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General commutative algebra

An ideal P in a ring R is prime if xy € P implies that x or y is in
P. Equivalently, P is prime if and only if R/P is a domain

(x -y =0 implies x =0 or y = 0). An ideal Q is primary if

xy € Q, x ¢ Q implies y" € Q for some n > 0. Equivalently, every
zerodivisor in R/Q is nilpotent (x -y = 0, X # 0 implies (y)" = 0
for some n > 0). If Q is primary, then the radical

V@ = {x;x" € @ for some n > 0} is a prime P, one says that @
is P-primary.



If R is Noetherian (such as a polynomial ring k[xi, ..., xs] or a
power series ring k[[x1, ..., xs]] over a field k), then every ideal [ is
an irredundant intersection of primary ideals, I = Q1 N--- N Qs, Q;
P;-primary, where the P;'s are different and unique. If P is a
maximal ideal, then P is prime and P" are P-primary for all n > 0.
The primary ideals belonging to minimal primes in {P;} are unique.
If I'is a graded ideal (generated by homogeneous elements) in
k[x1,...,Xn], then the primary ideal belonging to minimal primes
are graded, and the remaining (embedded) can be chosen to be
graded. If P is a prime ideal, it is no longer true that P"” must be
P-primary, P" may have embedded components.



A bit more special commutative algebra

If / is an ideal in a Noetherian ring R, then the subring

R(I) = R[It, I?t?, 13t3,...] of R[t] is called the Rees ring of .
This was introduced by Rees, who showed that R(/) is Noetherian
(so R(I) = R[It,I?t?,...,1"t"] for some n), in his proof of the
Artin-Rees lemma. If P is a prime ideal, then the primary
decomposition of P" always contains a P-primary component, it is
P(") = P"Rp N R, and it is called the symbolic nth power of P. It
is easy to see that P" C p(n)



Cowsik asked if the symbolic Rees algebra

Rs(P) = R[Pt, PP 2 PB)t3 ] always is Noetherian. This was
shown not to be true by Roberts. There are even counterexamples
when R = k[t™, t" t™] = k[x, y, z]/P. Goto-Nishida-Watanabe
showed that for n > 4 then k[t7"—3, t(57=2)n 81=3] does not have
a finitely generated symbolic Rees algebra if char(k) = 0. The
smallest counterexample is

k[t25, 1.727 t29] — k[x,y, Z]/(Xll _ y277y3 _ X4Z4’le _ X7y2).



Numerical semigroup rings

If R = k[t™,...,t"], we map k[xi,...,xs] into k[t], by x; — t"i.
Then R ~ k[xi,...,xs]/P, and P is a prime ideal since R is a
domain. In the case of numerical semigroup rings, R is
1-dimensional, so pn) — pn o p(n) A Q, where Q is
(x1,...,Xs)-primary.



Hochster has shown that if k[xi,...,xs]/P is a complete
intersection, then k[xi,...,xs]/P" is a Cohen-Macaulay ring.
Thus, if the semigroup ring is a complete intersection, then

P(") = P" since a Cohen-Macaulay ring has no embedded
components. Thus, in this case Rs(P) = R(P) is Noetherian and
P" is the primary decomposition of P"”. Huneke has shown that if
P(") = P"if n >> 0, then P is a complete intersection.



3-generated numerical semigroups

In the sequel we mean numerical semigroup when we write
semigroup. If the semigroup is generated by 3 elements, and is not
a complete intersection, then R = k[t™, t",t™]| ~ k[x, y, z]/P
where P is generated by the three 2 x 2-subdeterminants of a
matrix (the relation matrix)

X1 ybl Z€1
72 x& ybz :



Herzog and Ulrich has shown that Rs(P) = R[Pt, P(t?] if and
only if a3 = a2, b1 < by, c1 > ¢ (or a permutation). Huneke has
shown that if P is a 2-dimensional prime in a 3-dimensional ring,
then P(2)/P2 is generated by one element A.



Schenzel has, in the case of a 3-generated semigroup determined
A. The result depends on whether Ry(P) = R[Pt, P®)t?] or not.
If Rs(P) = R[Pt, P®¢t?], then if a1 < a3, by > b2, c1 > o.

al b]_ C1

X y z
A = |z% x32 ybz
ybl X32*31yb1*bzzc2 yal 71—

He also showed that (x,y,z)A € P2.



In the other case, a; > a», by > by, c1 > ¢, there is a similar
result:

X1 ybl

A=| z% x32 3%

ai—ap ybl—b2ZC1 X3l 7

c
by

a—e

z

X

and (x,y,z)A € P?.



Theorem

Suppose that R = k[t°, t*, t°] = k[x,y, z]/P is not a complete intersection. Then
P? = ((A) 4+ P*) N ((z) + P?) is a primary decomposition. If furthermore

R:(P) = R[Pt, P@t?], then P?*" = (P®)" N ((z") + P*") and

P2n+1 — P(P(Z))n N ((Zn) 4 P2n).

