Lefschetz Properties of Gorenstein Graded Algebras associated to the Apéry Set of a Numerical Semigroup

International meeting on Numerical Semigroups- Levico Terme 2016

0. Lefschetz Properties.

Let K be a field with $\operatorname{char}(K)=0$ and let $A=\bigoplus_{i \geq 0}^{D} A_{i}$ be a standard graded Artinian K-algebra with $A_{0}=K$.

- A has the Weak Lefschetz Property (WLP) if $\exists L \in A_{1}$:

$$
\times L: A_{i} \rightarrow A_{i+1}
$$

has maximal rank for every $i=0, \ldots, D-1$.

- A has the Strong Lefschetz Property (SLP) if $\exists L \in A_{1}$:

$$
\times L^{d}: A_{i} \rightarrow A_{i+d}
$$

$$
\text { has maximal rank for every } i=0, \ldots, D \text { and } d=0, \ldots, D-i
$$

A such linear element $L \in A_{1}$ for which the SLP (WLP) holds is said to be a Strong (Weak) Lefschetz Element.

Let I be an homogeneous ideal of $K\left[x_{1}, \ldots, x_{n}\right]$. We will assume the ring $A=\oplus_{i \geq 0}^{D} A_{i} \cong \frac{K\left[x_{1}, \ldots, x_{n}\right]}{I}$ to be Gorenstein, and hence

$$
\operatorname{dim}_{K}\left(A_{i}\right)=\operatorname{dim}_{K}\left(A_{D-i}\right), \quad \forall i
$$

The integer $n=\operatorname{dim}_{K}\left(A_{1}\right)$ is said the codimension of A.

Well known results and conjectures: (Maeno-Watanabe)

- If $n=2$, then A has the SLP.
- If $n=3$ and A is a CI, then A has the WLP.
- For every n, if A is a CI and I is a monomial ideal, then A has the SLP.
- It is conjectured that if A is a CI, then A has the SLP.
- If $n=3$, it is unknown if there exist A without the WLP and the SLP.

1. Standard graded algebras associated to Apéry Sets.

Let $S=\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle \subseteq \mathbb{N}$ be a numerical semigroup.
Assuming $G C D\left(g_{1}, \ldots, g_{n}\right)=1$, we have $|\mathbb{N} \backslash S|<\infty$ (in this case $f:=\max (\mathbb{N} \backslash S$) is said the Frobenius number).

Then the Apéry Set of S, defined as
$\operatorname{Ap}(S):=\left\{s \in S: s-g_{1} \notin S\right\}=\left\{0=w_{1}<w_{2}<\cdots<w_{m}=f+g_{1}\right\}$ is a finite set and $|\operatorname{Ap}(S)|=g_{1}$.

Consider the homomorphism:

$$
\begin{gathered}
\Phi: K\left[x_{1}, \ldots, x_{n}\right] \longrightarrow K[t] \\
x_{i} \rightarrow t^{g_{i}}
\end{gathered}
$$

The ring $R=K[S]:=K\left[t^{g_{1}}, \ldots, t^{g_{n}}\right] \cong \frac{K\left[x_{1}, \ldots, x_{n}\right]}{\operatorname{ker}(\Phi)}$ is called the semigroup ring associated to S.

Take $s \in S$. A representation of s is an n-uple $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ such that $s=\sum_{i \geq 1}^{n} \lambda_{i} g_{i}$. The order of s is

$$
\operatorname{ord}(s):=\max \left\{\sum_{i \geq 1}^{n} \lambda_{i}: \lambda \text { is a representation of } s\right\}
$$

A representation of s is said maximal if $\operatorname{ord}(s)=\sum_{i \geq 1}^{n} \lambda_{i}$.

We can associate to the representations of $s \in S$ a monomial in R by the correnspondence

$$
s=\sum_{i \geq 1}^{n} \lambda_{i} g_{i} \longleftrightarrow x^{\lambda}:=x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}}
$$

Let $\bar{R}=R / x_{1} R=\left\langle x^{\lambda} \mid \sum_{i \geq 1}^{n} \lambda_{i} g_{i} \in \operatorname{Ap}(S)\right\rangle_{K}$. Define

$$
A=\operatorname{gr} r_{\overline{\mathfrak{m}}}(\bar{R})
$$

as the Associated graded algebra of the Apéry Set of S.
We have $A=\oplus_{i \geq 0}^{D} A_{i}=\left\langle x^{\lambda}\right| \sum_{i \geq 1}^{n} \lambda_{i} g_{i} \in \operatorname{Ap}(S)$ and λ is maximal \rangle_{K}.
The artinian standard graded ring A is Gorenstein $\Longleftrightarrow \mathrm{Ap}(S)=$ $\left\{0=w_{1}<w_{2}<\cdots<w_{m}=f+g_{1}\right\}$ is such that for $0 \leq i \leq m$,

$$
\omega_{i}+\omega_{m-i}=\omega_{m}
$$

and

$$
\operatorname{ord}\left(\omega_{i}\right)+\operatorname{ord}\left(\omega_{m-i}\right)=\operatorname{ord}\left(\omega_{m}\right)
$$

In this case S is said M-pure symmetric (Bryant).

