Puiseux Monoids and Their Atomic Structure

Felix Gotti felixgotti@berkeley.edu

UC Berkeley

International Meeting on Numerical Semigroups

July 6, 2016

Bounded Puiseux Monoids

Basic Notions

Atomicity Conditions

Atomicity Conditions

Bounded Puiseux Monoids

Atomicity Conditions

Bounded Puiseux Monoids

Monotone Puiseux Monoids

A Puiseux monoid is an additive submonoid of $\mathbb{Q}_{\geq 0}$.

Remark: Puiseux monoids are a generalization of numerical semigroups. However, the former are not necessarily

- finitely generated;
- atomic.

Example: For a prime *p*, consider the Puiseux monoid

$$M = \langle 1/p^n \mid n \in \mathbb{N} \rangle.$$

A Puiseux monoid is an additive submonoid of $\mathbb{Q}_{\geq 0}$.

Remark: Puiseux monoids are a generalization of numerical semigroups. However, the former are not necessarily

- finitely generated;
- atomic.

Example: For a prime *p*, consider the Puiseux monoid

$$M = \langle 1/p^n \mid n \in \mathbb{N} \rangle.$$

A Puiseux monoid is an additive submonoid of $\mathbb{Q}_{\geq 0}$.

Remark: Puiseux monoids are a generalization of numerical semigroups. However, the former are not necessarily

- finitely generated;
- atomic.

Example: For a prime *p*, consider the Puiseux monoid

 $M = \langle 1/p^n \mid n \in \mathbb{N} \rangle.$

A Puiseux monoid is an additive submonoid of $\mathbb{Q}_{\geq 0}$.

Remark: Puiseux monoids are a generalization of numerical semigroups. However, the former are not necessarily

- finitely generated;
- atomic.

Example: For a prime *p*, consider the Puiseux monoid

 $M = \langle 1/p^n \mid n \in \mathbb{N} \rangle.$

A Puiseux monoid is an additive submonoid of $\mathbb{Q}_{\geq 0}$.

Remark: Puiseux monoids are a generalization of numerical semigroups. However, the former are not necessarily

- finitely generated;
- atomic.

Example: For a prime *p*, consider the Puiseux monoid

$$M = \langle 1/p^n \mid n \in \mathbb{N} \rangle.$$

Every numerical semigroup is finitely generated, while:

Observation (1)

A Puiseux monoid is finitely generated iff it is isomorphic to a numerical semigroup.

Numerical semigroups are atomic and minimally generated, while:

Observation (2)

A Puiseux monoid is atomic iff it is minimally generated.

Numerical semigroups have a unique minimal generating set, while:

Observation (3)

Every numerical semigroup is finitely generated, while:

Observation (1)

A Puiseux monoid is finitely generated iff it is isomorphic to a numerical semigroup.

Numerical semigroups are atomic and minimally generated, while:

Observation (2)

A Puiseux monoid is atomic iff it is minimally generated.

Numerical semigroups have a unique minimal generating set, while:

Observation (3)

Every numerical semigroup is finitely generated, while:

Observation (1)

A Puiseux monoid is finitely generated iff it is isomorphic to a numerical semigroup.

Numerical semigroups are atomic and minimally generated, while:

Observation (2)

A Puiseux monoid is atomic iff it is minimally generated.

Numerical semigroups have a unique minimal generating set, while:

Observation (3)

Every numerical semigroup is finitely generated, while:

Observation (1)

A Puiseux monoid is finitely generated iff it is isomorphic to a numerical semigroup.

Numerical semigroups are atomic and minimally generated, while:

Observation (2)

A Puiseux monoid is atomic iff it is minimally generated.

Numerical semigroups have a unique minimal generating set, while:

Observation (3)

Every numerical semigroup is finitely generated, while:

Observation (1)

A Puiseux monoid is finitely generated iff it is isomorphic to a numerical semigroup.

Numerical semigroups are atomic and minimally generated, while:

Observation (2)

A Puiseux monoid is atomic iff it is minimally generated.

Numerical semigroups have a unique minimal generating set, while:

Observation (3)

Every numerical semigroup is finitely generated, while:

Observation (1)

A Puiseux monoid is finitely generated iff it is isomorphic to a numerical semigroup.

Numerical semigroups are atomic and minimally generated, while:

Observation (2)

A Puiseux monoid is atomic iff it is minimally generated.

Numerical semigroups have a unique minimal generating set, while:

Observation (3)

Every numerical semigroup is finitely generated, while:

Observation (1)

A Puiseux monoid is finitely generated iff it is isomorphic to a numerical semigroup.

Numerical semigroups are atomic and minimally generated, while:

Observation (2)

A Puiseux monoid is atomic iff it is minimally generated.

