The Milnor number of plane irreducible singularities in positive characteristic

Evelia García Barroso
Universidad de La Laguna, Tenerife
Levico Terme. July, 2016

In this talk we present some results of

- E. García Barroso and A. Płoski, The Milnor number of plane irreducible singularities in positive characteristic, Bull. London Math. Soc. 48 (2016) 94-98.

First definitions: intersection multiplicity

K is algebraically closed field of characteristic $p \geq 0$.

First definitions: intersection multiplicity

K is algebraically closed field of characteristic $p \geq 0$.
A branch is a curve $\{f=0\}$, where $f \in \mathbf{K}[[x, y]]$ is irreducible.

First definitions: intersection multiplicity

K is algebraically closed field of characteristic $p \geq 0$.
A branch is a curve $\{f=0\}$, where $f \in \mathbf{K}[[x, y]]$ is irreducible.
For any power series $f, h \in \mathbf{K}[[x, y]]$ we define the intersection multiplicity $i_{0}(f, h)$ by putting

$$
i_{0}(f, h)=\operatorname{dim}_{\mathbf{K}} \mathbf{K}[[x, y]] /(f, h),
$$

where (f, h) is the ideal of $\mathbf{K}[[x, y]]$ generated by f and h.

First definitions: intersection multiplicity

K is algebraically closed field of characteristic $p \geq 0$.
A branch is a curve $\{f=0\}$, where $f \in \mathbf{K}[[x, y]]$ is irreducible.
For any power series $f, h \in \mathbf{K}[[x, y]]$ we define the intersection multiplicity $i_{0}(f, h)$ by putting

$$
i_{0}(f, h)=\operatorname{dim}_{\mathbf{K}} \mathbf{K}[[x, y]] /(f, h),
$$

where (f, h) is the ideal of $\mathbf{K}[[x, y]]$ generated by f and h.

Property

Let f, h be non-zero power series without constant term. Then $i_{0}(f, h)<+\infty$ if and only if $\{f=0\}$ and $\{h=0\}$ have no common branch.

First definitions: semigroup of a branch

Properties

- $i_{0}\left(f, h_{1} h_{2}\right)=i_{0}\left(f, h_{1}\right)+i_{0}\left(f, h_{2}\right)$.
- $i_{0}(f, 1)=0$.

First definitions: semigroup of a branch

Properties

- $i_{0}\left(f, h_{1} h_{2}\right)=i_{0}\left(f, h_{1}\right)+i_{0}\left(f, h_{2}\right)$.
- $i_{0}(f, 1)=0$.

For any irreducible power series $f \in \mathbf{K}[[x, y]]$, where \mathbf{K} is an algebraically closed field of characteristic $p \geq 0$, we put
$\Gamma(f)=\left\{i_{0}(f, h): h\right.$ runs over all power series such that $\left.h \not \equiv 0(\bmod f)\right\}$.

First definitions: semigroup of a branch

Properties

- $i_{0}\left(f, h_{1} h_{2}\right)=i_{0}\left(f, h_{1}\right)+i_{0}\left(f, h_{2}\right)$.
- $i_{0}(f, 1)=0$.

For any irreducible power series $f \in \mathbf{K}[[x, y]]$, where \mathbf{K} is an algebraically closed field of characteristic $p \geq 0$, we put
$\Gamma(f)=\left\{i_{0}(f, h): h\right.$ runs over all power series such that $\left.h \not \equiv 0(\bmod f)\right\}$.
$\Gamma(f)$ is a semigroup called the semigroup associated with the branch $\{f=0\}$.

Properties of the semigroup

Lemma

- $\Gamma(f)$ is a numerical semigroup (i.e. $\operatorname{gcd}(\Gamma(f))=1$).
- There exists a unique sequence v_{0}, \ldots, v_{g} such that
- $v_{0}=\min (\Gamma(f) \backslash\{0\})=\operatorname{ord} f$,
- $v_{k}=\min \left(\Gamma(f) \backslash \mathbf{N} v_{0}+\cdots+\mathbf{N} v_{k-1}\right)$ for $k \in\{1, \ldots, g\}$,
- $\Gamma(f)=\mathbf{N} v_{0}+\cdots+\mathbf{N} v_{g}$.

