r_1 n_1 + \dots + r_d n_d; r_i \ge 0\}$, numerical semigroup minimally generated by $M(S) = \{n_1 < \dots < n_d\}$
- $R = k[t^{n_1}, \dots, t^{n_d}]$, the associated numerical semigroup ring.
- A = {a₁,..., a_n} + S, a relative ideal of S minimally generated by n = μ(A) elements of N.
- $A^{-1} = \{s \in \mathbb{Z} ; s + a \in S \text{ for all } a \in A\},$ is again a relative ideal of *S*. $\mu(A)\mu(A^{-1}) \ge \mu(A + A^{-1})$

Herzinger (1996)

Let $I = t^{a_1}R + \cdots + t^{a_n}R$. If $\mu(A)\mu(A^{-1}) > \mu(A + A^{-1})$, then $T(I \otimes_R \text{Hom}_R(I, R)) \neq 0$.

- $S = \{r_1 n_1 + \dots + r_d n_d; r_i \ge 0\}$, numerical semigroup minimally generated by $M(S) = \{n_1 < \dots < n_d\}$
- $\boldsymbol{R} = \boldsymbol{k}[t^{n_1}, \ldots, t^{n_d}],$

the associated numerical semigroup ring.

- A = {a₁,..., a_n} + S, a relative ideal of S minimally generated by n = μ(A) elements of N.
- $A^{-1} = \{ s \in \mathbb{Z} ; s + a \in S \text{ for all } a \in A \},$ is again a relative ideal of *S*. $\mu(A)\mu(A^{-1}) \ge \mu(A + A^{-1})$

Herzinger (1996)

Let $I = t^{a_1}R + \dots + t^{a_n}R$. If $\mu(A)\mu(A^{-1}) > \mu(A + A^{-1})$, then $T(I \otimes_R \operatorname{Hom}_R(I, R)) \neq 0$.

- $S = \{r_1 n_1 + \dots + r_d n_d; r_i \ge 0\}$, numerical semigroup minimally generated by $M(S) = \{n_1 < \dots < n_d\}$
- $\boldsymbol{R} = \boldsymbol{k}[t^{n_1}, \ldots, t^{n_d}],$

the associated numerical semigroup ring.

• $A = \{a_1, \ldots, a_n\} + S$,

a relative ideal of *S* minimally generated by $n = \mu(A)$ elements of \mathbb{N} .

• $A^{-1} = \{s \in \mathbb{Z} ; s + a \in S \text{ for all } a \in A\},$ is again a relative ideal of *S*.

$$\mu(\boldsymbol{A})\mu(\boldsymbol{A}^{-1}) \geq \mu(\boldsymbol{A} + \boldsymbol{A}^{-1})$$

Herzinger (1996)

Let $I = t^{a_1}R + \cdots + t^{a_n}R$. If $\mu(A)\mu(A^{-1}) > \mu(A + A^{-1})$, then $T(I \otimes_R \operatorname{Hom}_R(I, R)) \neq 0$.

- $S = \{r_1 n_1 + \dots + r_d n_d; r_i \ge 0\}$, numerical semigroup minimally generated by $M(S) = \{n_1 < \dots < n_d\}$
- $\boldsymbol{R} = \boldsymbol{k}[t^{n_1}, \ldots, t^{n_d}],$

the associated numerical semigroup ring.

• $A = \{a_1, \ldots, a_n\} + S$,

a relative ideal of *S* minimally generated by $n = \mu(A)$ elements of \mathbb{N} .

• $A^{-1} = \{s \in \mathbb{Z} ; s + a \in S \text{ for all } a \in A\},\$ is again a relative ideal of *S*.

$$\mu(\boldsymbol{A})\mu(\boldsymbol{A}^{-1}) \geq \mu(\boldsymbol{A} + \boldsymbol{A}^{-1})$$

Herzinger (1996)

Let $I = t^{a_1}R + \cdots + t^{a_n}R$. If $\mu(A)\mu(A^{-1}) > \mu(A + A^{-1})$, then $T(I \otimes_R \operatorname{Hom}_R(I, R)) \neq 0$.

- $S = \{r_1 n_1 + \dots + r_d n_d; r_i \ge 0\}$, numerical semigroup minimally generated by $M(S) = \{n_1 < \dots < n_d\}$
- $\boldsymbol{R} = \boldsymbol{k}[t^{n_1}, \ldots, t^{n_d}],$

the associated numerical semigroup ring.