Numerical semigroups have a unique minimal generating set, while:

Observation (3)

Let *P* denote the set of primes.

Example 1: The Puiseux monoid $M = \langle 1/p | p \in P \rangle$ is atomic, and $\mathcal{A}(M) = \{1/p | p \in P\}$. Therefore $|\mathcal{A}(M)| = \infty$.

Example 2: Let *M* be the Puiseux monoid generated by the set $S \cup T$, where $S = \{1/2^n \mid n \in \mathbb{N}\}$ and $T = \{1/p \mid n \in P \setminus \{2\}\}$. It follows that *M* is not atomic; however, $\mathcal{A}(M)$ is the infinite set *T*.

$$rac{1}{d_n} = rac{d_{n+1}}{d_n} rac{1}{d_{n+1}} \quad ext{for every} \quad n \in \mathbb{N}.$$

Let P denote the set of primes.

Example 1: The Puiseux monoid $M = \langle 1/p \mid p \in P \rangle$ is atomic, and $\mathcal{A}(M) = \{1/p \mid p \in P\}$. Therefore $|\mathcal{A}(M)| = \infty$.

Example 2: Let *M* be the Puiseux monoid generated by the set $S \cup T$, where $S = \{1/2^n \mid n \in \mathbb{N}\}$ and $T = \{1/p \mid n \in P \setminus \{2\}\}$. It follows that *M* is not atomic; however, $\mathcal{A}(M)$ is the infinite set *T*.

$$rac{1}{d_n} = rac{d_{n+1}}{d_n} rac{1}{d_{n+1}} \quad ext{for every} \quad n \in \mathbb{N}.$$

Examples

Let P denote the set of primes.

Example 1: The Puiseux monoid $M = \langle 1/p \mid p \in P \rangle$ is atomic, and $\mathcal{A}(M) = \{1/p \mid p \in P\}$. Therefore $|\mathcal{A}(M)| = \infty$.

Example 2: Let M be the Puiseux monoid generated by the set $S \cup T$, where $S = \{1/2^n \mid n \in \mathbb{N}\}$ and $T = \{1/p \mid n \in P \setminus \{2\}\}$. It follows that M is not atomic; however, $\mathcal{A}(M)$ is the infinite set T.

$$rac{1}{d_n} = rac{d_{n+1}}{d_n} rac{1}{d_{n+1}} \quad ext{for every} \quad n \in \mathbb{N}.$$

Let P denote the set of primes.

Example 1: The Puiseux monoid $M = \langle 1/p \mid p \in P \rangle$ is atomic, and $\mathcal{A}(M) = \{1/p \mid p \in P\}$. Therefore $|\mathcal{A}(M)| = \infty$.

Example 2: Let *M* be the Puiseux monoid generated by the set $S \cup T$, where $S = \{1/2^n \mid n \in \mathbb{N}\}$ and $T = \{1/p \mid n \in P \setminus \{2\}\}$. It follows that *M* is not atomic; however, $\mathcal{A}(M)$ is the infinite set *T*.

$$rac{1}{d_n} = rac{d_{n+1}}{d_n} rac{1}{d_{n+1}} \quad ext{for every} \quad n \in \mathbb{N}.$$

Let P denote the set of primes.

Example 1: The Puiseux monoid $M = \langle 1/p \mid p \in P \rangle$ is atomic, and $\mathcal{A}(M) = \{1/p \mid p \in P\}$. Therefore $|\mathcal{A}(M)| = \infty$.

Example 2: Let *M* be the Puiseux monoid generated by the set $S \cup T$, where $S = \{1/2^n \mid n \in \mathbb{N}\}$ and $T = \{1/p \mid n \in P \setminus \{2\}\}$. It follows that *M* is not atomic; however, $\mathcal{A}(M)$ is the infinite set *T*.

$$rac{1}{d_n} = rac{d_{n+1}}{d_n} rac{1}{d_{n+1}} \quad ext{for every} \quad n \in \mathbb{N}.$$

- For r ∈ Q\{0}, we denote by n(r) (resp., d(r)) the positive numerator (reps., denominator) when r is represented as a reduced fraction.
- For $R \subseteq \mathbb{Q} \setminus \{0\}$, we define the *numerator set* (resp., *denominator set*) of R to be $n(R) = \{n(r) \mid r \in R\}$ (resp., $d(R) = \{d(r) \mid r \in R\}$).

Proposition (1)

Let M be a Puiseux monoid. Then $d(M \setminus \{0\})$ is bounded iff M is atomic (indeed, isomorphic to a numerical semigroup).

Proposition (2)

- For r ∈ Q\{0}, we denote by n(r) (resp., d(r)) the positive numerator (reps., denominator) when r is represented as a reduced fraction.
- For $R \subseteq \mathbb{Q} \setminus \{0\}$, we define the *numerator set* (resp., *denominator set*) of R to be $n(R) = \{n(r) \mid r \in R\}$ (resp., $d(R) = \{d(r) \mid r \in R\}$).