Properties of the semigroup

Lemma

- $\Gamma(f)$ is a numerical semigroup (i.e. $\operatorname{gcd}(\Gamma(f))=1$).
- There exists a unique sequence v_{0}, \ldots, v_{g} such that
- $v_{0}=\min (\Gamma(f) \backslash\{0\})=\operatorname{ord} f$,
- $v_{k}=\min \left(\Gamma(f) \backslash \mathbf{N} v_{0}+\cdots+\mathbf{N} v_{k-1}\right)$ for $k \in\{1, \ldots, g\}$,
- $\Gamma(f)=\mathbf{N} v_{0}+\cdots+\mathbf{N} v_{g}$.

The sequence v_{0}, \ldots, v_{g} is called the minimal sequence of generators of $\Gamma(f)$.

Properties of the semigroup

Lemma

- $\Gamma(f)$ is a numerical semigroup (i.e. $\operatorname{gcd}(\Gamma(f))=1$).
- There exists a unique sequence v_{0}, \ldots, v_{g} such that
- $v_{0}=\min (\Gamma(f) \backslash\{0\})=\operatorname{ord} f$,
- $v_{k}=\min \left(\Gamma(f) \backslash \mathbf{N} v_{0}+\cdots+\mathbf{N} v_{k-1}\right)$ for $k \in\{1, \ldots, g\}$,
- $\Gamma(f)=\mathbf{N} v_{0}+\cdots+\mathbf{N} v_{g}$.

The sequence v_{0}, \ldots, v_{g} is called the minimal sequence of generators of $\Gamma(f)$.

Definition

$\Gamma(f)$ is a tame semigroup if p does not divide v_{k} for all $k \in\{0,1, \ldots, g\}$.

Properties of the semigroup

Let $\mathbf{e}_{\mathbf{k}}:=\operatorname{gcd}\left(v_{0}, \ldots, v_{k}\right)$ for $k \in\{1, \ldots, g\}$. Then

- $e_{0}>e_{1}>\cdots e_{g-1}>e_{g}=1$ and
- $e_{k-1} v_{k}<e_{k} v_{k+1}$ for $k \in\{1, \ldots, g-1\}$.

Let $\mathbf{n}_{\mathbf{k}}:=e_{k-1} / e_{k}$ for $k \in\{1, \ldots, g\}$. Then

- $n_{k}>1$ for $k \in\{1, \ldots, g\}$ and
- $n_{k} v_{k}<v_{k+1}$ for $k \in\{1, \ldots, g-1\}$.

Properties of the semigroup

Let $\mathbf{e}_{\mathbf{k}}:=\operatorname{gcd}\left(v_{0}, \ldots, v_{k}\right)$ for $k \in\{1, \ldots, g\}$. Then

- $e_{0}>e_{1}>\cdots e_{g-1}>e_{g}=1$ and
- $e_{k-1} v_{k}<e_{k} v_{k+1}$ for $k \in\{1, \ldots, g-1\}$.

Let $\mathbf{n}_{\mathbf{k}}:=e_{k-1} / e_{k}$ for $k \in\{1, \ldots, g\}$. Then

- $n_{k}>1$ for $k \in\{1, \ldots, g\}$ and
- $n_{k} v_{k}<v_{k+1}$ for $k \in\{1, \ldots, g-1\}$.

Properties

- $\Gamma(f)$ is a strongly increasing semigroup.
- 「(f) has conductor

$$
c(f)=\sum_{k=1}^{g}\left(n_{k}-1\right) v_{k}-v_{0}+1
$$

Properties of the semigroup

Let $\mathbf{e}_{\mathbf{k}}:=\operatorname{gcd}\left(v_{0}, \ldots, v_{k}\right)$ for $k \in\{1, \ldots, g\}$. Then

- $e_{0}>e_{1}>\cdots e_{g-1}>e_{g}=1$ and
- $e_{k-1} v_{k}<e_{k} v_{k+1}$ for $k \in\{1, \ldots, g-1\}$.

