◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

The Milnor number of plane irreducible singularities in positive characteristic

Evelia García Barroso

Universidad de La Laguna, Tenerife

Levico Terme. July, 2016

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

In this talk we present some results of

E. García Barroso and A. Płoski, *The Milnor number of plane irreducible singularities in positive characteristic*, Bull. London Math. Soc. 48 (2016) 94-98.

▲ロト ▲ 理 ト ▲ 国 ト → 国 → の Q (~

First definitions: intersection multiplicity

K is algebraically closed field of characteristic $p \ge 0$.

<ロ> < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

First definitions: intersection multiplicity

K is algebraically closed field of characteristic $p \ge 0$.

A branch is a curve $\{f = 0\}$, where $f \in \mathbf{K}[[x, y]]$ is irreducible.

<ロ> < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

First definitions: intersection multiplicity

K is algebraically closed field of characteristic $p \ge 0$.

A branch is a curve $\{f = 0\}$, where $f \in \mathbf{K}[[x, y]]$ is irreducible.

For any power series $f, h \in \mathbf{K}[[x, y]]$ we define the **intersection multiplicity** $i_0(f, h)$ by putting

 $i_0(f,h) = \dim_{\mathbf{K}} \mathbf{K}[[x,y]]/(f,h),$

where (f, h) is the ideal of K[[x, y]] generated by f and h.

First definitions: intersection multiplicity

K is algebraically closed field of characteristic $p \ge 0$.

A branch is a curve $\{f = 0\}$, where $f \in \mathbf{K}[[x, y]]$ is irreducible.

For any power series $f, h \in \mathbf{K}[[x, y]]$ we define the **intersection multiplicity** $i_0(f, h)$ by putting

 $i_0(f,h) = \dim_{\mathbf{K}} \mathbf{K}[[x,y]]/(f,h),$

where (f, h) is the ideal of K[[x, y]] generated by f and h.

Property

Let *f*, *h* be non-zero power series without constant term. Then $i_0(f, h) < +\infty$ if and only if $\{f = 0\}$ and $\{h = 0\}$ have no common branch.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つの()~

First definitions: semigroup of a branch

Properties

- $i_0(f, h_1h_2) = i_0(f, h_1) + i_0(f, h_2).$
- $i_0(f, 1) = 0.$

▲□▶▲□▶▲□▶▲□▶ □ のQで

First definitions: semigroup of a branch

Properties

•
$$i_0(f, h_1h_2) = i_0(f, h_1) + i_0(f, h_2).$$

•
$$i_0(f, 1) = 0.$$

For any irreducible power series $f \in \mathbf{K}[[x, y]]$, where **K** is an algebraically closed field of characteristic $p \ge 0$, we put

 $\Gamma(f) = \{i_0(f, h) : h \text{ runs over all power series such that } h \not\equiv 0 \pmod{f}\}.$

First definitions: semigroup of a branch

Properties

•
$$i_0(f, h_1 h_2) = i_0(f, h_1) + i_0(f, h_2).$$

•
$$i_0(f, 1) = 0.$$

For any irreducible power series $f \in \mathbf{K}[[x, y]]$, where **K** is an algebraically closed field of characteristic $p \ge 0$, we put

 $\Gamma(f) = \{i_0(f, h) : h \text{ runs over all power series such that } h \neq 0 \pmod{f}\}.$

 $\Gamma(f)$ is a semigroup called the **semigroup associated with the branch** $\{f = 0\}$.

Properties of the semigroup

Lemma

- $\Gamma(f)$ is a numerical semigroup (i.e. $gcd(\Gamma(f)) = 1$).
- There exists a unique sequence v₀,..., v_g such that

•
$$v_0 = \min(\Gamma(f) \setminus \{0\}) = \operatorname{ord} f_1$$

• $v_k = \min(\Gamma(f) \setminus \mathbf{N}v_0 + \cdots + \mathbf{N}v_{k-1})$ for $k \in \{1, \ldots, g\}$,

•
$$\Gamma(f) = \mathbf{N}v_0 + \cdots + \mathbf{N}v_g$$
.