Proposition (1)

Let M be a Puiseux monoid. Then $d(M \setminus \{0\})$ is bounded iff M is atomic (indeed, isomorphic to a numerical semigroup).

Proposition (2)

- For r ∈ Q\{0}, we denote by n(r) (resp., d(r)) the positive numerator (reps., denominator) when r is represented as a reduced fraction.
- For $R \subseteq \mathbb{Q} \setminus \{0\}$, we define the *numerator set* (resp., *denominator set*) of R to be $n(R) = \{n(r) \mid r \in R\}$ (resp., $d(R) = \{d(r) \mid r \in R\}$).

Proposition (1)

Let M be a Puiseux monoid. Then $d(M \setminus \{0\})$ is bounded iff M is atomic (indeed, isomorphic to a numerical semigroup).

Proposition (2)

- For r ∈ Q\{0}, we denote by n(r) (resp., d(r)) the positive numerator (reps., denominator) when r is represented as a reduced fraction.
- For $R \subseteq \mathbb{Q} \setminus \{0\}$, we define the *numerator set* (resp., *denominator set*) of R to be $n(R) = \{n(r) \mid r \in R\}$ (resp., $d(R) = \{d(r) \mid r \in R\}$).

Proposition (1)

Let M be a Puiseux monoid. Then $d(M \setminus \{0\})$ is bounded iff M is atomic (indeed, isomorphic to a numerical semigroup).

Proposition (2)

- For r ∈ Q\{0}, we denote by n(r) (resp., d(r)) the positive numerator (reps., denominator) when r is represented as a reduced fraction.
- For $R \subseteq \mathbb{Q} \setminus \{0\}$, we define the *numerator set* (resp., *denominator set*) of R to be $n(R) = \{n(r) \mid r \in R\}$ (resp., $d(R) = \{d(r) \mid r \in R\}$).

Proposition (1)

Let M be a Puiseux monoid. Then $d(M \setminus \{0\})$ is bounded iff M is atomic (indeed, isomorphic to a numerical semigroup).

Proposition (2)

As we have seen before, not every Puiseux monoid is atomic. However, every Puiseux monoid contains a nontrivial atomic submonoid.

Theorem

If *M* is Puiseux monoid, then it satisfies exactly one of the following conditions:

- *M* is isomorphic to a numerical semigroup;
- M contains an atomic submonoid with infinitely many atoms.

As we have seen before, not every Puiseux monoid is atomic. However, every Puiseux monoid contains a nontrivial atomic submonoid.

Theorem

If *M* is Puiseux monoid, then it satisfies exactly one of the following conditions:

- *M* is isomorphic to a numerical semigroup;
- M contains an atomic submonoid with infinitely many atoms.

As we have seen before, not every Puiseux monoid is atomic. However, every Puiseux monoid contains a nontrivial atomic submonoid.

Theorem

If *M* is Puiseux monoid, then it satisfies exactly one of the following conditions:

- *M* is isomorphic to a numerical semigroup;
- M contains an atomic submonoid with infinitely many atoms.

Theorem

For every $m \in \mathbb{N}_0 \cup \{\infty\}$, there exists a Puiseux monoid M such that $|\mathcal{A}(M)| = m$.

Sketch of Proof:

- For m = 0, we can take M = ⟨1/pⁿ | n ∈ ℕ⟩, where p is a prime.
- Let $m \in \mathbb{N}$. For distinct primes p and q, define

$$M = \left\langle m, \ldots, 2m - 1, \frac{q}{p^{m+1}}, \frac{q}{p^{m+2}}, \ldots \right\rangle.$$

If q>m, then $\mathcal{A}(M)=\{m,\ldots,2m-1\}$ and so $|\mathcal{A}(M)|=m.$

Finally, suppose m = ∞. Let P denote the set of primes, and take M = (1/p | p ∈ P). Then A(M) = {1/p | p ∈ P} and so |A(M)| = ∞.

Theorem

For every $m \in \mathbb{N}_0 \cup \{\infty\}$, there exists a Puiseux monoid M such that $|\mathcal{A}(M)| = m$.

Sketch of Proof:

- For m = 0, we can take M = ⟨1/pⁿ | n ∈ ℕ⟩, where p is a prime.
- Let $m \in \mathbb{N}$. For distinct primes p and q, define

$$M = \left\langle m, \ldots, 2m - 1, \frac{q}{p^{m+1}}, \frac{q}{p^{m+2}}, \ldots \right\rangle.$$

If q > m, then $\mathcal{A}(M) = \{m, \dots, 2m-1\}$ and so $|\mathcal{A}(M)| = m$.