• $A = \{a_1, \ldots, a_n\} + S$,

a relative ideal of *S* minimally generated by $n = \mu(A)$ elements of \mathbb{N} .

• $A^{-1} = \{s \in \mathbb{Z} ; s + a \in S \text{ for all } a \in A\},\$ is again a relative ideal of *S*.

$$\mu(\boldsymbol{A})\mu(\boldsymbol{A}^{-1}) \geq \mu(\boldsymbol{A} + \boldsymbol{A}^{-1})$$

Herzinger (1996)

Let $I = t^{a_1}R + \cdots + t^{a_n}R$. If $\mu(A)\mu(A^{-1}) > \mu(A + A^{-1})$, then $T(I \otimes_R \operatorname{Hom}_R(I, R)) \neq 0$.

A = {0, *y*} + *S* the relative ideal of *S* generated by {0, *y* > 0}.

• $A_0^{-1} = A^{-1} \cup \{0\} = \{0, s \in S; s + y \in S\},\$ considered as a numerical semigroup with minimal generating set $M(A_0^{-1}).$

 $|M(A_0^{-1})| \ge \mu(A^{-1}).$

Theorem

Let $I = R + t^{y}R$. Then the length of $T(I \otimes_{R} \text{Hom}_{R}(I, R))$ is equal to the number of elements $x \in M(A_{0}^{-1})$ such that $x + 2y \in S$.

• $A = \{0, y\} + S$

the relative ideal of *S* generated by $\{0, y > 0\}$.

• $A_0^{-1} = A^{-1} \cup \{0\} = \{0, s \in S; s + y \in S\},$ considered as a numerical semigroup with minimal generating set $M(A_0^{-1}).$

 $|M(A_0^{-1})| \ge \mu(A^{-1}).$

Theorem

Let $I = R + t^{\gamma}R$. Then the length of $T(I \otimes_R \text{Hom}_R(I, R))$ is equal to the number of elements $x \in M(A_0^{-1})$ such that $x + 2y \in S$.

• $A = \{0, y\} + S$

the relative ideal of *S* generated by $\{0, y > 0\}$.

• $A_0^{-1} = A^{-1} \cup \{0\} = \{0, s \in S; s + y \in S\},$ considered as a numerical semigroup with minimal generating set $M(A_0^{-1})$.

$$|M(A_0^{-1})| \ge \mu(A^{-1}).$$

Theorem

Let $I = R + t^{y}R$. Then the length of $T(I \otimes_{R} \text{Hom}_{R}(I, R))$ is equal to the number of elements $x \in M(A_{0}^{-1})$ such that $x + 2y \in S$.

• $A = \{0, y\} + S$

the relative ideal of *S* generated by $\{0, y > 0\}$.

• $A_0^{-1} = A^{-1} \cup \{0\} = \{0, s \in S; s + y \in S\},$ considered as a numerical semigroup with minimal generating set $M(A_0^{-1})$.

$$|M(A_0^{-1})| \ge \mu(A^{-1}).$$

Theorem

Let $I = R + t^{y}R$. Then the length of $T(I \otimes_{R} \text{Hom}_{R}(I, R))$ is equal to the number of elements $x \in M(A_{0}^{-1})$ such that $x + 2y \in S$.

Herzinger (1999), Herzinger-Sanford (2004)

If the multiplicity of *S* is smaller than or equal to 8 and $\mu(A) \ge 2$, then $\mu(A)\mu(A^{-1}) > \mu(A + A^{-1})$.

Example

Let S = (10, 14, 15, 21) and $A = \{0, 1\} + S$. Then

$$\begin{split} S = \{ & 0, 10, 14, 15, 20, 21, 24, 25, 28, 29, 30, 31, 34, 35, 36, 38, \\ & 39, 40, 41, 42, 43, 44, 45, 46, 48, \rightarrow \}. \end{split}$$

 $A^{-1} = \{14, 20\} + S$ and $A + A^{-1} = \{14, 15, 20, 21\} + S$. Hence $\mu(A) = \mu(A^{-1}) = 2$, $\mu(A + A^{-1}) = 4$.

 $A_0^{-1} = \langle 14, 20, 24, 29, 30, 35, 39, 41, 45, 51 \rangle$ and

$$\{29, 39, 41, 51\} = \{x \in M(A_0^{-1}); x + 2 \in S\}.$$

and so the ideal $I = R + t^{\gamma}R$ satisfies the conjecture.