Let $\mathbf{n}_{\mathbf{k}}:=e_{k-1} / e_{k}$ for $k \in\{1, \ldots, g\}$. Then

- $n_{k}>1$ for $k \in\{1, \ldots, g\}$ and
- $n_{k} v_{k}<v_{k+1}$ for $k \in\{1, \ldots, g-1\}$.

Properties

- $\Gamma(f)$ is a strongly increasing semigroup.
- 「(f) has conductor

$$
c(f)=\sum_{k=1}^{g}\left(n_{k}-1\right) v_{k}-v_{0}+1
$$

Milnor number

The Milnor number of f is the intersection multiplicity

$$
\mu(f):=i_{0}\left(f_{x}, f_{y}\right)
$$

Milnor number

The Milnor number of f is the intersection multiplicity

$$
\mu(f):=i_{0}\left(f_{x}, f_{y}\right)
$$

In characteristic zero we have

$$
\mu(f)=c(f)
$$

for any irreducible power series $f \in \mathbf{K}[[x, y]]$, and consequently $\mu(f)$ is determined by $\Gamma(f)$.

But in positive characteristic is not, in general, true:
Example (Boubakri-Greuel-Markwig)
$f=x^{p}+y^{p-1}$ and $g=(1+x) f$, where $p>2$. Then $\Gamma(f)=\Gamma(g)$,
$c(f)=c(g)=(p-1)(p-2)$ but $\mu(f)=+\infty$ and $\mu(g)=p(p-2)$.

But in positive characteristic is not, in general, true:
Example (Boubakri-Greuel-Markwig)
$f=x^{p}+y^{p-1}$ and $g=(1+x) f$, where $p>2$. Then $\Gamma(f)=\Gamma(g)$,
$c(f)=c(g)=(p-1)(p-2)$ but $\mu(f)=+\infty$ and
$\mu(g)=p(p-2)$.

In positive characteristic it is well-known that $\mu(f) \geq c(f)$.

But in positive characteristic is not, in general, true:

Example (Boubakri-Greuel-Markwig)

$f=x^{p}+y^{p-1}$ and $g=(1+x) f$, where $p>2$. Then $\Gamma(f)=\Gamma(g)$, $c(f)=c(g)=(p-1)(p-2)$ but $\mu(f)=+\infty$ and $\mu(g)=p(p-2)$.

In positive characteristic it is well-known that $\mu(f) \geq c(f)$.
We give necessary and sufficient conditions for the equality $\mu(f)=c(f)$ in terms of the semigroup associated with f, provided that $p>v_{0}=$ ord $f=$ multiplicity of $\Gamma(f)$.

Main result

Theorem (GB-P, May 2015)

Let $f \in \mathbf{K}[[x, y]]$ be an irreducible singularity and let v_{0}, \ldots, v_{g} be the minimal system of generators of $\Gamma(f)$. Suppose that $p=\operatorname{char} \mathbf{K}>v_{0}$. Then the following two conditions are equivalent:

- $\mu(f)=c(f)$
- $\Gamma(f)$ is a tame semigroup $\left(v_{k} \not \equiv 0(\bmod p)\right.$ for $\left.k=1, \ldots, g\right)$.

Main result

Theorem (GB-P, May 2015)

Let $f \in \mathbf{K}[[x, y]]$ be an irreducible singularity and let v_{0}, \ldots, v_{g} be the minimal system of generators of $\Gamma(f)$. Suppose that $p=$ char $\mathbf{K}>v_{0}$. Then the following two conditions are equivalent:

- $\mu(f)=c(f)$
- $\Gamma(f)$ is a tame semigroup $\left(v_{k} \not \equiv 0(\bmod p)\right.$ for $\left.k=1, \ldots, g\right)$.

Example

Let $f(x, y)=\left(y^{2}+x^{3}\right)^{2}+x^{5} y$. Then f is irreducible and $\Gamma(f)=4 \mathbf{N}+6 \mathbf{N}+13 \mathbf{N}$, so the conductor is $c(f)=16$. Let $p=\operatorname{char} \mathbf{K}>v_{0}=4$. If $p \neq 13$ then $\mu(f)=c(f)$ by Theorem. If $p=13$ then a direct calculation shows that $\mu(f)=17$.

