Asymptotic ω-primality in commutative monoids

J. I. García García
Universidad de Cádiz

July 6, 2016

Ongoing work with D. Marín Aragón and A. Vigneron-Tenorio

Motivations

- Defined and studied for integral domains ([1])
- There exists a method to compute ω-primality in cancellative monoids ([3])
- Periodicity of ω-primality has been studied in [6]
- Asymptotic ω-primality for numerical monoids is studied in [4]

Definitions

- S is a f. g. commutative cancellative monoid without units
- $S \cong \mathbb{N}^{p} / \sim_{M}$ with M a subgroup of \mathbb{Z}^{p}
- If S is a numerical semigroup, M has $\operatorname{rank}(M)=p-1$ and M is defined by an homogeneous equation $a_{1} x_{1}+\cdots+a_{p} x_{p}=0$
- For every $s \in S$ there exists $\gamma \in \mathbb{N}^{p}$ such that $[\gamma]_{\sim_{M}}=[\gamma]=s$
- Set of factorizations of $s=[\gamma]$ and its multiples:

$$
\begin{gathered}
\mathrm{Z}(s)=\left\{x \in \mathbb{N}^{p} \mid x-\gamma \in M\right\}=(\gamma+M) \cap \mathbb{N}^{p} \\
\mathrm{Z}(s+S)=\left((\gamma+M)+\mathbb{N}^{p}\right) \cap \mathbb{N}^{p}
\end{gathered}
$$

- $S \cong \mathbb{N}^{p} / \sim_{M}$ is atomic and $\mathcal{A}(S)=\left\{\left[e_{1}\right], \ldots,\left[e_{p}\right]\right\}$
- Define the functions

$$
\begin{aligned}
& |\cdot|: \mathbb{Q}^{p} \rightarrow \mathbb{Q},\left|\left(x_{1}, \ldots, x_{p}\right)\right|=x_{1}+\cdots+x_{p} \text { (lenght function), } \\
& \Pi: \mathbb{Q}^{p} \rightarrow \mathbb{Q}_{\geq}^{p}, \Pi\left(\sum_{i=1}^{p} \lambda_{i} e_{i}\right)=\sum_{\lambda_{i}>0} \lambda_{i} e_{i} \\
\cdot & \Gamma^{n}=\gamma+\frac{1}{n} M, \frac{1}{n} M=\left\{\left.\frac{1}{n} m \right\rvert\, m \in M\right\}, \frac{1}{n} \mathbb{N}^{p}=\left\{\left.\frac{1}{n} x \right\rvert\, x \in \mathbb{N}^{p}\right\}, \\
& \frac{1}{n} \mathbb{Z}^{p}=\left\{\left.\frac{1}{n} x \right\rvert\, x \in \mathbb{Z}^{p}\right\}
\end{aligned}
$$

ω-primality

Definition (See Definition 1.1 in [2])

Let S be an atomic monoid with set of units S^{\times}and set of irreducibles $\mathcal{A}(S)$. For $s \in S \backslash S^{\times}$, we define $\omega(s)=m$ if m is the smallest positive integer with the property that whenever $s \mid a_{1}+\cdots+a_{t}$, where each $a_{i} \in \mathcal{A}(S)$, there is a $T \subseteq\{1,2, \ldots, t\}$ with $|T| \leq n$ such that $s \mid \sum_{k \in T} a_{k}$. If no such m exists, then $\omega(s)=\infty$. For $x \in S^{\times}$, we define $\omega(x)=0$.

