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0. Lefschetz Properties.

Let K be a field with char(K) = 0 and let A = @R, A; be a
standard graded Artinian K-algebra with Ag = K.

e A has the Weak Lefschetz Property (WLP) if 3L € Aq
X L : Az — AZ_|_1

has maximal rank for every + =0,...,D — 1.

e A has the Strong Lefschetz Property (SLP) if 3L € A4
XLd : Az — Az—|—d

has maximal rank for every ¢+ =0,...,Dand d=0,...,D —1.



A such linear element L € Ay for which the SLP (WLP) holds is
said to be a Strong (Weak) Lefschetz Element.

Let I be an homogeneous ideal of K[z1,...,xzn]. We will assume

K
thering A = @7;D>o A; = [z1, ga) to be Gorenstein, and hence

dimK(Ai) — dimK(AD—i)a Vi.

The integer n = dim (A1) is said the codimension of A.

Well known results and conjectures: (Maeno-Watanabe)

o If n =2, then A has the SLP.



If n=3 and A is a CI, then A has the WLP.

For every n, if Ais a CI and I is a monomial ideal, then A
has the SLP.

It is conjectured that if A is a CI, then A has the SLP.

If n =3, it is unknown if there exist A without the WLP and
the SLP.



1. Standard graded algebras associated to Apéry Sets.
Let S = (g91,92,.--.,9n) C N be a numerical semigroup.

Assuming GCD(g1,...,g9n) = 1, we have [N\ 5| < oo
(in this case f :=max(N\ S) is said the Frobenius number).

Then the Apéry Set of S, defined as

Ap(S) i={s€8:s—g1 €S} ={0=w1 <wr < <wm= f+g1}
is a finite set and |Ap(S)| = g1.

Consider the homomorphism:
b Klzqy,...,zn] — K|t]

X; — t9i



The ring R = K|[S] := K[t91,..., tIn] = is called the
ker(®)

semigroup ring associated to S.

Take s € S. A representation of s is an n-uple A = (A\1,...,A\n)

such that s =} '* ; Ajg;. The order of s is

n
ord(s) :=maxz{) _ X;: A is a representation of s}.
i>1

A representation of s is said maximal if ord(s) = >IX . A;.

We can associate to the representations of s € S a monomial in
R by the correnspondence

n
s = Z)\figi<—>x}‘ = xi‘lafizn

1>1



Let R= R/z1R = (a2 [ 22751 Aigi € Ap(S)) k. Define

A = grp(R)
as the Associated graded algebra of the Apéry Set of S.
We have A = @2 A; = (z | 27 Aigi € Ap(S) and X is maximal )
The artinian standard graded ring A is Gorenstein <= Ap(S) =
{0=w1 <wpy < -+ <wm=f-+ g1} is such that for 0 <i < m,

Wi T Wm—j = Wm
and
ord(w;) + ord(w,,,_;) = ord(wm).

In this case S is said M-pure symmetric (Bryant).



Example.
S =(8,10,11,12)
Ap(S) ={0,10,11,12,21,22,23,33} and S is M-pure symmetric.

Associating 10 <+— vy, 11 <— 2z, 12 +— w, we construct

A= K& (y,z,w)K & (yz,yw, zw) K & (yzw) K.

Since 22 =114 11 = 10 + 12, then in the ring A, yw = 22 and
hence
Ky, z, w]

A= .
(y2722 T yw7w2>




2. How to compute Lefschetz Properties when A is Go-
renstein.(Maeno-Watanabe, Gondim-Zappala)

0
Let Q := K[Xq,...,Xn] where X, := :
ox;
Then, there exists a polynomial ' € K[xzq,...,zn] such that

A= Q/Anng(F).

Let 1 <d<[D/2] and B; = {a;}/~y a K-linear basis of A;. The
d-th Hessian of F is defined as the matrix

Hess®(F) = {(o;(X)a;j(X)F(2))} j=1}-

For {a;};L; and {B;};2, basis of Az and A; define the mixed
Hessians of F' as

Hess™ (F) := {(0;(X)B;(X)F(x))}.



Set k£ := [D/2] where D is the socle degree of the algebra A.

e A = Q/Anng(F) has the SLP <= Hess%(F) have maximal
rank for every 1 <d < [D/2].

o If D is an odd number, A = Q/Anng(F") has the WLP <=
Hess®(F) has maximal rank.

o If D is an even number, A = Q/Anng(F') has the WLP <
Hessk*=1LFE(F) has maximal rank.



