Joint with Kee, Mee-Kyoung

International meeting on numerical semigroups with applications - Levico Terme 2016

- We are interested in properties of numerical semigroup rings, such as Cohen-Macaulyness, Gorensteiness and complete intersection.
- We emphasize morphisms rather than objects.
- Apéry sets are relative notion.
- Gluing is an operation of adding radicals.

- We are interested in properties of numerical semigroup rings, such as Cohen-Macaulyness, Gorensteiness and complete intersection.
- We emphasize morphisms rather than objects.
- Apéry sets are relative notion.
- Gluing is an operation of adding radicals.

- We are interested in properties of numerical semigroup rings, such as Cohen-Macaulyness, Gorensteiness and complete intersection.
- We emphasize morphisms rather than objects.
- Apéry sets are relative notion.
- Gluing is an operation of adding radicals.

- We are interested in properties of numerical semigroup rings, such as Cohen-Macaulyness, Gorensteiness and complete intersection.
- We emphasize morphisms rather than objects.
- Apéry sets are relative notion.
- Gluing is an operation of adding radicals.

• Let S be a numerical semigroup and κ be a field.

Being a subring of the power series ring $\kappa[[\mathbf{u}]]$, the numerical semigroup ring $\kappa[[\mathbf{u}^S]]$ consists of power series $\sum_{s \in S} a_s \mathbf{u}^s$ with coefficients $a_s \in \kappa$.

- Let *t* be the smallest non-zero number of *S*. The monoid *S*/*t* is called a normalized numerical semigroup.
- A numerical semigroup is a monoid generated by finitely many positive rational numbers. If S is generated by s₁, · · · , s_n, then we write κ[[u^S]] = κ[[u^{s₁}, · · · , u^{s_n}]].
- If S is normalized, we often write the numerical semigroup ring as κ[[e^S]].

- Let S be a numerical semigroup and κ be a field. Being a subring of the power series ring κ[[u]], the numerical semigroup ring κ[[u^S]] consists of power se ∑_{s∈S} a_su^s with coefficients a_s ∈ κ.
- Let *t* be the smallest non-zero number of *S*. The monoid *S*/*t* is called a normalized numerical semigroup.
- A numerical semigroup is a monoid generated by finitely many positive rational numbers. If S is generated by s₁, · · · , s_n, then we write κ[[u^S]] = κ[[u^{s₁}, · · · , u^{s_n}]].
- If S is normalized, we often write the numerical semigroup ring as κ[[e^S]].

- Let S be a numerical semigroup and κ be a field. Being a subring of the power series ring κ[[u]], the numerical semigroup ring κ[[u^S]] consists of power series ∑_{s∈S} a_su^s with coefficients a_s ∈ κ.
- Let t be the smallest non-zero number of S. The monoid S/t is called a normalized numerical semigroup.
- A numerical semigroup is a monoid generated by finitely many positive rational numbers. If S is generated by s₁, · · · , s_n, then we write κ[[u^S]] = κ[[u^{s₁}, · · · , u^{s_n}]].
- If S is normalized, we often write the numerical semigroup ring as κ[[e^S]].

- Let S be a numerical semigroup and κ be a field. Being a subring of the power series ring κ[[u]], the numerical semigroup ring κ[[u^S]] consists of power series ∑_{s∈S} a_su^s with coefficients a_s ∈ κ.
- Let *t* be the smallest non-zero number of *S*. The monoid *S*/*t* is called a normalized numerical semigroup
- A numerical semigroup is a monoid generated by finitely many positive rational numbers. If S is generated by s₁, · · · , s_n, then we write κ[[u^S]] = κ[[u^{s₁}, · · · , u^{s_n}]].
- If S is normalized, we often write the numerical semigroup ring as κ[[e^S]].

- Let S be a numerical semigroup and κ be a field. Being a subring of the power series ring κ[[u]], the numerical semigroup ring κ[[u^S]] consists of power series ∑_{s∈S} a_su^s with coefficients a_s ∈ κ.
- Let t be the smallest non-zero number of S. The monoid S/t is called a normalized numerical semigroup.
- A numerical semigroup is a monoid generated by finitely many positive rational numbers. If S is generated by s₁, · · · , s_n, then we write κ[[u^S]] = κ[[u^{s₁}, · · · , u^{s_n}]].
- If S is normalized, we often write the numerical semigroup ring as κ[[e^S]].

- Let S be a numerical semigroup and κ be a field. Being a subring of the power series ring κ[[u]], the numerical semigroup ring κ[[u^S]] consists of power series ∑_{s∈S} a_su^s with coefficients a_s ∈ κ.
- Let t be the smallest non-zero number of S.
 The monoid S/t is called a normalized numerical semigroup.
- A numerical semigroup is a monoid generated by finitely many positive rational numbers. If S is generated by s₁,..., s_n, then we write κ[[u^S]] = κ[[u^{s₁},..., u^{s_n}]].
- If S is normalized, we often write the numerical semigroup ring as $\kappa[[\mathbf{e}^S]]$.