Finally, suppose m = ∞. Let P denote the set of primes, and take M = (1/p | p ∈ P). Then A(M) = {1/p | p ∈ P} and so |A(M)| = ∞.

Theorem

For every $m \in \mathbb{N}_0 \cup \{\infty\}$, there exists a Puiseux monoid M such that $|\mathcal{A}(M)| = m$.

Sketch of Proof:

- For m = 0, we can take M = ⟨1/pⁿ | n ∈ ℕ⟩, where p is a prime.
- Let $m \in \mathbb{N}$. For distinct primes p and q, define

$$M = \left\langle m, \ldots, 2m-1, \frac{q}{p^{m+1}}, \frac{q}{p^{m+2}}, \ldots \right\rangle.$$

If q > m, then $\mathcal{A}(M) = \{m, \dots, 2m-1\}$ and so $|\mathcal{A}(M)| = m$.

Finally, suppose m = ∞. Let P denote the set of primes, and take M = (1/p | p ∈ P). Then A(M) = {1/p | p ∈ P} and so |A(M)| = ∞.

Theorem

For every $m \in \mathbb{N}_0 \cup \{\infty\}$, there exists a Puiseux monoid M such that $|\mathcal{A}(M)| = m$.

Sketch of Proof:

• For m = 0, we can take $M = \langle 1/p^n \mid n \in \mathbb{N} \rangle$, where p is a prime.

• Let $m \in \mathbb{N}$. For distinct primes p and q, define

$$M = \left\langle m, \ldots, 2m-1, \frac{q}{p^{m+1}}, \frac{q}{p^{m+2}}, \ldots \right\rangle.$$

If q>m, then $\mathcal{A}(M)=\{m,\ldots,2m-1\}$ and so $|\mathcal{A}(M)|=m.$

• Finally, suppose $m = \infty$. Let P denote the set of primes, and take $M = \langle 1/p \mid p \in P \rangle$. Then $\mathcal{A}(M) = \{1/p \mid p \in P\}$ and so $|\mathcal{A}(M)| = \infty$.

Theorem

For every $m \in \mathbb{N}_0 \cup \{\infty\}$, there exists a Puiseux monoid M such that $|\mathcal{A}(M)| = m$.

Sketch of Proof:

- For m = 0, we can take $M = \langle 1/p^n \mid n \in \mathbb{N} \rangle$, where p is a prime.
- Let $m \in \mathbb{N}$. For distinct primes p and q, define

$$M = \left\langle m, \ldots, 2m-1, \frac{q}{p^{m+1}}, \frac{q}{p^{m+2}}, \ldots \right\rangle.$$

If q > m, then $\mathcal{A}(M) = \{m, \dots, 2m-1\}$ and so $|\mathcal{A}(M)| = m$.

Finally, suppose m = ∞. Let P denote the set of primes, and take M = ⟨1/p | p ∈ P⟩. Then A(M) = {1/p | p ∈ P} and so |A(M)| = ∞.

Theorem

For every $m \in \mathbb{N}_0 \cup \{\infty\}$, there exists a Puiseux monoid M such that $|\mathcal{A}(M)| = m$.

Sketch of Proof:

- For m = 0, we can take $M = \langle 1/p^n \mid n \in \mathbb{N} \rangle$, where p is a prime.
- Let $m \in \mathbb{N}$. For distinct primes p and q, define

$$M = \left\langle m, \ldots, 2m-1, \frac{q}{p^{m+1}}, \frac{q}{p^{m+2}}, \ldots \right\rangle.$$

If q > m, then $\mathcal{A}(M) = \{m, \dots, 2m-1\}$ and so $|\mathcal{A}(M)| = m$.

• Finally, suppose $m = \infty$. Let P denote the set of primes, and take $M = \langle 1/p \mid p \in P \rangle$. Then $\mathcal{A}(M) = \{1/p \mid p \in P\}$ and so $|\mathcal{A}(M)| = \infty$.

Let *M* be a Puiseux monoid.

- We say that *M* is *bounded* if it can be generated by a bounded subset of rationals.
- We say that *M* is *strongly bounded* if it can be generated by a subset of rationals *R* such that n(*R*) is bounded.

- Every strongly bounded Puiseux monoid is bounded.
- If P denotes the set of primes, then M = ⟨ p-1/p | p ∈ P⟩ is bounded but not strongly bounded.
- If P denotes the set of primes, then M = ⟨ p²-1/p | p ∈ P⟩ is not bounded.

Let M be a Puiseux monoid.

- We say that *M* is *bounded* if it can be generated by a bounded subset of rationals.
- We say that *M* is *strongly bounded* if it can be generated by a subset of rationals *R* such that n(*R*) is bounded.