Properties of the semigroup

Lemma

- $\Gamma(f)$ is a numerical semigroup (i.e. $gcd(\Gamma(f)) = 1$).
- There exists a unique sequence v_0, \ldots, v_g such that

•
$$v_0 = \min(\Gamma(f) \setminus \{0\}) = \text{ord } f$$

• $v_k = \min(\Gamma(f) \setminus \mathbf{N}v_0 + \cdots + \mathbf{N}v_{k-1})$ for $k \in \{1, \ldots, g\}$,

•
$$\Gamma(f) = \mathbf{N}v_0 + \cdots + \mathbf{N}v_g$$
.

The sequence v_0, \ldots, v_g is called the minimal sequence of generators of $\Gamma(f)$.

Properties of the semigroup

Lemma

- $\Gamma(f)$ is a numerical semigroup (i.e. $gcd(\Gamma(f)) = 1$).
- There exists a unique sequence v_0, \ldots, v_g such that

•
$$v_0 = \min(\Gamma(f) \setminus \{0\}) = \text{ord } f$$

• $v_k = \min(\Gamma(f) \setminus \mathbf{N}v_0 + \cdots + \mathbf{N}v_{k-1})$ for $k \in \{1, \ldots, g\}$,

•
$$\Gamma(f) = \mathbf{N} v_0 + \cdots + \mathbf{N} v_g$$
.

The sequence v_0, \ldots, v_g is called the minimal sequence of generators of $\Gamma(f)$.

Definition

 $\Gamma(f)$ is a **tame semigroup** if *p* does not divide v_k for all $k \in \{0, 1, \dots, g\}$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Properties of the semigroup

Let
$$\mathbf{e_k} := \gcd(v_0, \dots, v_k)$$
 for $k \in \{1, \dots, g\}$. Then
• $e_0 > e_1 > \dots e_{g-1} > e_g = 1$ and
• $e_{k-1}v_k < e_kv_{k+1}$ for $k \in \{1, \dots, g-1\}$.
Let $\mathbf{n_k} := e_{k-1}/e_k$ for $k \in \{1, \dots, g\}$. Then
• $n_k > 1$ for $k \in \{1, \dots, g\}$ and

•
$$n_k v_k < v_{k+1}$$
 for $k \in \{1, ..., g-1\}$.

Properties of the semigroup

Let
$$\mathbf{e_k} := \gcd(v_0, \dots, v_k)$$
 for $k \in \{1, \dots, g\}$. Then

•
$$e_0 > e_1 > \cdots e_{g-1} > e_g = 1$$
 and

•
$$e_{k-1}v_k < e_kv_{k+1}$$
 for $k \in \{1, \ldots, g-1\}$.

Let
$$\mathbf{n_k} := e_{k-1}/e_k$$
 for $k \in \{1, \dots, g\}$. Then

•
$$n_k > 1$$
 for $k \in \{1, ..., g\}$ and

•
$$n_k v_k < v_{k+1}$$
 for $k \in \{1, \ldots, g-1\}$.

Properties

- $\Gamma(f)$ is a strongly increasing semigroup.
- Γ(f) has conductor

$$c(f) = \sum_{k=1}^{g} (n_k - 1)v_k - v_0 + 1.$$

Properties of the semigroup

Let
$$\mathbf{e_k} := \gcd(v_0, \dots, v_k)$$
 for $k \in \{1, \dots, g\}$. Then

•
$$e_0 > e_1 > \cdots e_{g-1} > e_g = 1$$
 and

•
$$e_{k-1}v_k < e_kv_{k+1}$$
 for $k \in \{1, \ldots, g-1\}$.