Ingredients of the proof

Let $f \in \mathbf{K}[[x, y]]$ be an irreducible singularity with

$$
\Gamma(f)=\mathbf{N} v_{0}+\cdots+\mathbf{N} v_{g} .
$$

Since f is unitangent $i_{0}(f, x)=\operatorname{ord} f=v_{0}$ or $i_{0}(f, y)=\operatorname{ord} f=v_{0}$.
We assume that $i_{0}(f, x)=$ ord $f=v_{0}$.

Ingredients of the proof

We need a sharpened version of Merle's factorization theorem on polar curves:

Theorem (Factorization of the polar curve)

Suppose that $v_{0}=\operatorname{ord} f \not \equiv 0(\bmod p)$. Then $\frac{\partial f}{\partial y}=\psi_{1} \cdots \psi_{g}$ in $\mathbf{K}[[x, y]]$, where
(i) ord $\psi_{k}=\frac{v_{0}}{e_{k}}-\frac{v_{0}}{e_{k-1}}$ for $k \in\{1, \ldots, g\}$.
(ii) If $\phi \in \mathbf{K}[[x, y]]$ is an irreducible factor of $\psi_{k}, k \in\{1, \ldots, g\}$, then

$$
\frac{i_{0}(f, \phi)}{\operatorname{ord} \phi}=\frac{e_{k-1} v_{k}}{v_{0}},
$$

and
(iii) $\operatorname{ord} \phi \equiv 0\left(\bmod \frac{v_{0}}{e_{k-1}}\right)$.

Ingredients of the proof

Lemma
Suppose that $v_{0}=\operatorname{ord} f \not \equiv 0(\bmod p)$. Then

$$
i_{0}\left(f, \frac{\partial f}{\partial y}\right)=c(f)+\operatorname{ord} f-1
$$

Ingredients of the proof

Lemma

Suppose that $v_{0}=\operatorname{ord} f \not \equiv 0(\bmod p)$. Then

$$
i_{0}\left(f, \frac{\partial f}{\partial y}\right)=c(f)+\operatorname{ord} f-1
$$

Lemma

Suppose that $p>\operatorname{ord} f$. Then $i_{0}\left(f, \frac{\partial f}{\partial y}\right) \leq \mu(f)+\operatorname{ord} f-1$ with equality if and only if $v_{k} \not \equiv 0(\bmod p)$ for $k \in\{1, \ldots, g\}$.

Ingredients of the proof

Lemma

Suppose that $v_{0}=\operatorname{ord} f \not \equiv 0(\bmod p)$. Then

$$
i_{0}\left(f, \frac{\partial f}{\partial y}\right)=c(f)+\operatorname{ord} f-1
$$

Lemma

Suppose that $p>\operatorname{ord} f$. Then $i_{0}\left(f, \frac{\partial f}{\partial y}\right) \leq \mu(f)+\operatorname{ord} f-1$ with equality if and only if $v_{k} \not \equiv 0(\bmod p)$ for $k \in\{1, \ldots, g\}$.

Proof: we use the factorization of the polar curve.

Ingredients of the proof

Lemma

Suppose that $v_{0}=\operatorname{ord} f \not \equiv 0(\bmod p)$. Then

$$
i_{0}\left(f, \frac{\partial f}{\partial y}\right)=c(f)+\operatorname{ord} f-1
$$

Lemma

Suppose that $p>\operatorname{ord} f$. Then $i_{0}\left(f, \frac{\partial f}{\partial y}\right) \leq \mu(f)+\operatorname{ord} f-1$ with equality if and only if $v_{k} \not \equiv 0(\bmod p)$ for $k \in\{1, \ldots, g\}$.

Proof: we use the factorization of the polar curve.
Proof of main theorem: it is a consequence of Lemmas.

What happens if $p=\operatorname{char} \mathbf{K} \leq v_{0}=\operatorname{ord} f$?

What happens if we do not suppose $p=\operatorname{char} \mathbf{K}>v_{0}=\operatorname{ord} f$?