- Every strongly bounded Puiseux monoid is bounded.
- If P denotes the set of primes, then M = ⟨ p-1/p | p ∈ P⟩ is bounded but not strongly bounded.
- If P denotes the set of primes, then M = ⟨ p²-1/p | p ∈ P⟩ is not bounded.

Let M be a Puiseux monoid.

- We say that *M* is *bounded* if it can be generated by a bounded subset of rationals.
- We say that M is strongly bounded if it can be generated by a subset of rationals R such that n(R) is bounded.

- Every strongly bounded Puiseux monoid is bounded.
- If P denotes the set of primes, then M = ⟨ p-1/p | p ∈ P⟩ is bounded but not strongly bounded.
- If P denotes the set of primes, then M = ⟨ p²-1/p | p ∈ P⟩ is not bounded.

Let M be a Puiseux monoid.

- We say that *M* is *bounded* if it can be generated by a bounded subset of rationals.
- We say that *M* is *strongly bounded* if it can be generated by a subset of rationals *R* such that n(*R*) is bounded.

- Every strongly bounded Puiseux monoid is bounded.
- If P denotes the set of primes, then M = ⟨ p-1/p | p ∈ P⟩ is bounded but not strongly bounded.
- If P denotes the set of primes, then M = ⟨ p²-1/p | p ∈ P⟩ is not bounded.

Let M be a Puiseux monoid.

- We say that *M* is *bounded* if it can be generated by a bounded subset of rationals.
- We say that *M* is *strongly bounded* if it can be generated by a subset of rationals *R* such that n(*R*) is bounded.

- Every strongly bounded Puiseux monoid is bounded.
- If P denotes the set of primes, then M = ⟨ p−1/p | p ∈ P⟩ is bounded but not strongly bounded.
- If P denotes the set of primes, then M = ⟨ p²-1/p | p ∈ P⟩ is not bounded.

Let M be a Puiseux monoid.

- We say that *M* is *bounded* if it can be generated by a bounded subset of rationals.
- We say that *M* is *strongly bounded* if it can be generated by a subset of rationals *R* such that n(*R*) is bounded.

Observations:

- Every strongly bounded Puiseux monoid is bounded.
- If P denotes the set of primes, then M = ⟨ p-1/p | p ∈ P⟩ is bounded but not strongly bounded.

If P denotes the set of primes, then M = ⟨ p²-1/p | p ∈ P⟩ is not bounded.

Let M be a Puiseux monoid.

- We say that *M* is *bounded* if it can be generated by a bounded subset of rationals.
- We say that *M* is *strongly bounded* if it can be generated by a subset of rationals *R* such that n(*R*) is bounded.

Observations:

- O Every strongly bounded Puiseux monoid is bounded.
- If P denotes the set of primes, then $M = \langle \frac{p-1}{p} | p \in P \rangle$ is bounded but not strongly bounded.

If P denotes the set of primes, then M = ⟨ p²-1/p | p ∈ P⟩ is not bounded.

Let M be a Puiseux monoid.

- We say that *M* is *bounded* if it can be generated by a bounded subset of rationals.
- We say that *M* is *strongly bounded* if it can be generated by a subset of rationals *R* such that n(*R*) is bounded.

- O Every strongly bounded Puiseux monoid is bounded.
- If P denotes the set of primes, then $M = \langle \frac{p-1}{p} | p \in P \rangle$ is bounded but not strongly bounded.
- If P denotes the set of primes, then $M = \langle \frac{p^2 1}{p} | p \in P \rangle$ is not bounded.

A Puiseux monoid M is said to be *antimatter* if $\mathcal{A}(M)$ is empty.

Recall: If $\{d_n\} \subset \mathbb{N}$ such that $d_n \mid d_{n+1}$ properly, then $M = \langle 1/d_n \mid n \in \mathbb{N} \rangle$ satisfies that $\mathcal{A}(M) = \emptyset$, i.e., M is antimatter. The next result is a generalization of this fact.

Definition: The *spectrum* of a sequence $\{a_n\}$ is the set of primes p such that $p \mid a_n$ for every n large enough.

Theorem

A Puiseux monoid M is said to be *antimatter* if $\mathcal{A}(M)$ is empty.

Recall: If $\{d_n\} \subset \mathbb{N}$ such that $d_n \mid d_{n+1}$ properly, then $M = \langle 1/d_n \mid n \in \mathbb{N} \rangle$ satisfies that $\mathcal{A}(M) = \emptyset$, i.e., M is antimatter. The next result is a generalization of this fact.

Definition: The *spectrum* of a sequence $\{a_n\}$ is the set of primes p such that $p \mid a_n$ for every n large enough.

Theorem

A Puiseux monoid M is said to be *antimatter* if $\mathcal{A}(M)$ is empty.

