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Introduction Bounds Average behavior

Integer Knapsack Problem

Let N ≥ 2 be an integer, a ∈ ZN
>0 with

a1 < · · · < aN , gcd(a1, . . . , aN) = 1,

and b ∈ Z>0.

The corresponding knapsack polytope is

P(a, b) =

{
x ∈ RN

>0 :
N∑
i=1

aixi = b

}
.

Integer Knapsack Problem: Is P(a, b) ∩ ZN = ∅?

This problem is known to be NP-complete.
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Frobenius Problem
For s ∈ Z≥0, the s-Frobenius number of a is defined to be

gs(a) = max
{
b ∈ Z>0 :

∣∣∣P(a, b) ∩ ZN
∣∣∣ = s

}
.

This is well-defined, since gcd(a1, ..., aN) = 1.

This was first
defined for s = 0 in the lectures of G. Frobenius and for s ≥ 1 by
M. Beck & S. Robins (2003).

Frobenius Problem (FP): Given N and a as above, find g0(a).

Theorem 1 (Ramirez-Alfonsin, 1994)

Frobenius problem is NP-hard.

Theorem 2 (Kannan, 1992)

For each fixed N, the problem of finding the Frobenius number of
a given N-tuple is P.
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In terms of numerical semigroups...

For an integer N ≥ 2 and a ∈ ZN
>0 with

a1 < · · · < aN , gcd(a1, . . . , aN) = 1,

the sub-semigroup of N generated by a := (a1, . . . , aN) is

S(a) :=

{
N∑
i=1

aixi : x1, . . . , xN ∈ Z≥0

}
.

Set of gaps of S(a) is N \ S(a), so g0(a) is the largest gap of S(a).
More generally, gs(a) is the largest t ∈ S(a) that has precisely s
different representations of the form

t =
N∑
i=1

aixi for some x1, . . . , xN ∈ Z≥0.
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Research Directions

When N = 2,

gs(a1, a2) = (s + 1)a1a2 − a1 − a2.

This formula was obtained in 1884 for s = 0 and for s ≥ 1 by M.
Beck & S. Robins (2003).

For N ≥ 3 there currently are no known elementary formulas for
the Frobenius numbers.

The literature on FP is vast, including a book by Ramirez-Alfonsin;
FP has numerous applications in graph theory, computer science,
group theory, coding theory, tilings, etc. Current research on FP
includes algorithmic results, formulas for special sequences, theory
of numerical semigroups, connections to operations research and
discrete geometry, and many other directions.
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Some Bounds

The two directions that we will focus on in this talk are:

• General bounds on the Frobenius numbers.

• Average behavior of Frobenius numbers.

Lower bounds on g1: Davison (1994) for N = 3 (sharp -
√

3
cannot be improved):

g0(a) ≥
√

3a1a2a3 − a1 − a2 − a3

Aliev & Gruber (2007) for any N:

g0(a) >

(
(N − 1)!

N∏
i=1

ai

) 1
N−1

−
N∑
i=1

ai .
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Upper bounds on g0 for N ≥ 3

Erdös, Graham (1972):

g0(a) ≤ 2aN

[a1
N

]
− a1.

Vitek (1975):

g0(a) ≤
[

(a2 − 1)(aN − 2)

2

]
− 1.

Selmer (1977):

g0(a) ≤ 2aN−1

[aN
N

]
− aN .

Beck, Diaz, Robins (2002):

g0(a) ≤
√

a1a2a3(a1 + a2 + a3)− a1 − a2 − a3
2

.



Introduction Bounds Average behavior

Kannan’s geometric approach

We need some geometric notation.

Lattice: La =
{
x ∈ ZN−1 :

∑N−1
i=1 aixi ≡ 0 (mod aN)

}
.

Convex body: Sa =
{
x ∈ RN−1

≥0 :
∑N−1

i=1 aixi ≤ 1
}
.

Covering radius: µ(Sa,La) = inf
{
t ∈ R>0 : tSa + La = RN−1} .

Kannan (1992): g0(a) = µ(Sa,La)−
∑N

i=1 ai .

The simplex Sa is not 0-symmetric, which makes explicit bounds
on µ(Sa,La) difficult to produce.
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A related geometric approach

Lattice: Λa =
{
x ∈ ZN :

∑N
i=1 aixi = 0

}
.