Example.

$S=\langle 8,10,11,12\rangle$
$\operatorname{Ap}(S)=\{0,10,11,12,21,22,23,33\}$ and S is M-pure symmetric.

Associating $10 \longleftrightarrow y, 11 \longleftrightarrow z, 12 \longleftrightarrow w$, we construct

$$
A=K \oplus\langle y, z, w\rangle K \oplus\langle y z, y w, z w\rangle K \oplus\langle y z w\rangle K
$$

Since $22=11+11=10+12$, then in the ring $A, y w \equiv z^{2}$ and hence

$$
A \cong \frac{K[y, z, w]}{\left(y^{2}, z^{2}-y w, w^{2}\right)}
$$

2. How to compute Lefschetz Properties when A is Go-renstein.(Maeno-Watanabe, Gondim-Zappalá)

Let $Q:=K\left[X_{1}, \ldots, X_{n}\right]$ where $X_{i}:=\frac{\partial}{\partial x_{i}}$.
Then, there exists a polynomial $F \in K\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
A \cong Q / A n n_{Q}(F)
$$

Let $1 \leq d \leq[D / 2]$ and $\mathcal{B}_{d}=\left\{\alpha_{i}\right\}_{i>0}^{s}$ a K-linear basis of A_{d}. The d-th Hessian of F is defined as the matrix

$$
\operatorname{Hess}^{d}(F):=\left\{\left(\alpha_{i}(X) \alpha_{j}(X) F(x)\right)_{i, j=1}^{s}\right\} .
$$

For $\left\{\alpha_{i}\right\}_{i=1}^{s_{1}}$ and $\left\{\beta_{j}\right\}_{j=1}^{s_{2}}$ basis of A_{d} and A_{t} define the mixed Hessians of F as

$$
\text { Hess }^{d, t}(F):=\left\{\left(\alpha_{i}(X) \beta_{j}(X) F(x)\right)\right\} .
$$

Set $k:=[D / 2]$ where D is the socle degree of the algebra A.

- $A=Q / A n n_{Q}(F)$ has the SLP $\Longleftrightarrow \operatorname{Hess}^{d}(F)$ have maximal rank for every $1 \leq d \leq[D / 2]$.
- If D is an odd number, $A=Q / A n n_{Q}(F)$ has the WLP \Longleftrightarrow $\operatorname{Hess}^{k}(F)$ has maximal rank.
- If D is an even number, $A=Q / A n n_{Q}(F)$ has the WLP \Longleftrightarrow Hess ${ }^{k-1, k}(F)$ has maximal rank.

When A is associated to the Apéry Set of a Numerical Semigroup $S=\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle$, we have the following results:

- The polynomial F is $F=\sum_{\lambda \in \Lambda} x^{\lambda}$ where \wedge is the set of the maximal representations of the maximal element of $\operatorname{Ap}(S)$, $f+g_{1}$.
- Call $\omega_{1}<\omega_{2}<\ldots<\omega_{b}$ the elements of $\operatorname{Ap}(S)$ of order d and $H:=H_{e s s}{ }^{d}(F)$. The entry of the matrix $H_{i j} \neq 0 \Longleftrightarrow \omega_{i}+\omega_{j} \in \operatorname{Ap}(S)$ and $\operatorname{ord}\left(\omega_{i}+\omega_{j}\right)=\operatorname{ord}\left(\omega_{i}\right)+\operatorname{ord}\left(\omega_{j}\right)$.
- If $H_{i j} \neq 0$, then $H_{i j}=\sum_{\lambda \in \wedge} x^{\lambda-\mu}$ where μ is a maximal representation of $\omega_{i}+\omega_{j}$.
$\forall \omega \in \operatorname{Ap}(S)$, its symmetric element is

$$
\omega^{\prime}:=\omega_{m}-\omega=f+g_{1}-\omega
$$

- If D is odd , $H:=\operatorname{Hess}^{k}(F)$ and $\omega_{1}<\omega_{2}<\ldots<\omega_{b}$ are the elements of $\operatorname{Ap}(S)$ of order k, then

$$
H_{i j}=x_{l} \quad \text { if } \quad \omega_{i}+g_{l}=\omega_{j}^{\prime}
$$

otherwise $H_{i j}=0$.