Proof Since P(®) = (A) 4+ P? and since (z) + P? is

(x,y, z)-primary, it suffices to note that (z) N (A) C P? to see the
first statement. If Rs(P) = R[Pt, P(?)t?], then

p2n) =31 (P2))ip2n=2i — (P since P2 C P(2). In the
same way we see that P(271) = pp(2n)  Finally

(z") N PCM = (z") N ((A) + P?)" C P?" since zA C P2,



The remaining part is a search for examples when
Rs(P) = R[Pt, PPt



Arithmetic sequences

Now suppose that the semigroup is generated by

m,m+d, m+ 2d, gcd(m, m+ d, m+ 2d) = 1. The semigroup is
symmetric (so the semigroup ring is a complete intersection) if m
is even and d odd. Otherwise the relation matrix is

Xkt
& x y)

Thus Rs(P) = R[Pt, PA)¢?].



Semigroups generated by a< b<c, c—a<4

If the semigroup is not generated by an arithmetic sequence, the
generatorsare mm+1, m—+3orm,m+1,m+4or
mm+2 m+3ormm+ 3, m+ 4,



If the semigroup is generated by m, m + 1, m + 3, it is symmetric if
m =0 (mod 3). If m = 3k + 1 the relation matrix is

xk y z
2K X2 )2

and Rs(P) # R[Pt, P®)t?] for all k.



If m=3k+2, k> 2, the relation matrix is

sck+1 V2 oz
zk X2 y
and Rs(P) # R[Pt, P()¢?],
For m = 5 the relation matrix is

x> y? z
z X3y

and Ry(P) = R[Pt, PA)¢?].



If the semigroup is generated by m, m+ 1, m + 4, it is symmetric if
m =0 (mod 4) (and if m = 5).
If m=4k +1, k > 2, the relation matrix is

X1y
kX3 )3

and Rs(P) # R[Pt, P)¢?].



If m=4k+ 2, k> 2, the relation matrix is

xk y?2 z
K X3 )2

and Rs(P) = R[Pt, P®)t?] for all k > 3.



If m= 4k + 3 the relation matrix is

Xkt 3,
K x3y

and Ry(P) = R[Pt,P@ ] only if k =1 or k = 2.



If the semigroup is generated by m, m + 2, m + 3, it is symmetric if
m =0 (mod 3) (and if m = 4).



If m= 3k + 1 the relation matrix is

xktl 20 2
A1 %y

and Ry(P) # R[Pt, P@)¢?].



If m = 3k + 2 the relation matrix is

Xk y2 Z2
K x y

and Ry(P) # R[Pt, P@+?] for all k.



If the semigroup is generated by m, m+ 3, m + 4, it is symmetric if
m=0 (mod 4) (and if m=6 or m=09).



If m=4k+1, k> 2, the relation matrix is

xktl 3 53
X1 x oy

and Rs(P) # R[Pt, P()¢?],



If m=4k+ 2, k> 2, the relation matrix is

Xkt y2 53
k1 x 2

and Rs(P) = R[Pt, P®) ] if and only if k > 4.



If m= 4k + 3 the relation matrix is

XK+l 73
K x y8

and Ry(P) = R[Pt, P®t?] only if k = 3.



Theorem

If the semigroup is generated by a < b < ¢, ¢ — a < 4, not symmetric, and a, b, c not an
arithmetic sequence, then Rs(P) = R[Pt, P®t?] if and only if the generators are 5,6,8 or
15,18,19 or 7,10,11 or 11,14,15 or 4k 4+ 2,4k + 3,4k + 6, k > 3, or

4k +2,4k + 5,4k +6, k > 4.



Semigroups of multiplicity 3

Suppose that the semigroup is generated by 3,3k + 1,3/ 4+ 2. In
order to have a 3-generated semigroup we must have / < 2k and
k <2/ 4 1. The semigroup is never symmetric. The relation

matrix is
2l—k+1 y 2
> 5 2k—1 y

and Ry(P) = R[Pt, PA)¢?].



Semigroups of multiplicity 4

If a 3-generated semigroup has multiplicity 4 and is not
symmeteric, it has generators 4,4k 4+ 1,4/ 4 3. If k > [ the relation

matrix is
(31—k+2 y 22
> y2k—21-1 %

and Ry(P) = R[Pt,P@?] if and only if 5/ —3k +3 < 0. If k </

the relation matrix is
2l-2k+1 y >
2 x3k=1 2

and Rs(P) = R[Pt, P?)t?] if and only if 3/ — 5k +1 > 0.



Theorem

If the semigroup is 3-generated and has multiplicity 3, then Rs(P) = R[Pt, P®t?]. If the
multiplicity is 4 and not symmetric, it is generated by 4,4k + 1,4/ 4 3, and

R.(P) = R[Pt, P®¢?] if and only if k > | and 5/ — 3k +3 < 0 or if k < | and
3/-5k+12>0.