Recall: If $\{d_n\} \subset \mathbb{N}$ such that $d_n \mid d_{n+1}$ properly, then $M = \langle 1/d_n \mid n \in \mathbb{N} \rangle$ satisfies that $\mathcal{A}(M) = \emptyset$, i.e., M is antimatter. The next result is a generalization of this fact.

Definition: The *spectrum* of a sequence $\{a_n\}$ is the set of primes p such that $p \mid a_n$ for every n large enough.

Theorem

A Puiseux monoid M is said to be *antimatter* if $\mathcal{A}(M)$ is empty.

Recall: If $\{d_n\} \subset \mathbb{N}$ such that $d_n \mid d_{n+1}$ properly, then $M = \langle 1/d_n \mid n \in \mathbb{N} \rangle$ satisfies that $\mathcal{A}(M) = \emptyset$, i.e., M is antimatter. The next result is a generalization of this fact.

Definition: The *spectrum* of a sequence $\{a_n\}$ is the set of primes p such that $p \mid a_n$ for every n large enough.

Theorem

A Puiseux monoid M is said to be *antimatter* if $\mathcal{A}(M)$ is empty.

Recall: If $\{d_n\} \subset \mathbb{N}$ such that $d_n \mid d_{n+1}$ properly, then $M = \langle 1/d_n \mid n \in \mathbb{N} \rangle$ satisfies that $\mathcal{A}(M) = \emptyset$, i.e., M is antimatter. The next result is a generalization of this fact.

Definition: The *spectrum* of a sequence $\{a_n\}$ is the set of primes p such that $p \mid a_n$ for every n large enough.

Theorem

A Puiseux monoid M is said to be finite if there are only finitely many primes dividing elements of d(M).

Example: If *P* denotes the set of primes and $p \in P$, then $\langle 1/p^n \mid n \in \mathbb{N} \rangle$ is finite, but $\langle 1/q \mid q \in P \rangle$ is not.

Theorem

A Puiseux monoid M is said to be finite if there are only finitely many primes dividing elements of d(M).

Example: If *P* denotes the set of primes and $p \in P$, then $\langle 1/p^n \mid n \in \mathbb{N} \rangle$ is finite, but $\langle 1/q \mid q \in P \rangle$ is not.

Theorem

A Puiseux monoid M is said to be finite if there are only finitely many primes dividing elements of d(M).

Example: If *P* denotes the set of primes and $p \in P$, then $\langle 1/p^n \mid n \in \mathbb{N} \rangle$ is finite, but $\langle 1/q \mid q \in P \rangle$ is not.

Theorem

A Puiseux monoid M is said to be finite if there are only finitely many primes dividing elements of d(M).

Example: If *P* denotes the set of primes and $p \in P$, then $\langle 1/p^n \mid n \in \mathbb{N} \rangle$ is finite, but $\langle 1/q \mid q \in P \rangle$ is not.

Theorem

Definition

A Puiseux monoid *M* is said to be *increasing* (resp., *decreasing*) if it can be generated by an increasing (resp., decreasing) set of rationals. A Puiseux monoid is *monotone* if it is either increasing or decreasing.

- Increasing Puiseux monoids are atomic.
- Decreasing Puiseux monoids are bounded.
- A Puiseux monoid is increasing and decreasing iff it is isomorphic to a numerical semigroup.

Definition

A Puiseux monoid *M* is said to be *increasing* (resp., *decreasing*) if it can be generated by an increasing (resp., decreasing) set of rationals. A Puiseux monoid is *monotone* if it is either increasing or decreasing.

- Increasing Puiseux monoids are atomic.
- Decreasing Puiseux monoids are bounded.
- A Puiseux monoid is increasing and decreasing iff it is isomorphic to a numerical semigroup.

Definition

A Puiseux monoid M is said to be *increasing* (resp., *decreasing*) if it can be generated by an increasing (resp., decreasing) set of rationals. A Puiseux monoid is *monotone* if it is either increasing or decreasing.

- Increasing Puiseux monoids are atomic.
- Decreasing Puiseux monoids are bounded.
- A Puiseux monoid is increasing and decreasing iff it is isomorphic to a numerical semigroup.

Definition

A Puiseux monoid M is said to be *increasing* (resp., *decreasing*) if it can be generated by an increasing (resp., decreasing) set of rationals. A Puiseux monoid is *monotone* if it is either increasing or decreasing.

- Increasing Puiseux monoids are atomic.
- Decreasing Puiseux monoids are bounded.
- A Puiseux monoid is increasing and decreasing iff it is isomorphic to a numerical semigroup.

Definition

A Puiseux monoid M is said to be *increasing* (resp., *decreasing*) if it can be generated by an increasing (resp., decreasing) set of rationals. A Puiseux monoid is *monotone* if it is either increasing or decreasing.