What happens if $p=\operatorname{char} \mathbf{K} \leq v_{0}=\operatorname{ord} f ?$

What happens if we do not suppose $p=\operatorname{char} \mathbf{K}>v_{0}=\operatorname{ord} f$?
Proposición (Case $g=1$)
If $\Gamma(f)=\mathbf{N} v_{0}+\mathbf{N} v_{1}\left(\operatorname{soc}(f)=\left(v_{0}-1\right)\left(v_{1}-1\right)\right)$
then

$$
\mu(f) \geq\left(v_{0}-1\right)\left(v_{1}-1\right)
$$

with equality if and only if $v_{0} \equiv \equiv 0(\bmod p)$ and $v_{1} \not \equiv 0(\bmod p)$.

What happens if $p=\operatorname{char} \mathbf{K} \leq v_{0}=\operatorname{ord} f ?$

What happens if we do not suppose $p=\operatorname{char} \mathbf{K}>v_{0}=\operatorname{ord} f$?
Proposición (Case $g=1$)
If $\Gamma(f)=\mathbf{N} v_{0}+\mathbf{N} v_{1}\left(\operatorname{soc}(f)=\left(v_{0}-1\right)\left(v_{1}-1\right)\right)$
then

$$
\mu(f) \geq\left(v_{0}-1\right)\left(v_{1}-1\right)
$$

with equality if and only if $v_{0} \equiv \equiv 0(\bmod p)$ and $v_{1} \not \equiv 0(\bmod p)$.

Conjecture

Conjecture

Let $f \in \mathbf{K}[[x, y]]$ be an irreducible singularity with semigroup
$\Gamma(f)=\mathbf{N} v_{0}+\cdots+\mathbf{N} v_{g}$. Suppose that $p=$ char $\mathbf{K}>$ ord f. Then the following two conditions are equivalent:

- $\mu(f)=c(f)$
- $\Gamma(f)$ is a tame semigroup $\left(v_{k} \not \equiv 0(\bmod p)\right.$ for $\left.k=1, \ldots, g\right)$.

Conjecture

Conjecture

Let $f \in \mathbf{K}[[x, y]]$ be an irreducible singularity with semigroup
$\Gamma(f)=\mathbf{N} v_{0}+\cdots+\mathbf{N} v_{g}$. Suppose that $p=$ char $\mathbf{K}>$ ord f. Then the following two conditions are equivalent:

- $\mu(f)=c(f)$
- $\Gamma(f)$ is a tame semigroup $\left(v_{k} \not \equiv 0(\bmod p)\right.$ for $\left.k=1, \ldots, g\right)$.

Second lemma fails if we remove the hypothesis $p>$ ord f.

Conjecture

Conjecture

Let $f \in \mathbf{K}[[x, y]]$ be an irreducible singularity with semigroup
$\Gamma(f)=\mathbf{N} v_{0}+\cdots+\mathbf{N} v_{g}$. Suppose that $p=$ char $\mathbf{K}>$ ord f. Then the following two conditions are equivalent:

- $\mu(f)=c(f)$
- $\Gamma(f)$ is a tame semigroup $\left(v_{k} \not \equiv 0(\bmod p)\right.$ for $\left.k=1, \ldots, g\right)$.

Second lemma fails if we remove the hypothesis $p>\operatorname{ord} f$.
Hefez-Rodrigues-Salomao (arXiv 1507.03179, July 2015)
If $\Gamma(f)$ is a tame semigroup then $\mu(f)=c(f)$.

Conjecture

Conjecture

Let $f \in \mathbf{K}[[x, y]]$ be an irreducible singularity with semigroup
$\Gamma(f)=\mathbf{N} v_{0}+\cdots+\mathbf{N} v_{g}$. Suppose that $p=$ char $\mathbf{K}>$ ord f. Then the following two conditions are equivalent:

- $\mu(f)=c(f)$
- $\Gamma(f)$ is a tame semigroup $\left(v_{k} \not \equiv 0(\bmod p)\right.$ for $\left.k=1, \ldots, g\right)$.

Second lemma fails if we remove the hypothesis $p>\operatorname{ord} f$.
Hefez-Rodrigues-Salomao (arXiv 1507.03179, July 2015)
If $\Gamma(f)$ is a tame semigroup then $\mu(f)=c(f)$.
The other implication is still open.

