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What is a Puiseux monoid?

Definition

A Puiseux monoid is an additive submonoid of Q≥0.

Remark: Puiseux monoids are a generalization of numerical
semigroups. However, the former are not necessarily

finitely generated;

atomic.

Example: For a prime p, consider the Puiseux monoid

M = 〈1/pn | n ∈ N〉.

The set of atoms of M is empty, i.e., A(M) = ∅; hence M is not
atomic. In addition, M fails to be finitely generated.
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Intuition from Numerical Semigroups

Every numerical semigroup is finitely generated, while:

Observation (1)

A Puiseux monoid is finitely generated iff it is isomorphic to a
numerical semigroup.

Numerical semigroups are atomic and minimally generated, while:

Observation (2)

A Puiseux monoid is atomic iff it is minimally generated.

Numerical semigroups have a unique minimal generating set, while:

Observation (3)

If a Puiseux monoid has a minimal generating set, then such a
generating must be unique.
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Examples

Let P denote the set of primes.

Example 1: The Puiseux monoid M = 〈1/p | p ∈ P〉 is atomic,
and A(M) = {1/p | p ∈ P}. Therefore |A(M)| =∞.

Example 2: Let M be the Puiseux monoid generated by the set
S ∪ T , where S = {1/2n | n ∈ N} and T = {1/p | n ∈ P\{2}}. It
follows that M is not atomic; however, A(M) is the infinite set T .

Example 3 If {dn} is a sequence of natural numbers such that
dn | dn+1 properly for every n ∈ N, then M = 〈1/dn | n ∈ N〉 is a
Puiseux monoid satisfying A(M) = ∅; this is because

1

dn
=

dn+1

dn

1

dn+1
for every n ∈ N.
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Sufficient Conditions for Atomicity

For r ∈ Q\{0}, we denote by n(r) (resp., d(r)) the positive
numerator (reps., denominator) when r is represented as a
reduced fraction.

For R ⊆ Q\{0}, we define the numerator set (resp.,
denominator set) of R to be n(R) = {n(r) | r ∈ R} (resp.,
d(R) = {d(r) | r ∈ R}).

Proposition (1)

Let M be a Puiseux monoid. Then d(M\{0}) is bounded iff M is
atomic (indeed, isomorphic to a numerical semigroup).

Proposition (2)

Let M be a Puiseux monoid. If 0 is not a limit point of M, then M
is atomic.
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Existence of Nontrivial Atomic Submonoids

As we have seen before, not every Puiseux monoid is atomic.
However, every Puiseux monoid contains a nontrivial atomic
submonoid.

Theorem

If M is Puiseux monoid, then it satisfies exactly one of the
following conditions:

M is isomorphic to a numerical semigroup;

M contains an atomic submonoid with infinitely many atoms.
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Realizability of |A(M)|

Theorem

For every m ∈ N0 ∪ {∞}, there exists a Puiseux monoid M such
that |A(M)| = m.

Sketch of Proof:

For m = 0, we can take M = 〈1/pn | n ∈ N〉, where p is a
prime.

Let m ∈ N. For distinct primes p and q, define

M =

〈
m, . . . , 2m − 1,

q

pm+1
,

q

pm+2
, . . .

〉
.

If q > m, then A(M) = {m, . . . , 2m− 1} and so |A(M)| = m.

Finally, suppose m =∞. Let P denote the set of primes, and
take M = 〈1/p | p ∈ P〉. Then A(M) = {1/p | p ∈ P} and so
|A(M)| =∞.
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Bounded Puiseux Monoids

Definition

Let M be a Puiseux monoid.

We say that M is bounded if it can be generated by a
bounded subset of rationals.

We say that M is strongly bounded if it can be generated by a
subset of rationals R such that n(R) is bounded.

Observations:

1 Every strongly bounded Puiseux monoid is bounded.

2 If P denotes the set of primes, then M = 〈p−1
p | p ∈ P〉 is

bounded but not strongly bounded.

3 If P denotes the set of primes, then M = 〈p
2−1
p | p ∈ P〉 is

not bounded.
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3 If P denotes the set of primes, then M = 〈p
2−1
p | p ∈ P〉 is

not bounded.
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Antimatter Puiseux Monoids

Definition

A Puiseux monoid M is said to be antimatter if A(M) is empty.

Recall: If {dn} ⊂ N such that dn | dn+1 properly, then
M = 〈1/dn | n ∈ N〉 satisfies that A(M) = ∅, i.e., M is antimatter.
The next result is a generalization of this fact.

Definition: The spectrum of a sequence {an} is the set of primes
p such that p | an for every n large enough.

Theorem

Let {rn | n ∈ N} be a strongly bounded subset of rationals
generating M. If d(rn) divides d(rn+1), the sequence {d(rn)} is
unbounded, and the spectrum of {n(rn)} is empty, then M is
antimatter.
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Finite Puiseux Monoid

Definition

A Puiseux monoid M is said to be finite if there are only finitely
many primes dividing elements of d(M).

Example: If P denotes the set of primes and p ∈ P, then
〈1/pn | n ∈ N〉 is finite, but 〈1/q | q ∈ P〉 is not.

Theorem

Let M be a strongly bounded finite Puiseux monoid. Then M is
atomic iff M is isomorphic to a numerical semigroup.
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Monotone Puiseux Monoid

We say that a subset of R is increasing (resp., decreasing) if we
can list its elements increasingly (resp., decreasingly).

Definition

A Puiseux monoid M is said to be increasing (resp., decreasing) if
it can be generated by an increasing (resp., decreasing) set of
rationals. A Puiseux monoid is monotone if it is either increasing
or decreasing.

Observations:

Increasing Puiseux monoids are atomic.

Decreasing Puiseux monoids are bounded.

A Puiseux monoid is increasing and decreasing iff it is
isomorphic to a numerical semigroup.
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Prime Reciprocal Puiseux Monoid

Definition

A Puiseux monoid M is prime reciprocal if there exists a subset of
primes P such that M = 〈1/p | p ∈ P〉.

Theorem (G-Gotti)

Every submonoid of a reciprocal Puiseux monoid is atomic.

Remark: In particular, a prime reciprocal Puiseux monoid is
atomic. The next question suggests itself.

Question: Are the submonoids of an atomic Puiseux monoid
atomic?
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Multiplicatively Cyclic Puiseux Monoid

Definition

For r ∈ Q>0, we call multiplicative r -cyclic to the Puiseux monoid
generated by the positive powers of r , and we denote it by Mr ,
that is Mr = 〈rn | n ∈ N〉.

The next theorem describes the atomic structure of multiplicatively
cyclic Puiseux monoids.

Theorem (G-Gotti)

For r ∈ Q>0, let Mr be the multiplicative r -cyclic Puiseux monoid.
Then the following statements hold.

If d(r) = 1, then Mr is atomic with A(Mr ) = {n(r)}.
If d(r) > 1 and n(r) = 1, then Mr is antimatter.

If n(r) > 1 and d(r) > 1, then Mr is atomic with
A(Mr ) = {rn | n ∈ N}.
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