Convex body: B(R) = ball of radius R > 0 centered at the origin
in Va = spanR Λa.

Covering radius: Ra = inf {R ∈ R>0 : B(R) + Λa = Va} .

Theorem 3 (F., Robins, 2007)

g0(a) ≤ (N − 1)Ra

‖a‖

N∑
i=1

ai

√
‖a‖2 − a2i .

This bound is symmetric in all a1, . . . , aN , unlike the previously
known ones. The covering radius Ra can be bounded by standard
techniques in the geometry of numbers.
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Bounds on gs for s ≥ 1

Extending our previous method, we obtain:

Theorem 4 (F., Schürmann, 2011)

gs(a)�N

(
s
N−1∏
i=1

ai

) 1
N−1

,

gs(a)�N max

Ra
∑N

i=1 ai

√
‖a‖2 − a2i

‖a‖
,

(
s
N−1∏
i=1

ai

) 1
N−2

 ,

where the lower bound holds for sufficiently large s.
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Another s-Frobenius number g ∗s

Beck & Kifer (2011) defined a related generalized Frobenius
number: g∗s (a) is the largest t that has at most s different
representations of the form

t =
N∑
i=1

aixi for some x1, . . . , xN ∈ Z≥0.

It is then clear that
g∗s (a) ≥ gs(a),

and g0 = g∗0 .

This may be a more convenient definition of an s-Frobenius
number – we will focus on it for the rest of the talk.
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Bounds on g ∗s

We now present bounds on g∗s , which have very similar order of
magnitude as our previous bounds on gs .

Theorem 5 (Aliev, F., Henk (2012))

Let N ≥ 3, s ≥ 0. Then

g∗s (a) ≥

(
(s + 1)(N − 1)!

N−1∏
i=1

ai

) 1
N−1

−
N−1∑
i=1

ai

and

g∗s (a) ≤ g0(a) +

(
s (N − 1)!

N−1∏
i=1

ai

) 1
N−1

.
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What should we typically expect?

The investigation of asymptotic behavior of the Frobenius number
for a “typical” N-tuple (a1, . . . , aN) was initiated by V. I. Arnold in
a series of papers (1999 - 2007).

In particular, let Ω1
N be an ensemble of relatively prime positive

integer N-tuples a = (a1, . . . , aN) with

Σ(a) := a1 + · · ·+ aN →∞.

Arnold conjectured that for a “typical” N-tuple a from Ω1
N ,

g0(a) grows like Σ(a)1+
1

N−1 as Σ(a)→∞.

Variants of Arnold’s conjecture have been considered by a number
of authors, including I. Aliev, J. Bourgain, M. Henk, A. Hinrichs,
H. Li, J. Marklof, V. Shchur, W. M. Schmidt, Y. Sinai, A.
Strömbergson, C. Ulcigrai, A. Ustinov.
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Average value estimate for g ∗s

Theorem 6 (Aliev, F., Henk (2012))

Let N ≥ 3, s ≥ 0, and let

G(T ) =
{
a ∈ ZN

>0 : gcd(a) = 1, |a|∞ ≤ T
}
.

Let D > 0. Then there exists T0(D) such that for all T ≥ T0(D),
with respect to the uniform probability distribution on G(T ),

Prob

 g∗s (a)(
(s + 1)

∏N−1
i=1 ai

) 1
N−1

≥ D

�N
1

DN−1 .

In case of the classical Frobenius number, i.e. when s = 0, this
probability estimate has been obtained by H. Li (2011). Our
method uses his result.
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Proof Ingredients

• To prove Theorems 3 and 4, we relate Frobenius numbers to
the number of integer lattice points in a certain simplex, and
then apply techniques from the geometry of numbers to
produce counting estimates.

• To prove Theorem 5, we introduce the notion of s-covering
radius for a convex body with respect to a lattice, generalizing
the usual covering radius, and relate s-Frobenius numbers to
(s + 1)-covering radii, analogously to Kannan’s formula.

• To prove Theorem 6, we use the bounds of Theorem 5 along
with H. Li’s result for g0 and the fact that “reverse”
arithmetic-geometric mean inequality holds with high
probability.
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Thank you!
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