S is called symmetric if $S = \{F(S) - s ; s \in \mathbb{Z} \setminus S\}$, where $F(S) = \max(\mathbb{Z} \setminus S)$ is the Frobenius number of *S*. It is well known that *R* is Gorenestein if and only if *S* is symmetric (Kunz, 1970).

Problem 1

For every (symmetric) numerical semigroup *S* and any integer y > 0 there exists an element in the minimal set of generators of $(\{0, y\} + S)_0^{-1}$ such that $x + 2y \in S$.

Solving the above problem proving the Huneke-Wiegand Conjecture for two generated monomial ideals over numerical semigroup rings.

✓ If y > F or $m_d > F$, then $m_d + y$, $m_d + 2y \in S$ and $x := m_d$.

✓ Let $T := S \cup F(S)$. Then F(S) > F(T) is an element of the minimal generating set of *T*, with F(S) + y, $F(S) + 2y \in T$.

✓ Let $a = \min\{s \in S : s + y \in S\}$ and $b = \min\{s \in S : s + 2y \in S\}$. If $b \le a$ (e.g. $m_1 + 2y \in S$), then

$$x := \begin{cases} a & \text{if } a = b; \\ a + b & \text{if } a < b \end{cases}$$

✓ If y > F or $m_d > F$, then $m_d + y$, $m_d + 2y \in S$ and $x := m_d$.

- ✓ Let $T := S \cup F(S)$. Then F(S) > F(T) is an element of the minimal generating set of *T*, with F(S) + y, $F(S) + 2y \in T$.
- ✓ Let $a = \min\{s \in S : s + y \in S\}$ and $b = \min\{s \in S : s + 2y \in S\}$. If $b \le a$ (e.g. $m_1 + 2y \in S$), then

$$x := \begin{cases} a & \text{if } a = b; \\ a + b & \text{if } a < b \end{cases}$$

✓ If y > F or $m_d > F$, then $m_d + y$, $m_d + 2y \in S$ and $x := m_d$.

✓ Let $T := S \cup F(S)$. Then F(S) > F(T) is an element of the minimal generating set of *T*, with F(S) + y, $F(S) + 2y \in T$.

✓ Let $a = \min\{s \in S : s + y \in S\}$ and $b = \min\{s \in S : s + 2y \in S\}$. If $b \le a$ (e.g. $m_1 + 2y \in S$), then

$$x := \begin{cases} a & \text{if } a = b; \\ a + b & \text{if } a < b \end{cases}$$

✓ If y > F or $m_d > F$, then $m_d + y$, $m_d + 2y \in S$ and $x := m_d$.

- ✓ Let $T := S \cup F(S)$. Then F(S) > F(T) is an element of the minimal generating set of *T*, with F(S) + y, $F(S) + 2y \in T$.
- ✓ Let $a = \min\{s \in S : s + y \in S\}$ and $b = \min\{s \in S : s + 2y \in S\}$. If $b \le a$ (e.g. $m_1 + 2y \in S$), then

$$x := \begin{cases} a & \text{if } a = b; \\ a + b & \text{if } a < b \end{cases}$$

✓ If y > F or $m_d > F$, then $m_d + y$, $m_d + 2y \in S$ and $x := m_d$.

- ✓ Let $T := S \cup F(S)$. Then F(S) > F(T) is an element of the minimal generating set of *T*, with F(S) + y, $F(S) + 2y \in T$.
- ✓ Let $a = \min\{s \in S : s + y \in S\}$ and $b = \min\{s \in S : s + 2y \in S\}$. If $b \le a$ (e.g. $m_1 + 2y \in S$), then

$$x := \begin{cases} a & \text{if } a = b; \\ a + b & \text{if } a < b \end{cases}$$

✓ If y > F or $m_d > F$, then $m_d + y$, $m_d + 2y \in S$ and $x := m_d$.

- ✓ Let $T := S \cup F(S)$. Then F(S) > F(T) is an element of the minimal generating set of *T*, with F(S) + y, $F(S) + 2y \in T$.
- ✓ Let $a = \min\{s \in S : s + y \in S\}$ and $b = \min\{s \in S : s + 2y \in S\}$. If $b \le a$ (e.g. $m_1 + 2y \in S$), then

$$x := \begin{cases} a & \text{if } a = b; \\ a + b & \text{if } a < b \end{cases}$$

✓ Let $m_1 \le 8$, then the conjecture holds for all monomial ideals of *R* (Herzinger, 1999 & Herzinger-Sanford, 2004).