Let
$$\mathbf{n_k} := e_{k-1}/e_k$$
 for $k \in \{1, \dots, g\}$. Then

•
$$n_k > 1$$
 for $k \in \{1, ..., g\}$ and

•
$$n_k v_k < v_{k+1}$$
 for $k \in \{1, \ldots, g-1\}$.

Properties

- $\Gamma(f)$ is a strongly increasing semigroup.
- Γ(f) has conductor

$$c(f) = \sum_{k=1}^{g} (n_k - 1)v_k - v_0 + 1.$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Milnor number

The **Milnor number** of *f* is the intersection multiplicity

$$\mu(f):=i_0(f_x,f_y).$$

Milnor number

The Milnor number of f is the intersection multiplicity

$$\mu(f):=i_0(f_x,f_y).$$

In characteristic zero we have

$$\mu(f)=c(f),$$

for any irreducible power series $f \in K[[x, y]]$, and consequently $\mu(f)$ is determined by $\Gamma(f)$.

But in positive characteristic is not, in general, true:

Example (Boubakri-Greuel-Markwig)

 $f = x^{p} + y^{p-1}$ and g = (1 + x)f, where p > 2. Then $\Gamma(f) = \Gamma(g)$, c(f) = c(g) = (p - 1)(p - 2) but $\mu(f) = +\infty$ and $\mu(g) = p(p - 2)$.

But in positive characteristic is not, in general, true:

Example (Boubakri-Greuel-Markwig)

 $f = x^p + y^{p-1}$ and g = (1 + x)f, where p > 2. Then $\Gamma(f) = \Gamma(g)$, c(f) = c(g) = (p - 1)(p - 2) but $\mu(f) = +\infty$ and $\mu(g) = p(p - 2)$.

In positive characteristic it is well-known that $\mu(f) \ge c(f)$.

But in positive characteristic is not, in general, true:

Example (Boubakri-Greuel-Markwig)

 $f = x^{p} + y^{p-1}$ and g = (1 + x)f, where p > 2. Then $\Gamma(f) = \Gamma(g)$, c(f) = c(g) = (p - 1)(p - 2) but $\mu(f) = +\infty$ and $\mu(g) = p(p - 2)$.

In positive characteristic it is well-known that $\mu(f) \ge c(f)$.

We give necessary and sufficient conditions for the equality $\mu(f) = c(f)$ in terms of the semigroup associated with *f*, provided that $p > v_0 = \text{ord } f$ =multiplicity of $\Gamma(f)$.

Main result

Theorem (GB-P, May 2015)

Let $f \in \mathbf{K}[[x, y]]$ be an irreducible singularity and let v_0, \ldots, v_g be the minimal system of generators of $\Gamma(f)$. Suppose that $p = \operatorname{char} \mathbf{K} > v_0$. Then the following two conditions are equivalent:

•
$$\mu(f) = c(f)$$

• $\Gamma(f)$ is a tame semigroup ($v_k \neq 0 \pmod{p}$ for $k = 1, \dots, g$).

Main result

Theorem (GB-P, May 2015)

Let $f \in \mathbf{K}[[x, y]]$ be an irreducible singularity and let v_0, \ldots, v_g be the minimal system of generators of $\Gamma(f)$. Suppose that $p = \operatorname{char} \mathbf{K} > v_0$. Then the following two conditions are equivalent:

•
$$\mu(f) = c(f)$$

• $\Gamma(f)$ is a tame semigroup ($v_k \neq 0 \pmod{p}$ for $k = 1, \dots, g$).

Example

Let $f(x, y) = (y^2 + x^3)^2 + x^5 y$. Then *f* is irreducible and $\Gamma(f) = 4\mathbf{N} + 6\mathbf{N} + 13\mathbf{N}$, so the conductor is c(f) = 16. Let $p = \operatorname{char} \mathbf{K} > v_0 = 4$. If $p \neq 13$ then $\mu(f) = c(f)$ by Theorem. If p = 13 then a direct calculation shows that $\mu(f) = 17$.