- Let S be a numerical semigroup and κ be a field. Being a subring of the power series ring κ[[u]], the numerical semigroup ring κ[[u^S]] consists of power series ∑_{s∈S} a_su^s with coefficients a_s ∈ κ.
- Let t be the smallest non-zero number of S.
 The monoid S/t is called a normalized numerical semigroup.
- A numerical semigroup is a monoid generated by finitely many positive rational numbers. If S is generated by s₁, · · · , s_n, then we write κ[[**u**^S]] = κ[[**u**^{s₁}, · · · , **u**^{s_n}]].
- If S is normalized, we often write the numerical semigroup ring as $\kappa[[\mathbf{e}^S]]$.

- Let S be a numerical semigroup and κ be a field. Being a subring of the power series ring κ[[u]], the numerical semigroup ring κ[[u^S]] consists of power series ∑_{s∈S} a_su^s with coefficients a_s ∈ κ.
- Let t be the smallest non-zero number of S.
 The monoid S/t is called a normalized numerical semigroup.
- A numerical semigroup is a monoid generated by finitely many positive rational numbers. If S is generated by s₁,..., s_n, then we write κ[[**u**^S]] = κ[[**u**^{s₁},..., **u**^{s_n}]].
- If S is normalized, we often write the numerical semigroup ring as κ[[e^S]].

- A morphism of numerical semigroups $S_1 \rightarrow S_2$ is a multiplication by a positive rational number t satisfying $tS_1 \subset S_2$.
- For a morphism t: S₁ → S₂ of numerical semigroups, there is an inclusion κ[[v^{S₁}]] → κ[[u^{S₂}]] identifying v^s with u^{ts} for s ∈ S₁.
 We call κ[[u^{S₂}]]/κ[[v^{S₁}]] a numerical semigroup algebra. Elements of κ[[v^{S₁}]] are called coefficients of the algebra.
- If t = 1, we use the notation $\kappa[[\mathbf{u}^{S_2}]]/\kappa[[\mathbf{u}^{S_1}]]$ for the algebra.
- To study a ring κ[[e^S]], it is the same thing to study the algebra κ[[e^S]]/κ[[e]] with coefficients in the power series ring κ[[e]].

- A morphism of numerical semigroups $S_1 \rightarrow S_2$ is a multiplication by a positive rational number t satisfying $tS_1 \subset S_2$.
- For a morphism t: S₁ → S₂ of numerical semigroups, there is an inclusion κ[[v^{S₁}]] → κ[[u^{S₂}]] identifying v^s with u^{ts} for s ∈ S₁.
 We call κ[[u^{S₂}]]/κ[[v^{S₁}]] a numerical semigroup algebra. Elements of κ[[v^{S₁}]] are called coefficients of the algebra.
- If t = 1, we use the notation $\kappa[[\mathbf{u}^{S_2}]]/\kappa[[\mathbf{u}^{S_1}]]$ for the algebra.
- To study a ring κ[[e^S]], it is the same thing to study the algebra κ[[e^S]]/κ[[e]] with coefficients in the power series ring κ[[e]].

- A morphism of numerical semigroups $S_1 \rightarrow S_2$ is a multiplication by a positive rational number t satisfying $tS_1 \subset S_2$.
- For a morphism t: S₁ → S₂ of numerical semigroups, there is an inclusion κ[[**v**^{S₁}]] → κ[[**u**^{S₂}]] identifying **v**^s with **u**^{ts} for s ∈ S₁.
 We call κ[[**u**^{S₂}]]/κ[[**v**^{S₁}]] a numerical semigroup algebra
 - Elements of $\kappa[[\mathbf{v}^{S_1}]]$ are called coefficients of the algebra.
- If t = 1, we use the notation $\kappa[[\mathbf{u}^{S_2}]]/\kappa[[\mathbf{u}^{S_1}]]$ for the algebra.
- To study a ring κ[[e^S]], it is the same thing to study the algebra κ[[e^S]]/κ[[e]] with coefficients in the power series ring κ[[e]].

- A morphism of numerical semigroups $S_1 \rightarrow S_2$ is a multiplication by a positive rational number t satisfying $tS_1 \subset S_2$.
- For a morphism t: S₁ → S₂ of numerical semigroups, there is an inclusion κ[[v^{S₁}]] → κ[[u^{S₂}]] identifying v^s with u^{ts} for s ∈ S₁. We call κ[[u^{S₂}]]/κ[[v^{S₁}]] a numerical semigroup algebra. Elements of κ[[v^{S₁}]] are called coefficients of the algebra
- If t = 1, we use the notation $\kappa[[\mathbf{u}^{S_2}]]/\kappa[[\mathbf{u}^{S_1}]]$ for the algebra.
- To study a ring κ[[e^S]], it is the same thing to study the algebra κ[[e^S]]/κ[[e]] with coefficients in the power series ring κ[[e]].