- Increasing Puiseux monoids are atomic.
- Decreasing Puiseux monoids are bounded.
- A Puiseux monoid is increasing and decreasing iff it is isomorphic to a numerical semigroup.

Definition

A Puiseux monoid M is said to be *increasing* (resp., *decreasing*) if it can be generated by an increasing (resp., decreasing) set of rationals. A Puiseux monoid is *monotone* if it is either increasing or decreasing.

- Increasing Puiseux monoids are atomic.
- Decreasing Puiseux monoids are bounded.
- A Puiseux monoid is increasing and decreasing iff it is isomorphic to a numerical semigroup.

Definition

A Puiseux monoid M is said to be *increasing* (resp., *decreasing*) if it can be generated by an increasing (resp., decreasing) set of rationals. A Puiseux monoid is *monotone* if it is either increasing or decreasing.

- Increasing Puiseux monoids are atomic.
- Decreasing Puiseux monoids are bounded.
- A Puiseux monoid is increasing and decreasing iff it is isomorphic to a numerical semigroup.

A Puiseux monoid *M* is *prime reciprocal* if there exists a subset of primes *P* such that $M = \langle 1/p | p \in P \rangle$.

Theorem (G-Gotti)

Every submonoid of a reciprocal Puiseux monoid is atomic.

Remark: In particular, a prime reciprocal Puiseux monoid is atomic. The next question suggests itself.

A Puiseux monoid *M* is *prime reciprocal* if there exists a subset of primes *P* such that $M = \langle 1/p \mid p \in P \rangle$.

Theorem (G-Gotti)

Every submonoid of a reciprocal Puiseux monoid is atomic.

Remark: In particular, a prime reciprocal Puiseux monoid is atomic. The next question suggests itself.

A Puiseux monoid *M* is *prime reciprocal* if there exists a subset of primes *P* such that $M = \langle 1/p \mid p \in P \rangle$.

Theorem (G-Gotti)

Every submonoid of a reciprocal Puiseux monoid is atomic.

Remark: In particular, a prime reciprocal Puiseux monoid is atomic. The next question suggests itself.

A Puiseux monoid *M* is *prime reciprocal* if there exists a subset of primes *P* such that $M = \langle 1/p \mid p \in P \rangle$.

Theorem (G-Gotti)

Every submonoid of a reciprocal Puiseux monoid is atomic.

Remark: In particular, a prime reciprocal Puiseux monoid is atomic. The next question suggests itself.

A Puiseux monoid *M* is *prime reciprocal* if there exists a subset of primes *P* such that $M = \langle 1/p \mid p \in P \rangle$.

Theorem (G-Gotti)

Every submonoid of a reciprocal Puiseux monoid is atomic.

Remark: In particular, a prime reciprocal Puiseux monoid is atomic. The next question suggests itself.

A Puiseux monoid *M* is *prime reciprocal* if there exists a subset of primes *P* such that $M = \langle 1/p \mid p \in P \rangle$.

Theorem (G-Gotti)

Every submonoid of a reciprocal Puiseux monoid is atomic.

Remark: In particular, a prime reciprocal Puiseux monoid is atomic. The next question suggests itself.

A Puiseux monoid *M* is *prime reciprocal* if there exists a subset of primes *P* such that $M = \langle 1/p \mid p \in P \rangle$.

Theorem (G-Gotti)

Every submonoid of a reciprocal Puiseux monoid is atomic.

Remark: In particular, a prime reciprocal Puiseux monoid is atomic. The next question suggests itself.

Definition

For $r \in \mathbb{Q}_{>0}$, we call *multiplicative r-cyclic* to the Puiseux monoid generated by the positive powers of r, and we denote it by M_r , that is $M_r = \langle r^n \mid n \in \mathbb{N} \rangle$.

The next theorem describes the atomic structure of multiplicatively cyclic Puiseux monoids.

Theorem (G-Gotti)

For $r \in \mathbb{Q}_{>0}$, let M_r be the multiplicative r-cyclic Puiseux monoid. Then the following statements hold.

- If d(r) = 1, then M_r is atomic with $\mathcal{A}(M_r) = \{n(r)\}$.
- If d(r) > 1 and n(r) = 1, then M_r is antimatter.

Definition

For $r \in \mathbb{Q}_{>0}$, we call *multiplicative r-cyclic* to the Puiseux monoid generated by the positive powers of r, and we denote it by M_r , that is $M_r = \langle r^n \mid n \in \mathbb{N} \rangle$.

The next theorem describes the atomic structure of multiplicatively cyclic Puiseux monoids.

Theorem (G-Gotti)

For $r \in \mathbb{Q}_{>0}$, let M_r be the multiplicative r-cyclic Puiseux monoid. Then the following statements hold.