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → り Q (~

Ingredients of the proof

Let $f \in \mathbf{K}[[x, y]]$ be an irreducible singularity with

$$\Gamma(f) = \mathbf{N}\mathbf{v}_0 + \cdots + \mathbf{N}\mathbf{v}_g.$$

Since *f* is unitangent $i_0(f, x) = \text{ord } f = v_0$ or $i_0(f, y) = \text{ord } f = v_0$. We assume that $i_0(f, x) = \text{ord } f = v_0$.

Ingredients of the proof

We need a sharpened version of Merle's factorization theorem on polar curves:

Theorem (Factorization of the polar curve)

Suppose that $v_0 = \text{ord } f \not\equiv 0 \pmod{p}$. Then $\frac{\partial f}{\partial y} = \psi_1 \cdots \psi_g$ in $\mathbf{K}[[x, y]]$, where

(i) ord
$$\psi_k = \frac{v_0}{e_k} - \frac{v_0}{e_{k-1}}$$
 for $k \in \{1, \dots, g\}$.

(ii) If $\phi \in \mathbf{K}[[x, y]]$ is an irreducible factor of ψ_k , $k \in \{1, \dots, g\}$, then

$$\frac{i_0(f,\phi)}{\operatorname{ord}\phi} = \frac{e_{k-1}v_k}{v_0},$$

and

(iii) ord
$$\phi \equiv 0 \left(\mod \frac{v_0}{e_{k-1}} \right)$$
.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Ingredients of the proof

Lemma

Suppose that $v_0 = \text{ord } f \not\equiv 0 \pmod{p}$. Then

$$i_0\left(f,\frac{\partial f}{\partial y}\right)=c(f)+\mathrm{ord}\ f-1.$$

Ingredients of the proof

Lemma

Suppose that $v_0 = \text{ord } f \neq 0 \pmod{p}$. Then

$$i_0\left(f,\frac{\partial f}{\partial y}\right)=c(f)+\mathrm{ord}\ f-1.$$

Lemma

Suppose that p > ord f. Then $i_0\left(f, \frac{\partial f}{\partial y}\right) \le \mu(f) + \text{ord } f - 1$ with equality if and only if $v_k \not\equiv 0 \pmod{p}$ for $k \in \{1, \dots, g\}$.

Ingredients of the proof

Lemma

Suppose that $v_0 = \text{ord } f \not\equiv 0 \pmod{p}$. Then

$$i_0\left(f,\frac{\partial f}{\partial y}\right)=c(f)+\mathrm{ord}\ f-1.$$

Lemma

Suppose that p > ord f. Then $i_0\left(f, \frac{\partial f}{\partial y}\right) \le \mu(f) + \text{ord } f - 1$ with equality if and only if $v_k \not\equiv 0 \pmod{p}$ for $k \in \{1, \dots, g\}$.

Proof: we use the factorization of the polar curve.

・ロト・日本・日本・日本・日本・日本

Ingredients of the proof

Lemma

Suppose that $v_0 = \text{ord } f \not\equiv 0 \pmod{p}$. Then

$$i_0\left(f,\frac{\partial f}{\partial y}\right)=c(f)+\mathrm{ord}\ f-1.$$

Lemma

Suppose that p > ord f. Then $i_0\left(f, \frac{\partial f}{\partial y}\right) \le \mu(f) + \text{ord } f - 1$ with equality if and only if $v_k \not\equiv 0 \pmod{p}$ for $k \in \{1, \dots, g\}$.

Proof: we use the factorization of the polar curve.

Proof of main theorem: it is a consequence of Lemmas.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つの()~

What happens if $p = \operatorname{char} \mathbf{K} \le v_0 = \operatorname{ord} f$?

What happens if we do not suppose $p = \operatorname{char} \mathbf{K} > v_0 = \operatorname{ord} f$?

▲□▶▲□▶▲□▶▲□▶ □ のQで

What happens if $p = \operatorname{char} \mathbf{K} \le v_0 = \operatorname{ord} f$?