- A morphism of numerical semigroups $S_1 \rightarrow S_2$ is a multiplication by a positive rational number t satisfying $tS_1 \subset S_2$.
- For a morphism $t: S_1 \to S_2$ of numerical semigroups, there is an inclusion $\kappa[[\mathbf{v}^{S_1}]] \to \kappa[[\mathbf{u}^{S_2}]]$ identifying \mathbf{v}^s with \mathbf{u}^{ts} for $s \in S_1$. We call $\kappa[[\mathbf{u}^{S_2}]]/\kappa[[\mathbf{v}^{S_1}]]$ a numerical semigroup algebra. Elements of $\kappa[[\mathbf{v}^{S_1}]]$ are called coefficients of the algebra.
- If t = 1, we use the notation $\kappa[[\mathbf{u}^{S_2}]]/\kappa[[\mathbf{u}^{S_1}]]$ for the algebra.
- To study a ring κ[[e^S]], it is the same thing to study the algebra κ[[e^S]]/κ[[e]] with coefficients in the power series ring κ[[e]].

- A morphism of numerical semigroups $S_1 \rightarrow S_2$ is a multiplication by a positive rational number t satisfying $tS_1 \subset S_2$.
- For a morphism t: S₁ → S₂ of numerical semigroups, there is an inclusion κ[[v^{S₁}]] → κ[[u^{S₂}]] identifying v^s with u^{ts} for s ∈ S₁.
 We call κ[[u^{S₂}]]/κ[[v^{S₁}]] a numerical semigroup algebra. Elements of κ[[v^{S₁}]] are called coefficients of the algebra.
- If t = 1, we use the notation $\kappa[[\mathbf{u}^{S_2}]]/\kappa[[\mathbf{u}^{S_1}]]$ for the algebra.
- To study a ring κ[[e^S]], it is the same thing to study the algebra κ[[e^S]]/κ[[e]] with coefficients in the power series ring κ[[e]].

- A morphism of numerical semigroups $S_1 \rightarrow S_2$ is a multiplication by a positive rational number t satisfying $tS_1 \subset S_2$.
- For a morphism t: S₁ → S₂ of numerical semigroups, there is an inclusion κ[[v^{S₁}]] → κ[[u^{S₂}]] identifying v^s with u^{ts} for s ∈ S₁.
 We call κ[[u^{S₂}]]/κ[[v^{S₁}]] a numerical semigroup algebra. Elements of κ[[v^{S₁}]] are called coefficients of the algebra.
- If t = 1, we use the notation $\kappa[[\mathbf{u}^{S_2}]]/\kappa[[\mathbf{u}^{S_1}]]$ for the algebra.
- To study a ring κ[[e^S]], it is the same thing to study the algebra κ[[e^S]]/κ[[e]] with coefficients in the power series ring κ[[e]].

- Given a numerical semigroup algebra R/R', a monomial is called Apéry if it is not divisible by any non-trivial coefficient.
- As an *R*'-module, *R* is generated by Apéry monomials.
- A monomial of R/R' written as v^su^w, where v^s is a coefficient and u^w is an Apéry monomial, is called a *representation* of the monomial.
- A monomial may have different representations. For instance, the monomial $e^{13/5}$ in $\kappa[[e, e^{6/5}, e^{7/5}, e^{8/5}]]/\kappa[[e, e^{6/5}]]$ has representations $e e^{8/5}$ and $e^{6/5}e^{7/5}$.
- If every monomial has a unique representation, the *R*'-module *R* is free with Apéry monomials as a basis.

- Given a numerical semigroup algebra R/R', a monomial is called *Apéry* if it is not divisible by any non-trivial coefficient.
- As an R'-module, R is generated by Apéry monomials.
- A monomial of R/R' written as v^su^w, where v^s is a coefficient and u^w is an Apéry monomial, is called a *representation* of the monomial.
- A monomial may have different representations. For instance, the monomial $e^{13/5}$ in $\kappa[[e, e^{6/5}, e^{7/5}, e^{8/5}]]/\kappa[[e, e^{6/5}]]$ has representations $e e^{8/5}$ and $e^{6/5}e^{7/5}$.
- If every monomial has a unique representation, the *R*'-module *R* is free with Apéry monomials as a basis.

- Given a numerical semigroup algebra R/R', a monomial is called Apéry if it is not divisible by any non-trivial coefficient.
- As an R'-module, R is generated by Apéry monomials.
- A monomial of R/R' written as v^su^w, where v^s is a coefficient and u^w is an Apéry monomial, is called a *representation* of the monomial.
- A monomial may have different representations. For instance, the monomial $e^{13/5}$ in $\kappa[[e, e^{6/5}, e^{7/5}, e^{8/5}]]/\kappa[[e, e^{6/5}]]$ has representations $e e^{8/5}$ and $e^{6/5}e^{7/5}$.
- If every monomial has a unique representation, the *R'*-module *R* is free with Apéry monomials as a basis.

- Given a numerical semigroup algebra R/R', a monomial is called *Apéry* if it is not divisible by any non-trivial coefficient.
- As an R'-module, R is generated by Apéry monomials.
- A monomial of R/R' written as v^su^w, where v^s is a coefficient and u^w is an Apéry monomial, is called a *representation* of the monomial.
- A monomial may have different representations. For instance, the monomial e^{13/5} in κ[[e, e^{6/5}, e^{7/5}, e^{8/5}]]/κ[[e, e^{6/5}]] has representations e e^{8/5} and e^{6/5}e^{7/5}.
- If every monomial has a unique representation, the *R'*-module *R* is free with Apéry monomials as a basis.