When A is associated to the Apéry Set of a Numerical Semigroup
S ={g91,92,.-.,9n), We have the following results:

e The polynomial F is F = Y ,ca 2z where A is the set of the
maximal representations of the maximal element of Ap(S),

f+ag1.

o Call wg <wp < ... < wp the elements of Ap(S) of order d and
H = Hess?(F). The entry of the matrix

H;; # 0 <= w;+w; € Ap(S) and ord(w;+w;) = ord(w;)+ord(w;).

o If H;; # 0, then H;; = Y epaz* # where p is a maximal
representation of w; + W;-



Vw € Ap(S), its symmetric element is

Wi=wm —w=f+ g1 —w.

o If D is odd , H := Hess*(F) and wy; < wy <
elements of Ap(S) of order k, then

Hijle it wi—l—glzwg
otherwise H;; = 0.
o If D is even , H .= Hessk_l’k(F), wy] < wo <

elements of Ap(S) of order £k — 1 and v < vy <
elements of Ap(S) of order k, then

H’ij:xl it wi+gl=1}3
otherwise H;; = 0.

... < wp are the

... < wyp are the
... < v are the



Examples.

e S =(16,18,21,27)

Kly, z,w]
(y57 Z3 T wa, ’UJ2, <W, ’y32) .

A=

D =5 and F = y*w 4+ y2z3 . We compute the first Hessian

wa +Z3 y22 y3
Hess!(F) = yz2 2y2 0
y3 0 O

For the second and maximal Hessian we ook at the links in
Ap(S) in the following graph:






T he second Hessian is

w 0 z vy

2 10 2z v O
Hess“(F) = - 4 00
y 0 0 O

The hessians have both maximal rank, hence A has the SLP.

e S =1(11,12,13,14)

Kly, z, w]
(y27 22 — Yyw, ’UJ4, Yz, Zws) .

A=

D =4 and F = yw> + z2w? . We look at the links in Ap(S) in
the following graph in order to compute the mixed Hessian:
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The mixed Hessian is

O 0O w
Hess'?(F)= |0 w =z
w oz oy

and it has maximal rank, hence A has the WLP.



3. The Complete Intersection Case.

Let S = (g1,92,...,9n) De a numerical semigroup such that the

K -
22, n] associated to Ap(S) is Gorenstein.

For 2 <1 <n, define:
B; ;= max{h € N|hg; € Ap(S) and ord(hg;) = h},
v; = max{h € N| hg; € Ap(S), ord(hg;) = h and
hg; has a unique maximal representation}.

Vi=2,...,n, v <pB; and always v» = > and v, = Bn.

We define also two hyper-rectangles in N



B = {Z?:g%gﬂoé)\iéﬁi}

M= {Z?’:QMQHOSMS%}

D'Anna, Micale, Sammartano proved that:
e Ap(S) C T C B.
e Ais CI <= Ap(S) =T.

e A is CI and its defining ideal I is monomial <— Ap(S) = B.



e The defining ideal I of A always contains the ideal

I = (:U,L-%_H—pi 1_[:13‘;\‘7 i =2...,n)
J7=1
where B, =~ = p;,=0 and (G, >~ = p;=1
(in this case (v; + 1)g; = > j£; Ajg; are two different maximal
representation of the same element) and

I=1<+= Ais CI.



Examples.
e S =(15,21,35)
Ap(S) ={0,21,35,42,56,70,63,77,91,84,98,112,119,133,154}

84 =21-4 ¢ Ap(S) and 105 =21-5¢& Ap(S), 70 =35-2 ¢ Ap(S)
and 105 = 35-3 € Ap(S), hence B> = v =4, 83 = v3 = 2 and
we can verify that

B = {ézzkzgﬂo <\ < 57;} = Ap(S).

T he associated graded algebra is
_ Kly, 2]

A= .
(y°, 23)




e S=(8,10,11,12) as in the example in the last section.
Ap(S) ={0,10,11,12,21,22,23,33}

20=10-2 & Ap(S), 24 =12-2 &€ Ap(S), 33 =11-3 € Ap(9),
44 = 11 -4 € Ap(S) and 11-2 = 10 + 12. Hence 8y = v = 1,
Ba=v4=1Dbut 1=+v3<pF3=23.