- If D is even , $H:=\operatorname{Hess}^{k-1, k}(F), \omega_{1}<\omega_{2}<\ldots<\omega_{b}$ are the elements of $\operatorname{Ap}(S)$ of order $k-1$ and $v_{1}<v_{2}<\ldots<v_{b}$ are the elements of $\operatorname{Ap}(S)$ of order k, then

$$
H_{i j}=x_{l} \quad \text { if } \quad \omega_{i}+g_{l}=v_{j}^{\prime}
$$

otherwise $H_{i j}=0$.

Examples.

- $S=\langle 16,18,21,27\rangle$

$$
A \cong \frac{K[y, z, w]}{\left(y^{5}, z^{3}-y^{2} w, w^{2}, z w, y^{3} z\right)}
$$

$D=5$ and $F=y^{4} w+y^{2} z^{3}$. We compute the first Hessian

$$
\operatorname{Hess}^{1}(F)=\left(\begin{array}{ccc}
y^{2} w+z^{3} & y z^{2} & y^{3} \\
y z^{2} & z y^{2} & 0 \\
y^{3} & 0 & 0
\end{array}\right)
$$

For the second and maximal Hessian we look at the links in $\mathrm{Ap}(S)$ in the following graph:

The second Hessian is

$$
\operatorname{Hess}^{2}(F)=\left(\begin{array}{cccc}
w & 0 & z & y \\
0 & z & y & 0 \\
z & y & 0 & 0 \\
y & 0 & 0 & 0
\end{array}\right)
$$

The hessians have both maximal rank, hence A has the SLP.

- $S=\langle 11,12,13,14\rangle$

$$
A \cong \frac{K[y, z, w]}{\left(y^{2}, z^{2}-y w, w^{4}, y z, z w^{3}\right)} .
$$

$D=4$ and $F=y w^{3}+z^{2} w^{2}$. We look at the links in $\operatorname{Ap}(S)$ in the following graph in order to compute the mixed Hessian:

The mixed Hessian is

$$
\text { Hess }^{1,2}(F)=\left(\begin{array}{ccc}
0 & 0 & w \\
0 & w & z \\
w & z & y
\end{array}\right)
$$

and it has maximal rank, hence A has the WLP.
3. The Complete Intersection Case.

Let $S=\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle$ be a numerical semigroup such that the ring $A \cong \frac{K\left[x_{2}, \ldots, x_{n}\right]}{I}$ associated to $\operatorname{Ap}(S)$ is Gorenstein.

For $2 \leq i \leq n$, define:
$\beta_{i}:=\max \left\{h \in \mathbb{N} \mid h g_{i} \in \operatorname{Ap}(S)\right.$ and $\left.\operatorname{ord}\left(h g_{i}\right)=h\right\} ;$
$\gamma_{i}:=\max \left\{h \in \mathbb{N} \mid h g_{i} \in \operatorname{Ap}(S), \quad \operatorname{ord}\left(h g_{i}\right)=h \quad\right.$ and $h g_{i}$ has a unique maximal representation\}.
$\forall i=2, \ldots, n, \quad \gamma_{i} \leq \beta_{i}$ and always $\gamma_{2}=\beta_{2}$ and $\gamma_{n}=\beta_{n}$.
We define also two hyper-rectangles in \mathbb{N}^{n-1} :
$B=\left\{\sum_{i=2}^{n} \lambda_{i} g_{i} \mid 0 \leq \lambda_{i} \leq \beta_{i}\right\}$
$\Gamma=\left\{\sum_{i=2}^{n} \lambda_{i} g_{i} \mid 0 \leq \lambda_{i} \leq \gamma_{i}\right\}$
D'Anna, Micale, Sammartano proved that:

- $\mathrm{Ap}(S) \subseteq \Gamma \subseteq B$.
- A is $\mathrm{CI} \Longleftrightarrow \operatorname{Ap}(S)=\Gamma$.
- A is CI and its defining ideal I is monomial $\Longleftrightarrow \mathrm{Ap}(S)=B$.
- The defining ideal I of A always contains the ideal

$$
\begin{gathered}
\tilde{I}=\left(x_{i}^{\gamma_{i}+1}-\rho_{i} \prod_{j \neq i} x_{j}^{\lambda_{j}}: i=2 \ldots, n\right) \\
\text { where } \beta_{i}=\gamma_{i} \Rightarrow \rho_{i}=0 \text { and } \beta_{i}>\gamma_{i} \Rightarrow \rho_{i}=1
\end{gathered}
$$

(in this case $\left(\gamma_{i}+1\right) g_{i}=\sum_{j \neq i} \lambda_{j} g_{j}$ are two different maximal representation of the same element) and

$$
I=\tilde{I} \Longleftrightarrow A \text { is } \mathrm{CI}
$$

Examples.