- Given a numerical semigroup algebra R/R', a monomial is called *Apéry* if it is not divisible by any non-trivial coefficient.
- As an R'-module, R is generated by Apéry monomials.
- A monomial of R/R' written as v^su^w, where v^s is a coefficient and u^w is an Apéry monomial, is called a *representation* of the monomial.
- A monomial may have different representations. For instance, the monomial $\mathbf{e}^{13/5}$ in $\kappa[[\mathbf{e}, \mathbf{e}^{6/5}, \mathbf{e}^{7/5}, \mathbf{e}^{8/5}]]/\kappa[[\mathbf{e}, \mathbf{e}^{6/5}]]$ has representations $\mathbf{e} \, \mathbf{e}^{8/5}$ and $\mathbf{e}^{6/5} \mathbf{e}^{7/5}$.
- If every monomial has a unique representation, the R'-module R is free with Apéry monomials as a basis.

- Given a numerical semigroup algebra R/R', a monomial is called *Apéry* if it is not divisible by any non-trivial coefficient.
- As an R'-module, R is generated by Apéry monomials.
- A monomial of R/R' written as v^su^w, where v^s is a coefficient and u^w is an Apéry monomial, is called a *representation* of the monomial.
- A monomial may have different representations. For instance, the monomial $\mathbf{e}^{13/5}$ in $\kappa[[\mathbf{e}, \mathbf{e}^{6/5}, \mathbf{e}^{7/5}, \mathbf{e}^{8/5}]]/\kappa[[\mathbf{e}, \mathbf{e}^{6/5}]]$ has representations $\mathbf{e} \, \mathbf{e}^{8/5}$ and $\mathbf{e}^{6/5} \mathbf{e}^{7/5}$.
- If every monomial has a unique representation, the *R'*-module *R* is free with Apéry monomials as a basis.

- A numerical semigroup algebra is called *Cohen-Macaulay* if it is flat and the fibers are Cohen-Macaulay.
- A numerical semigroup algebra is Cohen-Macaulay if and only if it is flat.

Proposition

- For any $s \in S$, the algebra $\kappa[[\mathbf{u}^S]]/\kappa[[\mathbf{u}^s]]$ is Cohen-Macaulay.
- In particular, the algebra κ[[e^S]]/κ[[e]] is Cohen-Macaulay for a normalized S.
- Let S and T be numerical semigroups generated by integers.
 Let p ∈ T and q ∈ S be relative prime numbers. Then κ[[u^{pS+qT}]]/κ[[u^{qT}]] is Cohen-Macaulay.

- A numerical semigroup algebra is called *Cohen-Macaulay* if it is flat and the fibers are Cohen-Macaulay.
- A numerical semigroup algebra is Cohen-Macaulay if and only if it is flat.

Proposition

- For any $s \in S$, the algebra $\kappa[[\mathbf{u}^S]]/\kappa[[\mathbf{u}^s]]$ is Cohen-Macaulay.
- In particular, the algebra κ[[e^S]]/κ[[e]] is Cohen-Macaulay for a normalized S.
- Let S and T be numerical semigroups generated by integers.
 Let p ∈ T and q ∈ S be relative prime numbers. Then κ[[u^{pS+qT}]]/κ[[u^{qT}]] is Cohen-Macaulay.

- A numerical semigroup algebra is called *Cohen-Macaulay* if it is flat and the fibers are Cohen-Macaulay.
- A numerical semigroup algebra is Cohen-Macaulay if and only if it is flat.

Proposition

- For any $s \in S$, the algebra $\kappa[[\mathbf{u}^S]]/\kappa[[\mathbf{u}^s]]$ is Cohen-Macaulay.
- In particular, the algebra κ[[e^S]]/κ[[e]] is Cohen-Macaulay for a normalized S.
- Let S and T be numerical semigroups generated by integers.
 Let p ∈ T and q ∈ S be relative prime numbers. Then κ[[u^{pS+qT}]]/κ[[u^{qT}]] is Cohen-Macaulay.

- A numerical semigroup algebra is called *Cohen-Macaulay* if it is flat and the fibers are Cohen-Macaulay.
- A numerical semigroup algebra is Cohen-Macaulay if and only if it is flat.

Proposition

- For any $s \in S$, the algebra $\kappa[[\mathbf{u}^S]]/\kappa[[\mathbf{u}^s]]$ is Cohen-Macaulay.
- In particular, the algebra κ[[e^S]]/κ[[e]] is Cohen-Macaulay for a normalized S.
- Let S and T be numerical semigroups generated by integers.
 Let p ∈ T and q ∈ S be relative prime numbers. Then κ[[u^{pS+qT}]]/κ[[u^{qT}]] is Cohen-Macaulay.

- A numerical semigroup algebra is called *Cohen-Macaulay* if it is flat and the fibers are Cohen-Macaulay.
- A numerical semigroup algebra is Cohen-Macaulay if and only if it is flat.