- \checkmark If S is a complete intersection, then the conjecture holds for two generated monomial ideals of S (García Sánchez-Leamer, 2013).
- ✓ If $S = \langle a, a + 1, ..., 2a 2 \rangle$, for $a \ge 3$, then the conjecture holds for all monomial ideals of *R* (Goto-Takahashi-Taniguchi-Truong, 2015).
- ✓ Let $m_1 \le 7$ and *I* be a non-zero monomial ideal of *R*. If *I* ⊗_{*R*} Hom_{*R*}(*I*, *K*_{*R*}) is torsionfree, then one has either *I* ≅ *R* or *I* ≅ *K*_{*R*} (Goto-Takahashi-Taniguchi-Truong, 2015).

✓ Let $m_1 \le 8$, then the conjecture holds for all monomial ideals of *R* (Herzinger, 1999 & Herzinger-Sanford, 2004).

- \checkmark If S is a complete intersection, then the conjecture holds for two generated monomial ideals of S (García Sánchez-Leamer, 2013).
- ✓ If $S = \langle a, a + 1, ..., 2a 2 \rangle$, for $a \ge 3$, then the conjecture holds for all monomial ideals of *R* (Goto-Takahashi-Taniguchi-Truong, 2015).
- ✓ Let $m_1 \le 7$ and *I* be a non-zero monomial ideal of *R*. If *I* ⊗_{*R*} Hom_{*R*}(*I*, *K*_{*R*}) is torsionfree, then one has either *I* ≅ *R* or *I* ≅ *K*_{*R*} (Goto-Takahashi-Taniguchi-Truong, 2015).

- ✓ Let $m_1 \le 8$, then the conjecture holds for all monomial ideals of *R* (Herzinger, 1999 & Herzinger-Sanford, 2004).
- \checkmark If S is a complete intersection, then the conjecture holds for two generated monomial ideals of S (García Sánchez-Leamer, 2013).
- ✓ If $S = \langle a, a + 1, ..., 2a 2 \rangle$, for $a \ge 3$, then the conjecture holds for all monomial ideals of *R* (Goto-Takahashi-Taniguchi-Truong, 2015).
- ✓ Let $m_1 \le 7$ and *I* be a non-zero monomial ideal of *R*. If *I* ⊗_{*R*} Hom_{*R*}(*I*, *K*_{*R*}) is torsionfree, then one has either *I* ≅ *R* or *I* ≅ *K*_{*R*} (Goto-Takahashi-Taniguchi-Truong, 2015).

- ✓ Let $m_1 \le 8$, then the conjecture holds for all monomial ideals of *R* (Herzinger, 1999 & Herzinger-Sanford, 2004).
- ✓ If S is a complete intersection, then the conjecture holds for two generated monomial ideals of S (García Sánchez-Leamer, 2013).
- ✓ If $S = \langle a, a + 1, ..., 2a 2 \rangle$, for $a \ge 3$, then the conjecture holds for all monomial ideals of *R* (Goto-Takahashi-Taniguchi-Truong, 2015).
- ✓ Let $m_1 \le 7$ and *I* be a non-zero monomial ideal of *R*. If *I* ⊗_{*R*} Hom_{*R*}(*I*, *K*_{*R*}) is torsionfree, then one has either *I* ≅ *R* or *I* ≅ *K*_{*R*} (Goto-Takahashi-Taniguchi-Truong, 2015).

- ✓ Let $m_1 \le 8$, then the conjecture holds for all monomial ideals of *R* (Herzinger, 1999 & Herzinger-Sanford, 2004).
- ✓ If S is a complete intersection, then the conjecture holds for two generated monomial ideals of S (García Sánchez-Leamer, 2013).
- ✓ If $S = \langle a, a + 1, ..., 2a 2 \rangle$, for $a \ge 3$, then the conjecture holds for all monomial ideals of *R* (Goto-Takahashi-Taniguchi-Truong, 2015).
- ✓ Let $m_1 \le 7$ and *I* be a non-zero monomial ideal of *R*. If *I* ⊗_{*R*} Hom_{*R*}(*I*, *K*_{*R*}) is torsionfree, then one has either *I* ≅ *R* or *I* ≅ *K*_{*R*} (Goto-Takahashi-Taniguchi-Truong, 2015).