Proposition (Proposition 3.3 in [3])
Let $S \cong \mathbb{N}^{p} / \sim_{M}$ and $s=[\gamma] \in S$. Then

$$
\omega(s)=\max \left\{|x| \mid x \in \text { Minimals }_{\leq} Z(s+S)\right\}
$$

$\omega(s)$ is the length of the farthest element of Minimals ${ }_{\leq} Z(s+S)$ to the origin with the norm $|x|_{1}=\sum\left|x_{i}\right|$

Properties of ω

Among the properties of ω we have (see [1] and [5]):

1. $\omega([\gamma]) \leq \omega([2 \gamma]) \leq 2 \omega([\gamma])$
2. $\omega\left([\gamma]+\left[\gamma^{\prime}\right]\right) \leq \omega([\gamma])+\omega\left(\left[\gamma^{\prime}\right]\right)$ (subadditive)
3. $\omega((n+m)[\gamma]) \leq \omega(n[\gamma])+\omega(m[\gamma])$. The sequence $\{\omega(n[\gamma])\}_{n \in \mathbb{N}}$ is subadditive and by [7]:

$$
\lim _{n \rightarrow \infty} \omega(n[\gamma]) / n=\inf \{\omega(n[\gamma]) / n\}
$$

This is the asymptotic ω-primality of $s($ or $\bar{\omega}(s))$
4. if $\left\{f_{n}\right\}_{n \in \mathbb{N}} \subset \mathbb{N}$ verifies that $f_{n-1} \mid f_{n}$, then

$$
\omega\left(f_{n}[\gamma]\right) / f_{n}=\omega\left(k f_{n-1}[\gamma]\right) / k f_{n-1} \leq \omega\left(f_{n-1}[\gamma]\right) / f_{n-1}
$$

For instance, $\left\{\omega\left(2^{n}[\gamma]\right) / 2^{n}\right\}_{n \in \mathbb{N}}$ is a decreasing sequence and $\lim \left\{\omega\left(2^{n}[\gamma]\right) / 2^{n}\right\}=\lim \{\omega(n[\gamma] / n)\}=\bar{\omega}(s)$

Asymptotic ω-primality

We have $\omega(n[\gamma]) / n=\max \left\{|x|: x \in\right.$ Minimals $\left._{\leq} \Pi\left(\Gamma^{n}\right)\right\}$, and, therefore,

$$
\bar{\omega}([\gamma])=\lim _{n \rightarrow \infty} \max \left\{|x|: x \in \text { Minimals }_{\leq} \Pi\left(\Gamma^{n}\right)\right\}
$$

(it is not necessary to add $\frac{1}{n} \mathbb{N}^{p}$)
($\Gamma^{n}=\gamma+\frac{1}{n} M$)

In [4], $\bar{\omega}$-primality is computed for numerical monoids

Let $S=\left\langle a_{1}<a_{2}\right\rangle, \gamma=\left(\gamma_{1}, \gamma_{2}\right), s=\gamma_{1} s_{1}+\gamma_{2} s_{2},\langle M\rangle$ is the vect. subspace generated by M
The elements of Minimals $\leq \Pi\left(\Gamma^{n}\right)$ are between the hyperplanes $\gamma+\langle M\rangle$ and $Q_{i}+\langle M\rangle$ with $Q_{i}=X+\frac{1}{n} \vec{v}$

$$
\bar{\omega}(s)=\bar{\omega}([\gamma])=\max \left\{\left|P_{1}\right|,\left|P_{2}\right|\right\}=\left|P_{1}\right|=s / a_{1}
$$

with $P_{1}=\left(s / a_{1}, 0\right), P_{2}=\left(0, s / a_{2}\right)$

For a numerical semigroup

$$
\bar{\omega}(s)=s / a_{1}
$$

and $P_{1}=\left(s / a_{1}, 0, \ldots, 0\right)$ verifies $\bar{\omega}(s)=\left|P_{1}\right|$
Since we only use $\gamma+\langle M\rangle$, the method is valid for every group M with $\operatorname{rank}(M)=p-1$ (congruences can be removed)