What happens if we do not suppose $p = \operatorname{char} \mathbf{K} > v_0 = \operatorname{ord} f$?

Proposición (Case g = 1)

If $\Gamma(f) = \mathbf{N}v_0 + \mathbf{N}v_1$ (so $c(f) = (v_0 - 1)(v_1 - 1)$) then

$$\mu(f) \ge (v_0 - 1)(v_1 - 1)$$

with equality if and only if $v_0 \not\equiv 0 \pmod{p}$ and $v_1 \not\equiv 0 \pmod{p}$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

What happens if $p = \operatorname{char} \mathbf{K} \le v_0 = \operatorname{ord} f$?

What happens if we do not suppose $p = \operatorname{char} \mathbf{K} > v_0 = \operatorname{ord} f$?

Proposición (Case g = 1)

If $\Gamma(f) = \mathbf{N}v_0 + \mathbf{N}v_1$ (so $c(f) = (v_0 - 1)(v_1 - 1)$) then

$$\mu(f) \ge (v_0 - 1)(v_1 - 1)$$

with equality if and only if $v_0 \not\equiv 0 \pmod{p}$ and $v_1 \not\equiv 0 \pmod{p}$.

Conjecture

Conjecture

Let $f \in \mathbf{K}[[x, y]]$ be an irreducible singularity with semigroup $\Gamma(f) = \mathbf{N}v_0 + \cdots + \mathbf{N}v_g$. Suppose that $p = \operatorname{char} \mathbf{K} > \operatorname{ord} f$. Then the following two conditions are equivalent:

•
$$\mu(f) = c(f)$$

• $\Gamma(f)$ is a tame semigroup ($v_k \neq 0 \pmod{p}$ for $k = 1, \dots, g$).

Conjecture

Conjecture

Let $f \in \mathbf{K}[[x, y]]$ be an irreducible singularity with semigroup $\Gamma(f) = \mathbf{N}v_0 + \cdots + \mathbf{N}v_g$. Suppose that $p = \operatorname{char} \mathbf{K} > \operatorname{ord} f$. Then the following two conditions are equivalent:

•
$$\mu(f) = c(f)$$

• $\Gamma(f)$ is a tame semigroup ($v_k \neq 0 \pmod{p}$ for $k = 1, \dots, g$).

Second lemma fails if we remove the hypothesis p > ord f.

Conjecture

Conjecture

Let $f \in \mathbf{K}[[x, y]]$ be an irreducible singularity with semigroup $\Gamma(f) = \mathbf{N}v_0 + \cdots + \mathbf{N}v_g$. Suppose that $p = \operatorname{char} \mathbf{K} > \operatorname{ord} f$. Then the following two conditions are equivalent:

•
$$\mu(f) = c(f)$$

• $\Gamma(f)$ is a tame semigroup ($v_k \neq 0 \pmod{p}$ for $k = 1, \dots, g$).

Second lemma fails if we remove the hypothesis p > ord f.

Hefez-Rodrigues-Salomao (arXiv 1507.03179, July 2015) If $\Gamma(f)$ is a tame semigroup then $\mu(f) = c(f)$.

Conjecture

Conjecture

Let $f \in \mathbf{K}[[x, y]]$ be an irreducible singularity with semigroup $\Gamma(f) = \mathbf{N}v_0 + \cdots + \mathbf{N}v_g$. Suppose that $p = \operatorname{char} \mathbf{K} > \operatorname{ord} f$. Then the following two conditions are equivalent:

•
$$\mu(f) = c(f)$$

• $\Gamma(f)$ is a tame semigroup ($v_k \neq 0 \pmod{p}$ for $k = 1, \dots, g$).

Second lemma fails if we remove the hypothesis p > ord f.

Hefez-Rodrigues-Salomao (arXiv 1507.03179, July 2015) If $\Gamma(f)$ is a tame semigroup then $\mu(f) = c(f)$.

The other implication is still open.