- $S=\langle 15,21,35\rangle$
$\operatorname{Ap}(S)=\{0,21,35,42,56,70,63,77,91,84,98,112,119,133,154\}$
$84=21.4 \in \operatorname{Ap}(S)$ and $105=21 \cdot 5 \notin \mathrm{Ap}(S), 70=35 \cdot 2 \in \mathrm{Ap}(S)$ and $105=35 \cdot 3 \notin \operatorname{Ap}(S)$, hence $\beta_{2}=\gamma_{2}=4, \beta_{3}=\gamma_{3}=2$ and we can verify that

$$
B=\left\{\sum_{i=2}^{3} \lambda_{i} g_{i} \mid 0 \leq \lambda_{i} \leq \beta_{i}\right\}=\operatorname{Ap}(S)
$$

The associated graded algebra is

$$
A=\frac{K[y, z]}{\left(y^{5}, z^{3}\right)}
$$

- $S=\langle 8,10,11,12\rangle$ as in the example in the last section.

$$
\operatorname{Ap}(S)=\{0,10,11,12,21,22,23,33\}
$$

$$
20=10 \cdot 2 \notin \mathrm{Ap}(S), 24=12 \cdot 2 \notin \mathrm{Ap}(S), 33=11 \cdot 3 \in \mathrm{Ap}(S),
$$

$$
44=11 \cdot 4 \notin \operatorname{Ap}(S) \text { and } 11 \cdot 2=10+12 . \text { Hence } \beta_{2}=\gamma_{2}=1,
$$ $\beta_{4}=\gamma_{4}=1$ but $1=\gamma_{3}<\beta_{3}=3$.

$$
\left\ulcorner=\left\{\sum_{i=2}^{4} \lambda_{i} g_{i} \mid 0 \leq \lambda_{i} \leq \gamma_{i}\right\}=\operatorname{Ap}(S) \subsetneq B .\right.
$$

The associated graded algebra is

$$
A=\frac{K[y, z, w]}{\left(y^{2}, z^{2}-y w, w^{2}\right)} .
$$

Proposition. Let $A=\oplus_{d \geq 0}^{D} A_{d}$ be Complete Intersection and $k=[D / 2]$. Then,

$$
\exists \gamma_{i}>k \Rightarrow A \text { has the WLP. }
$$

Proof (Idea). If $\gamma_{i}>k$, then $\forall \omega \in \operatorname{Ap}(S)$ of order $k, \omega+g_{i} \in$ $\mathrm{Ap}(S)$ and has order $k+1$.

Hence a square submatrix of maximal dimension of $\operatorname{Hess}^{k}(F)$ (or of Hess ${ }^{k-1, k}(F)$) has x_{i} on all the entries on the secondary diagonal and therefore A has the WLP.
4. Not Complete Intersection Algebras in codimension 3.

Let $n=4$ and let $S=\left\langle g_{1}, g_{2}, g_{3}, g_{4}\right\rangle$ be an M-pure symmetric numerical semigroup. Assume the algebra A associated to $\operatorname{Ap}(S)$ to be Gorenstein but not CI.

Hence $\operatorname{Ap}(S) \subsetneq \Gamma$ and

$$
\left(\gamma_{3}+1\right) g_{3}=\mu_{2} g_{2}+\mu_{4} g_{4}
$$

with $1 \leq \mu_{2} \leq \gamma_{2}$ and $1 \leq \mu_{4} \leq \gamma_{4}$ and $\mu_{2}+\mu_{4}=\gamma_{3}+1$.
A is a quotient of the Complete Intersection ring

$$
G=\bigoplus_{i \geq 0}^{D} G_{i}=\frac{K[y, z, w]}{\left(y^{\gamma_{2}+1}, z^{\gamma_{3}+1}-y^{\mu_{2}} w^{\mu_{4}}, w^{\gamma_{4}+1}\right)}
$$

The following result characterize the ring $A=\frac{K\left[x_{2}, \ldots, x_{n}\right]}{J}=$ $\oplus_{d \geq 0}^{D-C} A_{d}$ in function of his socle degree $D-C$.

Theorem.