If $S \cong \mathbb{N}^{p} / \sim_{M}$ with $\operatorname{rank}(M)=1$, Minimals $\prod_{(-2,-1,10)} \Pi\left(\Gamma^{n}\right)$ are in the

polygonal $\Pi(\gamma+\langle M\rangle) \subset \mathbb{Q}_{\geq}^{p}$

- if $n=1, \Gamma^{1}=(2,5,0)+M=$ $\{\ldots,(4,8,-5),(2,5,0),(0,2,5),(-2,-1,10), \ldots\}$
- if $n=2, \Gamma^{2}=(2,5,0)+\frac{1}{2} M=$ $\{(4,8,-5),(3,6.5,-2.5),(2,5,0),(1,3.5,2.5)$, $(0,2,5),(-1,0.5,7.5),(-2,-1,10), \ldots\}$
- Taking the map $\sigma: \mathbb{N} \rightarrow \mathbb{N}, \sigma(n)=3^{n}$ we obtain that $(0,0,25 / 3),(0,2,5),(2,5,0) \in \Pi\left(\Gamma^{\sigma(n)}\right)$
Thus, Minimals $\left.\leq \Pi\left(\Gamma^{3^{n}}\right) \subset \overline{(0,0,25 / 3)(0,2,5)} \cup \overline{(2,5,0)(2,5,0)}\right\}$. Thus, $\bar{\omega}([2,5,0])=25 / 3$

Ideas for computing $\bar{\omega}([\gamma])$:

- Make a partition with 2^{p} elements of \mathbb{Q}^{p} attending the signal of its elements
- For each of these subsets compute the set of minimals $\Pi(\gamma+\langle M\rangle)$
For every subset Δ of $\{1, \ldots, p\}$ define the set

$$
\mathfrak{Q}_{\Delta}=\left\{x \in \mathbb{Q}^{p} \mid x_{i} \geq 0 \forall i \in \Delta, x_{i} \leq 0 \forall i \in\{1, \ldots, p\} \backslash \Delta\right\} .
$$

We use the following notation: for every $\Delta \subset\{1, \ldots, p\}$, intersect Γ^{n} and \mathfrak{Q}_{Δ} and denote $\Gamma^{n} \cap \mathfrak{Q}_{\Delta}$ by Γ_{Δ}^{n}

Note that the set $\gamma+\langle M\rangle$ is an affine variety (affine subspace) of \mathbb{Q}^{p}, and $\langle M\rangle$ is defined by the set of homogeneous equations of M. Take into account the following considerations:

1. For every Δ the set \mathfrak{Q}_{Δ} is a cone.
2. The sets $\gamma+\langle M\rangle$ and $\Gamma_{\Delta}=(\gamma+\langle M\rangle) \cap \mathfrak{Q}_{\Delta} \subset \mathbb{Q}^{p}$ are polyhedrons (intersection of a set of half-spaces), and the projection $\Pi\left(\Gamma_{\Delta}\right)$ is also a polyhedron.
3. For every $n \in \mathbb{N}, \Gamma_{\Delta}^{n} \subset \Gamma_{\Delta}$ and $\Pi\left(\Gamma_{\Delta}^{n}\right) \subset \Pi\left(\Gamma_{\Delta}\right)$.
4. In general, minimals $\leq \Pi\left(\Gamma_{\Delta}^{n}\right)$ is not a subset of minimals $\leq \Pi\left(\Gamma_{\Delta}\right)$, but

$$
\begin{align*}
& \lim \max \left\{|x|: x \in \operatorname{Minimals} \leq \Pi\left(\Gamma_{\Delta}^{n}\right)\right\}= \\
& \quad \max \left\{|x|: x \in \operatorname{Minimals} \leq \operatorname{Vertices}\left(\Pi\left(\Gamma_{\Delta}\right)\right)\right\} \tag{1}
\end{align*}
$$

Computing the asymptotic ω-primality of an element. Input: A system of generators of M and $\gamma \in \mathbb{N}^{p}$.
Output: $\bar{\omega}([\gamma])$.