Proposition

- For any $s \in S$, the algebra $\kappa[[\mathbf{u}^S]]/\kappa[[\mathbf{u}^s]]$ is Cohen-Macaulay.
- In particular, the algebra $\kappa[[\mathbf{e}^S]]/\kappa[[\mathbf{e}]]$ is Cohen-Macaulay for a normalized S.
- Let S and T be numerical semigroups generated by integers.
 Let p ∈ T and q ∈ S be relative prime numbers. Then κ[[u^{pS+qT}]]/κ[[u^{qT}]] is Cohen-Macaulay.

- A numerical semigroup algebra is called *Cohen-Macaulay* if it is flat and the fibers are Cohen-Macaulay.
- A numerical semigroup algebra is Cohen-Macaulay if and only if it is flat.

Proposition

- For any $s \in S$, the algebra $\kappa[[\mathbf{u}^S]]/\kappa[[\mathbf{u}^s]]$ is Cohen-Macaulay.
- In particular, the algebra $\kappa[[\mathbf{e}^S]]/\kappa[[\mathbf{e}]]$ is Cohen-Macaulay for a normalized S.
- Let S and T be numerical semigroups generated by integers.
 Let p ∈ T and q ∈ S be relative prime numbers. Then κ[[u^{pS+qT}]]/κ[[u^{qT}]] is Cohen-Macaulay.

Theorem

- An Apéry monomial of R/R" is the product of an Apéry monomial of R/R' and an Apéry monomial of R'/R".
- If the algebra R/R' is flat, the product of an Apéry monomial of R/R' and an Apéry monomial of R'/R" is an Apéry monomial of R/R".
- If the algebra R/R' is flat, different products give rise to different Apéry monomials.

Theorem

- An Apéry monomial of R/R'' is the product of an Apéry monomial of R/R' and an Apéry monomial of R'/R''.
- If the algebra R/R' is flat, the product of an Apéry monomial of R/R' and an Apéry monomial of R'/R" is an Apéry monomial of R/R".
- If the algebra *R*/*R*′ is flat, different products give rise to different Apéry monomials.

Theorem

- An Apéry monomial of R/R'' is the product of an Apéry monomial of R/R' and an Apéry monomial of R'/R''.
- If the algebra R/R' is flat, the product of an Apéry monomial of R/R' and an Apéry monomial of R'/R" is an Apéry monomial of R/R".
- If the algebra R/R' is flat, different products give rise to different Apéry monomials.

Theorem

- An Apéry monomial of R/R'' is the product of an Apéry monomial of R/R' and an Apéry monomial of R'/R''.
- If the algebra R/R' is flat, the product of an Apéry monomial of R/R' and an Apéry monomial of R'/R'' is an Apéry monomial of R/R''.
- If the algebra R/R' is flat, different products give rise to different Apéry monomials.

- A numerical semigroup algebra is called *Gorenstein* if it is flat and the fibers are Gorenstein.
- $\kappa[[e^S]]$ is a Gorenstein ring if and only if $\kappa[[e^S]]/\kappa[[e]]$ is a Gorenstein algebra .
- Given any s₁, s₂ ∈ S, the algebra κ[[u^S]]/κ[[u^{s1}]] is Gorenstein if and only if κ[[u^S]]/κ[[u^{s2}]] is Gorenstein.
- Among non-trivial Apéry monomials of a numerical semigroup algebra, maximal elements with respect to the order given by divisibility are called *maximal monomials*.

Proposition (Symmetry)

A flat numerical semigroup algebra is *Gorenstein* if and only if it has a unique maximal monomial.

- A numerical semigroup algebra is called *Gorenstein* if it is flat and the fibers are Gorenstein.
- $\kappa[[\mathbf{e}^S]]$ is a Gorenstein ring if and only if $\kappa[[\mathbf{e}^S]]/\kappa[[\mathbf{e}]]$ is a Gorenstein algebra .
- Given any s₁, s₂ ∈ S, the algebra κ[[u^S]]/κ[[u^{s1}]] is Gorenstein if and only if κ[[u^S]]/κ[[u^{s2}]] is Gorenstein.
- Among non-trivial Apéry monomials of a numerical semigroup algebra, maximal elements with respect to the order given by divisibility are called *maximal monomials*.

Proposition (Symmetry)

A flat numerical semigroup algebra is *Gorenstein* if and only if it has a unique maximal monomial.

- A numerical semigroup algebra is called *Gorenstein* if it is flat and the fibers are Gorenstein.
- $\kappa[[\mathbf{e}^S]]$ is a Gorenstein ring if and only if $\kappa[[\mathbf{e}^S]]/\kappa[[\mathbf{e}]]$ is a Gorenstein algebra .
- Given any $s_1, s_2 \in S$, the algebra $\kappa[[\mathbf{u}^S]]/\kappa[[\mathbf{u}^{s_1}]]$ is Gorenstein if and only if $\kappa[[\mathbf{u}^S]]/\kappa[[\mathbf{u}^{s_2}]]$ is Gorenstein.
- Among non-trivial Apéry monomials of a numerical semigroup algebra, maximal elements with respect to the order given by divisibility are called *maximal monomials*.

Proposition (Symmetry)

A flat numerical semigroup algebra is *Gorenstein* if and only if it has a unique maximal monomial.