4

rz{z/\z-gwosxis%}=Ap<S>;B.
=2

The associated graded algebra is

L Klyzul
- (y27 Zz — Yyw, ,w2)'




Proposition. Let A = @} ,4,; be Complete Intersection and
k= 1[D/2]. Then,

4 ~; >k = A has the WLP.

Proof (Idea). If v, > k, then V w € Ap(S) of order k, w+ g; €
Ap(S) and has order k + 1.

Hence a square submatrix of maximal dimension of Hess*(F)
(or of Hess*—1:k(F)) has z; on all the entries on the secondary
diagonal and therefore A has the WLP.



4. Not Complete Intersection Algebras in codimension 3.

Let n = 4 and let S = (g1,92,93,94) be an M-pure symmetric
numerical semigroup. Assume the algebra A associated to Ap(.S)
to be Gorenstein but not CI.

Hence Ap(S) C I and

(73 + 1)g3 = pogo + paga
with 1 < po <2 and 1 < pg < 4 and po + pg = 3 + 1.

A is a quotient of the Complete Intersection ring

Kly, z, w]

D
G = @ GZ - (y’72+1, 213 +1 yH2wH4a, w’74+1).

1>0




K
The following result characterize the ring A = [xQ’J 2] =

@dD;OC A, in function of his socle degree D — (.
Theorem.

o 1 <(C < 3.

o N\Ap(S) ={werl st. w+Cgz &Tl}.
e Set hp = v —po+1, hg =793 —-C+1and hg = v4 — pug + 1.
The defining ideal of A is

J =1+ (zh3yh2, zh3wh4),

where I is the defining ideal of G.



G

Moreover A =
(O ‘G <

C)'

The proof is based on the fact that A is Gorenstein and hence
Ap(S) must be symmetric.

Example.

Starting from

O — Kly, z, w]
(y3’ 23 _ wa, w2)’
we can construct
G Kly, z, w]

LT 0g2) (43,23 — y2w, w2, 22y, 22w)



and
G Kly, z, w]

A- = — .
2T (0622 (43,23 — y2w, w2, 2y, zw)

The following are the generators of these algebras as K-vector
spaces, in blue the generators that are nonzero in all the three

rings, in green the generators nonzero in G and A1, in red the
generators nonzero only in G.

: : 2 2 : 2 2,, 2 2.,
17 Yy, <, w, Y,y yw,<z , 2w, Y 2,Y ’LU—Z3,yZ , Y2W, 27w,

y222, yzzw, yz2w; yzzzw.



5. WLP in codimension 3.

Kly, z, w]
(yr2t1 273+l — yu2qra wrat1)
mension 3). We show that

G —

G
(0:q z%)
has the WLP for 1 < C < ~3. Since

A=

G

has the WLP (CI in codi-

G _(0:g2¢h

(0 :g 29) (0: 2)
it suffices to show:

T heorem. A = g — & has the WLP .

J (O e Z)




Proof (Idea).

Let L = ary+azz+asw € G1 = A1 be a Weak Lefschetz Element
for G and let k£ := [D/2]. W.ithout loss of generality we can

assume ao, a3z, aq *+ 0.

(1) D odd: The map xL : G — Gp41 is an isomorphism and
since G = A& J as K-vector spaces, it is easy to show that
XL A — Apyq is surjective.

(2) D even: The map xL : GG_1 — G} is injective and we want
to prove that xL : A,._1 — A, is also injective. Hence we want

L(Ag-1) nJ = (0).



Since J = (0 :g z), we need to show zL(f) # 0 for all f e Ap_1.

The matrix associated to xL : Gp_1 — G is 'H(aoy, a3z, agw)
where H := Hessy_1 j,(I').

The matrix associated to xz : Gy, — G4 is H(O,2,0). Thus the
square matrix
Z = H(0,2,0)"H(azy, a3z, asw)

is associated to xzL : Gp_1 — Gpgq.

Gr_1 = Ap_1 @ Ji_1. Using some linear algebra we show that
Ker(Z) = Ji,_1. This implies zL(f) # 0 for all f € A;_1.



T hanks for the attention!