- ✓ Let $m_1 \le 8$, then the conjecture holds for all monomial ideals of *R* (Herzinger, 1999 & Herzinger-Sanford, 2004).
- ✓ If S is a complete intersection, then the conjecture holds for two generated monomial ideals of S (García Sánchez-Leamer, 2013).
- ✓ If $S = \langle a, a + 1, ..., 2a 2 \rangle$, for $a \ge 3$, then the conjecture holds for all monomial ideals of *R* (Goto-Takahashi-Taniguchi-Truong, 2015).
- ✓ Let $m_1 \le 7$ and *I* be a non-zero monomial ideal of *R*. If *I* ⊗_{*R*} Hom_{*R*}(*I*, *K*_{*R*}) is torsionfree, then one has either *I* ≅ *R* or *I* ≅ *K*_{*R*} (Goto-Takahashi-Taniguchi-Truong, 2015).

- ✓ Let m₁ ≤ 8, then the conjecture holds for all monomial ideals of R (Herzinger, 1999 & Herzinger-Sanford, 2004).
- ✓ If S is a complete intersection, then the conjecture holds for two generated monomial ideals of S (García Sánchez-Leamer, 2013).
- ✓ If $S = \langle a, a + 1, ..., 2a 2 \rangle$, for $a \ge 3$, then the conjecture holds for all monomial ideals of *R* (Goto-Takahashi-Taniguchi-Truong, 2015).
- ✓ Let $m_1 \le 7$ and *I* be a non-zero monomial ideal of *R*. If $I \otimes_R \operatorname{Hom}_R(I, K_R)$ is torsionfree, then one has either $I \cong R$ or $I \cong K_R$ (Goto-Takahashi-Taniguchi-Truong, 2015).

Lemma

Let *S* be a numerical semigroup and y > 0 be an integer. Then

$$T = \{0\} \cup \{x \in S : x + y \in S \text{ or } x - y \in S\}$$

is a numerical semigroup and $\{0, y\} + S$ is Huneke-Wiegand if and only if $\{0, y\} + T$ is Huneke-Wiegand.

Let $A = \{0, y\} + S$, then we may assume that

$$S = \langle a_1, a_1 + y, \ldots, a_n, a_n + y \rangle,$$

for some $a_1, \ldots, a_n \in A^{-1}$.

As $F(A_0^{-1}) = F(S)$, we state the following problem:

Problem 2

Let $S_1 = \langle a_1, \dots, a_n \rangle$ be a numerical semigroup, y > 0 be an integer such that $a_i + y \notin S_1$ for all $i = 1, \dots, n$ and let $S = S_1 + \langle a_1 + y, \dots, a_n + y \rangle$. Then

 $F(S_1) \geqq F(S).$

Problem 2 \Rightarrow Problem 1

Problem 1

For every numerical semigroup *S* and any integer y > 0 there exists an element in the minimal set of generators of $(\{0, y\} + S)_0^{-1}$ such that $x + 2y \in S$.

As $F(A_0^{-1}) = F(S)$, we state the following problem:

Problem 2

Let $S_1 = \langle a_1, \dots, a_n \rangle$ be a numerical semigroup, y > 0 be an integer such that $a_i + y \notin S_1$ for all $i = 1, \dots, n$ and let $S = S_1 + \langle a_1 + y, \dots, a_n + y \rangle$. Then

 $F(S_1) \geqq F(S).$

Problem 2 \Rightarrow Problem 1

Problem 1

For every numerical semigroup *S* and any integer y > 0 there exists an element in the minimal set of generators of $(\{0, y\} + S)_0^{-1}$ such that $x + 2y \in S$.

Irreducible numerical semigroups

A numerical semigroup is called *irreducible*, if it cannot be written as the intersection of two numerical semigroups properly containing it.

Symmetric numerical semigroups are those irreducible ones *S*, such that F(S) is odd and $F(S) - x \in S$ for all $x \in \mathbb{Z} \setminus S$.