- A numerical semigroup algebra is called *Gorenstein* if it is flat and the fibers are Gorenstein.
- $\kappa[[\mathbf{e}^S]]$ is a Gorenstein ring if and only if $\kappa[[\mathbf{e}^S]]/\kappa[[\mathbf{e}]]$ is a Gorenstein algebra .
- Given any $s_1, s_2 \in S$, the algebra $\kappa[[\mathbf{u}^S]]/\kappa[[\mathbf{u}^{s_1}]]$ is Gorenstein if and only if $\kappa[[\mathbf{u}^S]]/\kappa[[\mathbf{u}^{s_2}]]$ is Gorenstein.
- Among non-trivial Apéry monomials of a numerical semigroup algebra, maximal elements with respect to the order given by divisibility are called *maximal monomials*.

Proposition (Symmetry)

A flat numerical semigroup algebra is *Gorenstein* if and only if it has a unique maximal monomial.

- A numerical semigroup algebra is called *Gorenstein* if it is flat and the fibers are Gorenstein.
- $\kappa[[\mathbf{e}^S]]$ is a Gorenstein ring if and only if $\kappa[[\mathbf{e}^S]]/\kappa[[\mathbf{e}]]$ is a Gorenstein algebra .
- Given any $s_1, s_2 \in S$, the algebra $\kappa[[\mathbf{u}^S]]/\kappa[[\mathbf{u}^{s_1}]]$ is Gorenstein if and only if $\kappa[[\mathbf{u}^S]]/\kappa[[\mathbf{u}^{s_2}]]$ is Gorenstein.
- Among non-trivial Apéry monomials of a numerical semigroup algebra, maximal elements with respect to the order given by divisibility are called *maximal monomials*.

Proposition (Symmetry)

A flat numerical semigroup algebra is *Gorenstein* if and only if it has a unique maximal monomial.

Theorem

Let R/R' and R'/R'' be flat numerical semigroup algebras. Then R/R'' is Gorenstein if and only if R/R' and R'/R'' are Gorenstein.

- A flat numerical semigroup algebra R/R' is called complete intersection, if there is a local surjective R'-algebra homomorphism R'[[Y₁, · · · , Y_n]] → R, whose kernel is generated by n elements.
- For a complete intersection algebra R/R', the kernel of any local surjective R'-algebra homomorphism R'[[Z₁, · · · , Z_m]] → R is generated by m elements.
- κ[[e^S]] is a complete intersection ring if and only if κ[[e^S]]/κ[[e]] is a complete intersection algebra.
- Given any s₁, s₂ ∈ S, the algebra κ[[u^S]]/κ[[u^{s1}]] is complete intersection if and only if κ[[u^S]]/κ[[u^{s2}]] is complete intersection.

- A flat numerical semigroup algebra R/R' is called complete intersection, if there is a local surjective R'-algebra homomorphism R'[[Y₁, · · · , Y_n]] → R, whose kernel is generated by n elements.
- For a complete intersection algebra R/R', the kernel of any local surjective R'-algebra homomorphism R'[[Z₁, · · · , Z_m]] → R is generated by m elements.
- κ[[e⁵]] is a complete intersection ring if and only if κ[[e⁵]]/κ[[e]] is a complete intersection algebra.
- Given any s₁, s₂ ∈ S, the algebra κ[[u^S]]/κ[[u^{s1}]] is complete intersection if and only if κ[[u^S]]/κ[[u^{s2}]] is complete intersection.

- A flat numerical semigroup algebra R/R' is called complete intersection, if there is a local surjective R'-algebra homomorphism R'[[Y₁, · · · , Y_n]] → R, whose kernel is generated by n elements.
- For a complete intersection algebra R/R', the kernel of any local surjective R'-algebra homomorphism R'[[Z₁, · · · , Z_m]] → R is generated by m elements.
- κ[[e^S]] is a complete intersection ring if and only if κ[[e^S]]/κ[[e]] is a complete intersection algebra.
- Given any s₁, s₂ ∈ S, the algebra κ[[u^S]]/κ[[u^{s1}]] is complete intersection if and only if κ[[u^S]]/κ[[u^{s2}]] is complete intersection.

- A flat numerical semigroup algebra R/R' is called *complete* intersection, if there is a local surjective R'-algebra homomorphism R'[[Y₁, · · · , Y_n]] → R, whose kernel is generated by n elements.
- For a complete intersection algebra R/R', the kernel of any local surjective R'-algebra homomorphism R'[[Z₁, · · · , Z_m]] → R is generated by m elements.
- κ[[e^S]] is a complete intersection ring if and only if κ[[e^S]]/κ[[e]] is a complete intersection algebra.
- Given any s₁, s₂ ∈ S, the algebra κ[[u^S]]/κ[[u^{s1}]] is complete intersection if and only if κ[[u^S]]/κ[[u^{s2}]] is complete intersection.

Theorem

Let R/R' and R'/R'' be flat numerical semigroup algebras. Then R/R'' is complete intersection if and only if R/R' and R'/R'' are complete intersection.