1. For every $\Delta \subset\{1, \ldots, p\}$ compute $\operatorname{Vertices}\left(\Pi\left(\Gamma_{\Delta}\right)\right)$
2. Compute $W=\cup_{\Delta \subset\{1, \ldots, p\}}$ Minimals $\leq \operatorname{Vertices}\left(\Pi\left(\Gamma_{\Delta}\right)\right)$ and $V=$ minimals $\leq W$
3. Return $\bar{\omega}\left([\gamma]_{\sim_{M}}\right)=\max \{|v|: v \in V\}$

If there exists x_{0} such that $\left|x_{0}\right|=\max \{|v|: v \in V\}$ and $x_{0} \in W$, then the algorithm returns $\bar{\omega}([\gamma])$ (this condition is always satisfied when $\operatorname{rank}(M)=1$ and $\operatorname{rank}(M)=p-1)$

$$
\begin{align*}
& \gamma=(1,1,1,1), M=\langle(3,0,1,-4),(-9,1,0,8)\rangle \\
& M \equiv\left\{\begin{array}{c}
x_{1}+x_{2}+x_{3}+x_{4}=0 \\
x_{1}-7 x_{2}+5 x_{3}+2 x_{4}=0
\end{array}\right. \\
& W=\left\{\left(\frac{29}{8}, \frac{3}{8}, 0,0\right),(7,0,0,0),\left(0,0,0, \frac{19}{3}\right),\left(\frac{19}{4}, 0,0,0\right),\right. \\
& \left.\quad\left(0, \frac{7}{9}, 0, \frac{29}{9}\right),\left(0, \frac{19}{12}, \frac{29}{12}, 0\right)\right\} \tag{2}
\end{align*}
$$

Their lenghts are: $4,7,19 / 3,19 / 4,4,4$, but $(7,0,0,0)$ is not minimal

$$
\begin{align*}
& V=\left\{\left(\frac{29}{8}, \frac{3}{8}, 0,0\right),\left(0,0,0, \frac{19}{3}\right),\left(\frac{19}{4}, 0,0,0\right)\right. \\
&\left.\left(0, \frac{7}{9}, 0, \frac{29}{9}\right),\left(0, \frac{19}{12}, \frac{29}{12}, 0\right)\right\} \tag{3}
\end{align*}
$$

their lenghts are $\{4,19 / 3,19 / 4,4,4\}$, and the first three elements of $\left\{\omega\left(2^{n}[(1,1,1,1)]\right)\right\}$ are $\{7,7,6.5\}$. Hence, $\bar{\omega}([(1,1,1,1)])=19 / 3$

Thank you!

显 D．F．Anderson and S．T．Chapman． How far is an element from being prime？
J．Algebra Appl．，9（5）：779－789， 2010.
D．F．Anderson，S．T．Chapman，N．Kaplan，and
D．Torkornoo．
An algorithm to compute ω－primality in a numerical monoid． Semigroup Forum，82（1）：96－108， 2011.

國 V．Blanco，P．A．García－Sánchez，and A．Geroldinger． Semigroup－theoretical characterizations of arithmetical invariants with applications to numerical monoids and Krull monoids．
Illinois J．Math．，55（4）：1385－1414（2013）， 2011.
围 J．I．García－García，M．A．Moreno－Frías，and A．Vigneron－Tenorio．
Computation of the ω－primality and asymptotic ω－primality with applications to numerical semigroups．
Israel J．Math．，206（1）：395－411， 2015.

R A. Geroldinger and W. Hassler.
Local tameness of v-Noetherian monoids.
J. Pure Appl. Algebra, 212(6):1509-1524, 2008.

囯 C. O'Neill and R. Pelayo.
On the linearity of ω-primality in numerical monoids. 2013.

圊 G. Szegö.
Bemerkungen zu einer Arbeit von Herrn M. Fekete: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten.
Math. Z., 21(1):203-208, 1924.