- If d(r) = 1, then M_r is atomic with $\mathcal{A}(M_r) = \{n(r)\}$.
- If d(r) > 1 and n(r) = 1, then M_r is antimatter.

Definition

For $r \in \mathbb{Q}_{>0}$, we call *multiplicative r-cyclic* to the Puiseux monoid generated by the positive powers of r, and we denote it by M_r , that is $M_r = \langle r^n \mid n \in \mathbb{N} \rangle$.

The next theorem describes the atomic structure of multiplicatively cyclic Puiseux monoids.

Theorem (G-Gotti)

For $r \in \mathbb{Q}_{>0}$, let M_r be the multiplicative r-cyclic Puiseux monoid. Then the following statements hold.

- If d(r) = 1, then M_r is atomic with $\mathcal{A}(M_r) = \{n(r)\}$.
- If d(r) > 1 and n(r) = 1, then M_r is antimatter.

Definition

For $r \in \mathbb{Q}_{>0}$, we call *multiplicative r-cyclic* to the Puiseux monoid generated by the positive powers of r, and we denote it by M_r , that is $M_r = \langle r^n \mid n \in \mathbb{N} \rangle$.

The next theorem describes the atomic structure of multiplicatively cyclic Puiseux monoids.

Theorem (G-Gotti)

For $r \in \mathbb{Q}_{>0}$, let M_r be the multiplicative r-cyclic Puiseux monoid. Then the following statements hold.

- If d(r) = 1, then M_r is atomic with $\mathcal{A}(M_r) = \{n(r)\}$
- If d(r) > 1 and n(r) = 1, then M_r is antimatter.
- If n(r) > 1 and d(r) > 1, then M_r is atomic with

 $\mathcal{A}(M_r) = \{r^n \mid n \in \mathbb{N}\}$

Definition

For $r \in \mathbb{Q}_{>0}$, we call *multiplicative r-cyclic* to the Puiseux monoid generated by the positive powers of r, and we denote it by M_r , that is $M_r = \langle r^n \mid n \in \mathbb{N} \rangle$.

The next theorem describes the atomic structure of multiplicatively cyclic Puiseux monoids.

Theorem (G-Gotti)

For $r \in \mathbb{Q}_{>0}$, let M_r be the multiplicative r-cyclic Puiseux monoid. Then the following statements hold.

- If d(r) = 1, then M_r is atomic with $\mathcal{A}(M_r) = \{n(r)\}$.
- If d(r) > 1 and n(r) = 1, then M_r is antimatter.

Definition

For $r \in \mathbb{Q}_{>0}$, we call *multiplicative r-cyclic* to the Puiseux monoid generated by the positive powers of r, and we denote it by M_r , that is $M_r = \langle r^n \mid n \in \mathbb{N} \rangle$.

The next theorem describes the atomic structure of multiplicatively cyclic Puiseux monoids.

Theorem (G-Gotti)

For $r \in \mathbb{Q}_{>0}$, let M_r be the multiplicative r-cyclic Puiseux monoid. Then the following statements hold.

- If d(r) = 1, then M_r is atomic with $\mathcal{A}(M_r) = \{n(r)\}$.
- If d(r) > 1 and n(r) = 1, then M_r is antimatter.

Definition

For $r \in \mathbb{Q}_{>0}$, we call *multiplicative r-cyclic* to the Puiseux monoid generated by the positive powers of r, and we denote it by M_r , that is $M_r = \langle r^n \mid n \in \mathbb{N} \rangle$.

The next theorem describes the atomic structure of multiplicatively cyclic Puiseux monoids.

Theorem (G-Gotti)

For $r \in \mathbb{Q}_{>0}$, let M_r be the multiplicative r-cyclic Puiseux monoid. Then the following statements hold.

- If d(r) = 1, then M_r is atomic with $\mathcal{A}(M_r) = \{n(r)\}$.
- If d(r) > 1 and n(r) = 1, then M_r is antimatter.
- If n(r) > 1 and d(r) > 1, then M_r is atomic with $\mathcal{A}(M_r) = \{r^n \mid n \in \mathbb{N}\}.$

- P. A. Garcia-Sanchez and J. C. Rosales. *Numerical Semigroups*.
- A. Geroldinger and F. Halter-Koch. Non-Unique Factorizations: Algebraic, Combinatorial, and Analytic Theory. Chapman & Hall/CRC, Boca Raton, 2006.
- F. Gotti. On the Atomic Structure of Puiseux Monoids. To appear in Journal of Algebra and its Applications.
- F. Gotti and M. Gotti. *Monotone Puiseux Monoids*. Under preparation.

End of Presentation

Felix Gotti felixgotti@berkeley.edu

THANK YOU FOR YOUR KIND ATTENTION!