- Let S be a numerical semigroup and t ∈ Q. There exists an integer p such that pt ∈ S. We may think κ[[u^S, u^t]] to be the numerical semigroup ring obtained from κ[[u^S]] by adding the p-th radical of the monomial u^{pt}.
- Let S and T be numerical semigroups. There exists an integer p such that pT ⊂ S. We may think κ[[u^S, u^T]] to be the numerical semigroup ring obtained from κ[[u^S]] by adding the p-th radicals of monomials in κ[[u^{pT}]].
- Let S and T be numerical semigroups contained in N. Let p ∈ N and q ∈ S. The numerical semigroup ring κ[[w^{pS+qT}]] is isomorphic to κ[[u^{S+(qT)/p}]], which is obtained from κ[[u^S]] by adding the p-th radical of the monomials in κ[[u^{qT}]].

- Let S be a numerical semigroup and t ∈ Q. There exists an integer p such that pt ∈ S. We may think κ[[u^S, u^t]] to be the numerical semigroup ring obtained from κ[[u^S]] by adding the p-th radical of the monomial u^{pt}.
- Let S and T be numerical semigroups. There exists an integer p such that pT ⊂ S. We may think κ[[u^S, u^T]] to be the numerical semigroup ring obtained from κ[[u^S]] by adding the p-th radicals of monomials in κ[[u^{pT}]].
- Let S and T be numerical semigroups contained in N. Let p ∈ N and q ∈ S. The numerical semigroup ring κ[[w^{pS+qT}]] is isomorphic to κ[[u^{S+(qT)/p}]], which is obtained from κ[[u^S]] by adding the p-th radical of the monomials in κ[[u^{qT}]].

- Let S be a numerical semigroup and t ∈ Q. There exists an integer p such that pt ∈ S. We may think κ[[u^S, u^t]] to be the numerical semigroup ring obtained from κ[[u^S]] by adding the p-th radical of the monomial u^{pt}.
- Let S and T be numerical semigroups. There exists an integer p such that pT ⊂ S. We may think κ[[u^S, u^T]] to be the numerical semigroup ring obtained from κ[[u^S]] by adding the p-th radicals of monomials in κ[[u^{PT}]].
- Let S and T be numerical semigroups contained in N. Let p ∈ N and q ∈ S. The numerical semigroup ring κ[[w^{pS+qT}]] is isomorphic to κ[[u^{S+(qT)/p}]], which is obtained from κ[[u^S]] by adding the p-th radical of the monomials in κ[[u^{qT}]].

- Let S be a numerical semigroup and t ∈ Q. There exists an integer p such that pt ∈ S. We may think κ[[u^S, u^t]] to be the numerical semigroup ring obtained from κ[[u^S]] by adding the p-th radical of the monomial u^{pt}.
- Let S and T be numerical semigroups. There exists an integer p such that pT ⊂ S. We may think κ[[u^S, u^T]] to be the numerical semigroup ring obtained from κ[[u^S]] by adding the p-th radicals of monomials in κ[[u^{pT}]].
- Let S and T be numerical semigroups contained in N. Let p ∈ N and q ∈ S. The numerical semigroup ring κ[[w^{pS+qT}]] is isomorphic to κ[[u^{S+(qT)/p}]], which is obtained from κ[[u^S]] by adding the p-th radical of the monomials in κ[[u^{qT}]].

- Let S be a numerical semigroup and t ∈ Q. There exists an integer p such that pt ∈ S. We may think κ[[u^S, u^t]] to be the numerical semigroup ring obtained from κ[[u^S]] by adding the p-th radical of the monomial u^{pt}.
- Let S and T be numerical semigroups. There exists an integer p such that pT ⊂ S. We may think κ[[u^S, u^T]] to be the numerical semigroup ring obtained from κ[[u^S]] by adding the p-th radicals of monomials in κ[[u^{pT}]].
- Let S and T be numerical semigroups contained in N. Let $p \in \mathbb{N}$ and $q \in S$. The numerical semigroup ring $\kappa[[\mathbf{w}^{pS+qT}]]$ is isomorphic to $\kappa[[\mathbf{u}^{S+(qT)/p}]]$, which is obtained from $\kappa[[\mathbf{u}^{S}]]$ by adding the *p*-th radical of the monomials in $\kappa[[\mathbf{u}^{qT}]]$.

- Let S be a numerical semigroup and t ∈ Q. There exists an integer p such that pt ∈ S. We may think κ[[u^S, u^t]] to be the numerical semigroup ring obtained from κ[[u^S]] by adding the p-th radical of the monomial u^{pt}.
- Let S and T be numerical semigroups. There exists an integer p such that pT ⊂ S. We may think κ[[u^S, u^T]] to be the numerical semigroup ring obtained from κ[[u^S]] by adding the p-th radicals of monomials in κ[[u^{pT}]].
- Let S and T be numerical semigroups contained in N. Let $p \in \mathbb{N}$ and $q \in S$. The numerical semigroup ring $\kappa[[\mathbf{w}^{pS+qT}]]$ is isomorphic to $\kappa[[\mathbf{u}^{S+(qT)/p}]]$, which is obtained from $\kappa[[\mathbf{u}^{S}]]$ by adding the *p*-th radical of the monomials in $\kappa[[\mathbf{u}^{qT}]]$.