- $1 \leq C \leq \gamma_{3}$.
- $\Gamma \backslash \operatorname{Ap}(S)=\left\{\omega \in \Gamma\right.$ s.t. $\left.\omega+C g_{3} \notin \Gamma\right\}$.
- Set $h_{2}=\gamma_{2}-\mu_{2}+1, h_{3}=\gamma_{3}-C+1$ and $h_{4}=\gamma_{4}-\mu_{4}+1$. The defining ideal of A is

$$
J=I+\left(z^{h_{3}} y^{h_{2}}, z^{h_{3}} w^{h_{4}}\right),
$$

where I is the defining ideal of G.

Moreover $A \cong \frac{G}{\left(0:_{G} z^{C}\right)}$.
The proof is based on the fact that A is Gorenstein and hence $\mathrm{Ap}(S)$ must be symmetric.

Example.

Starting from

$$
G=\frac{K[y, z, w]}{\left(y^{3}, z^{3}-y^{2} w, w^{2}\right)},
$$

we can construct

$$
A_{1}=\frac{G}{\left(0:_{G} z\right)}=\frac{K[y, z, w]}{\left(y^{3}, z^{3}-y^{2} w, w^{2}, z^{2} y, z^{2} w\right)}
$$

and

$$
A_{2}=\frac{G}{\left(0:_{G} z^{2}\right)}=\frac{K[y, z, w]}{\left(y^{3}, z^{3}-y^{2} w, w^{2}, z y, z w\right)}
$$

The following are the generators of these algebras as K-vector spaces, in blue the generators that are nonzero in all the three rings, in green the generators nonzero in G and A_{1}, in red the generators nonzero only in G.

1; $\quad y, z, w ; \quad y^{2}, y z, y w, z^{2}, z w ; \quad y^{2} z, y^{2} w \cong z^{3}, y z^{2}, y z w, z^{2} w$; $y^{2} z^{2}, y^{2} z w, y z^{2} w ; \quad y^{2} z^{2} w$.
5. WLP in codimension 3.
$G=\frac{K[y, z, w]}{\left(y^{\gamma_{2}+1}, z^{\gamma_{3}+1}-y^{\mu_{2}} w^{\mu_{4}}, w^{\gamma_{4}+1}\right)}$ has the WLP (CI in codimension 3). We show that

$$
A=\frac{G}{\left(0:_{G} z^{C}\right)}
$$

has the WLP for $1 \leq C \leq \gamma_{3}$. Since

$$
\frac{G}{\left(0:_{G} z^{C}\right)}=\frac{\frac{G}{\left(0:_{G} z^{C-1}\right)}}{(0: z)}
$$

it suffices to show:
Theorem. $A=\frac{G}{J}=\frac{G}{\left(0:_{G} z\right)}$ has the WLP.

Proof (Idea).

Let $L=a_{2} y+a_{3} z+a_{4} w \in G_{1}=A_{1}$ be a Weak Lefschetz Element for G and let $k:=[D / 2]$. Without loss of generality we can assume $a_{2}, a_{3}, a_{4} \neq 0$.
(1) D odd: The map $\times L: G_{k} \rightarrow G_{k+1}$ is an isomorphism and since $G \cong A \oplus J$ as K-vector spaces, it is easy to show that $\times L: A_{k} \rightarrow A_{k+1}$ is surjective.
(2) D even: The map $\times L: G_{k-1} \rightarrow G_{k}$ is injective and we want to prove that $\times L: A_{k-1} \rightarrow A_{k}$ is also injective. Hence we want

$$
L\left(A_{k-1}\right) \cap J=(0)
$$

Since $J=\left(0:_{G} z\right)$, we need to show $z L(f) \neq 0$ for all $f \in A_{k-1}$.
The matrix associated to $\times L: G_{k-1} \rightarrow G_{k}$ is ${ }^{t} H\left(a_{2} y, a_{3} z, a_{4} w\right)$ where $H:=\operatorname{Hess}_{k-1, k}(F)$.

The matrix associated to $\times z: G_{k} \rightarrow G_{k+1}$ is $H(0, z, 0)$. Thus the square matrix

$$
Z=H(0, z, 0)^{t} H\left(a_{2} y, a_{3} z, a_{4} w\right)
$$

is associated to $\times z L: G_{k-1} \rightarrow G_{k+1}$.
$G_{k-1} \cong A_{k-1} \oplus J_{k-1}$. Using some linear algebra we show that $\operatorname{Ker}(Z)=J_{k-1}$. This implies $z L(f) \neq 0$ for all $f \in A_{k-1}$.

Thanks for the attention!