Blanco-Rosales, 2013

By adding and removing certain elements of an irreducible numerical semigroup *S*, one may get a new irreducible numerical semigroup \overline{S} with the same Frobenius number $F := F(\overline{S}) = F(S)$ and larger multiplicity $m(\overline{S}) > m(S)$, provided $m(S) < \frac{F(S)}{2}$. Continuing in this way, we get the numerical semigroup

$$C(F) = \begin{cases} \{0, \frac{F(S)+1}{2}, \rightarrow\} \setminus \{F\} & \text{if } F \text{ is odd,} \\ \{0, \frac{F(S)}{2} + 1, \rightarrow\} \setminus \{F\} & \text{if } F \text{ is even.} \end{cases}$$

Irreducible numerical semigroups

A numerical semigroup is called *irreducible*, if it cannot be written as the intersection of two numerical semigroups properly containing it.

Symmetric numerical semigroups are those irreducible ones *S*, such that F(S) is odd and $F(S) - x \in S$ for all $x \in \mathbb{Z} \setminus S$.

Blanco-Rosales, 2013

By adding and removing certain elements of an irreducible numerical semigroup *S*, one may get a new irreducible numerical semigroup \overline{S} with the same Frobenius number $F := F(\overline{S}) = F(S)$ and larger multiplicity $m(\overline{S}) > m(S)$, provided $m(S) < \frac{F(S)}{2}$. Continuing in this way, we get the numerical semigroup

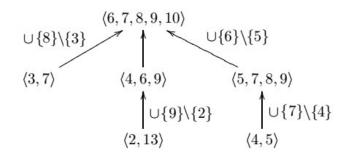
$$C(F) = \begin{cases} \{0, \frac{F(S)+1}{2}, \rightarrow\} \setminus \{F\} & \text{if } F \text{ is odd,} \\ \{0, \frac{F(S)}{2} + 1, \rightarrow\} \setminus \{F\} & \text{if } F \text{ is even.} \end{cases}$$

Consider the directed graph $\mathcal{G}(F) = (V, E)$ where *V* is the set of all irreducible numerical semigroups with Frobenius number *F* and $(T, S) \in E$ if $m(T) < \frac{F}{2}$ and $S = \overline{T}$.

Blanco-Rosales, 2013

 $\mathcal{G}(F)$ is a tree with root C(F) and the children of each vertex T are those \overline{T} coming from the above procedure

G(11):



Theorem

Let *S* be an irreducible numerical semigroup with Frobenius number F = F(S). If *S* is not a leaf of the tree $\mathcal{G}(F)$, then any two generated relative ideal of *S* satisfies the Huneke-Wiegand Conjecture.

Test computations by GAP

Our equivalent statement of the conjecture,

"finding a minimal generator x of $(\{0, y\} + S)_0^{-1}$ such that $x + 2y \in S$ ",

can be easily implemented in GAP to see that the conjecture holds for all numerical semigroup with Frobenius number at most 31.

Theorem

Let *S* be an irreducible numerical semigroup with Frobenius number F = F(S). If *S* is not a leaf of the tree $\mathcal{G}(F)$, then any two generated relative ideal of *S* satisfies the Huneke-Wiegand Conjecture.

Test computations by GAP

Our equivalent statement of the conjecture,

"finding a minimal generator x of $(\{0, y\} + S)_0^{-1}$ such that $x + 2y \in S$ ",

can be easily implemented in GAP to see that the conjecture holds for all numerical semigroup with Frobenius number at most 31.

SOME REFERENCES

- M. Auslander, Modules over unramified regular local rings. Illinois J. Math. 5 (1961), 631–647.
- V. Blanco and J.C. Rosales, The tree of irreducible numerical semigroups with fixed Frobenius number. Forum Math. 25 (2013), 1249–1261.
- P.A. García-Sánchez and M. J. Leamer, Huneke-Wiegand Conjecture for complete intersection numerical semigroup rings. J. Algebra **391** (2013), 114–124.
- S. Goto, R. Takahashi, N. Taniguchi and H.L. Hoang Le Truong, Huneke-Wiegand conjecture and change of rings. J. Algebra **422** (2015), 33–52.

- K. Herzinger, Torsion in the tensor product of an ideal with its inverse. Comm. Algebra **24** (1996), 3065–3083.
- K. Herzinger and R. Sanford, Minimal Generating Sets for Relative Ideals in Numerical Semigroups of Multiplicity Eight. Comm. Alg. 32 (2004), no. 12, 4713–4731.
- C. Huneke and R. Wiegand, Tensor products of modules and the rigidity of Tor. Math. Ann. **299** (1994), 449–476.