- Let S be a numerical semigroup and t ∈ Q. There exists an integer p such that pt ∈ S. We may think κ[[u^S, u^t]] to be the numerical semigroup ring obtained from κ[[u^S]] by adding the p-th radical of the monomial u^{pt}.
- Let S and T be numerical semigroups. There exists an integer p such that pT ⊂ S. We may think κ[[u^S, u^T]] to be the numerical semigroup ring obtained from κ[[u^S]] by adding the p-th radicals of monomials in κ[[u^{pT}]].
- Let S and T be numerical semigroups contained in N. Let p ∈ N and q ∈ S. The numerical semigroup ring κ[[w^{pS+qT}]] is isomorphic to κ[[u^{S+(qT)/p}]], which is obtained from κ[[u^S]] by adding the p-th radical of the monomials in κ[[u^{qT}]].

For $S, T \subset \mathbb{N}$ and relatively prime numbers $p \in T$ and $q \in S$, we have flat algebras:

- If κ[[w^{qT}]]/κ[[w^{pq}]] is Gorenstein intersection, so is κ[[w^{pS+qT}]]/κ[[w^{pS}]].
- If κ[[w^{qT}]]/κ[[w^{pq}]] is complete intersection, so is κ[[w^{pS+qT}]]/κ[[w^{pS}]].

For $S, T \subset \mathbb{N}$ and relatively prime numbers $p \in T$ and $q \in S$, we have flat algebras:

- If $\kappa[[\mathbf{w}^{qT}]]/\kappa[[\mathbf{w}^{pq}]]$ is Gorenstein intersection, so is $\kappa[[\mathbf{w}^{pS+qT}]]/\kappa[[\mathbf{w}^{pS}]].$
- If κ[[w^{qT}]]/κ[[w^{pq}]] is complete intersection, so is κ[[w^{pS+qT}]]/κ[[w^{pS}]].

For $S, T \subset \mathbb{N}$ and relatively prime numbers $p \in T$ and $q \in S$, we have flat algebras:

- If $\kappa[[\mathbf{w}^{qT}]]/\kappa[[\mathbf{w}^{pq}]]$ is Gorenstein intersection, so is $\kappa[[\mathbf{w}^{pS+qT}]]/\kappa[[\mathbf{w}^{pS}]].$
- If $\kappa[[\mathbf{w}^{q^T}]]/\kappa[[\mathbf{w}^{pq}]]$ is complete intersection, so is $\kappa[[\mathbf{w}^{pS+qT}]]/\kappa[[\mathbf{w}^{pS}]].$

Let pS + qT be a gluing of S and T.

- κ[[w^{ρS+qT}]] is a Gorenstein ring if and only if κ[[u^S]] and κ[[v^T]] are Gorenstein rings.
- κ[[w^{pS+qT}]] is a complete intersection ring if and only if κ[[u^S]] and κ[[ν^T]] are complete intersection rings.

Let pS + qT be a gluing of S and T.

 κ[[w^{pS+qT}]] is a Gorenstein ring if and only if κ[[u^S]] and κ[[v^T]] are Gorenstein rings.

 κ[[w^{pS+qT}]] is a complete intersection ring if and only if κ[[u^S]] and κ[[v^T]] are complete intersection rings.

59 / 63

Let pS + qT be a gluing of S and T.

- κ[[w^{pS+qT}]] is a Gorenstein ring if and only if κ[[u^S]] and κ[[v^T]] are Gorenstein rings.
- $\kappa[[\mathbf{w}^{pS+qT}]]$ is a complete intersection ring if and only if $\kappa[[\mathbf{u}^{S}]]$ and $\kappa[[\mathbf{v}^{T}]]$ are complete intersection rings.

(日) (四) (王) (王) (王) (王)

 s_1, \cdots, s_n : relatively prime integers $p \in \mathbb{N}$ and $q = s_n$ are relatively prime.

(T. Numata)

- $\kappa[[\mathbf{w}^{pS+qT}]]$ is Gorenstein if and only if $\kappa[[\mathbf{u}^S]]$ is Gorenstein.
- κ[[w^{pS+qT}]] is complete intersection if and only if κ[[u^S]] is complete intersection.

 s_1, \dots, s_n : relatively prime integers $p \in \mathbb{N}$ and $q = s_n$ are relatively prime.

- (T. Numata)
 - $\kappa[[\mathbf{w}^{pS+qT}]]$ is Gorenstein if and only if $\kappa[[\mathbf{u}^S]]$ is Gorenstein.
 - κ[[w^{pS+qT}]] is complete intersection if and only if κ[[u^S]] is complete intersection.

 s_1, \dots, s_n : relatively prime integers $p \in \mathbb{N}$ and $q = s_n$ are relatively prime.

- (T. Numata)
 - $\kappa[[\mathbf{w}^{pS+qT}]]$ is Gorenstein if and only if $\kappa[[\mathbf{u}^S]]$ is Gorenstein.
 - κ[[w^{pS+qT}]] is complete intersection if and only if κ[[u^S]] is complete intersection.