Primary decomposition of powers of prime ideals for numerical semigroups

Ralf Fröberg

July 10, 2016

General commutative algebra

An ideal P in a ring R is prime if $x y \in P$ implies that x or y is in
P. Equivalently, P is prime if and only if R / P is a domain
($\bar{x} \cdot \bar{y}=\overline{0}$ implies $\bar{x}=\overline{0}$ or $\bar{y}=\overline{0}$). An ideal Q is primary if
$x y \in Q, x \notin Q$ implies $y^{n} \in Q$ for some $n>0$. Equivalently, every zerodivisor in R / Q is nilpotent $\left(\bar{x} \cdot \bar{y}=\overline{0}, \bar{x} \neq 0\right.$ implies $(\bar{y})^{n}=\overline{0}$ for some $n>0$). If Q is primary, then the radical $\sqrt{Q}=\left\{x ; x^{n} \in Q\right.$ for some $\left.n>0\right\}$ is a prime P, one says that Q is P-primary.

If R is Noetherian (such as a polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ or a power series ring $k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ over a field k), then every ideal $/$ is an irredundant intersection of primary ideals, $I=Q_{1} \cap \cdots \cap Q_{s}, Q_{i}$ P_{i}-primary, where the P_{i} 's are different and unique. If P is a maximal ideal, then P is prime and P^{n} are P-primary for all $n>0$. The primary ideals belonging to minimal primes in $\left\{P_{i}\right\}$ are unique. If I is a graded ideal (generated by homogeneous elements) in $k\left[x_{1}, \ldots, x_{n}\right]$, then the primary ideal belonging to minimal primes are graded, and the remaining (embedded) can be chosen to be graded. If P is a prime ideal, it is no longer true that P^{n} must be P-primary, P^{n} may have embedded components.

A bit more special commutative algebra

If I is an ideal in a Noetherian ring R, then the subring $R(I)=R\left[I t, I^{2} t^{2}, I^{3} t^{3}, \ldots\right]$ of $R[t]$ is called the Rees ring of I. This was introduced by Rees, who showed that $R(I)$ is Noetherian (so $R(I)=R\left[I t, I^{2} t^{2}, \ldots, I^{n} t^{n}\right]$ for some n), in his proof of the Artin-Rees lemma. If P is a prime ideal, then the primary decomposition of P^{n} always contains a P-primary component, it is $P^{(n)}=P^{n} R_{P} \cap R$, and it is called the symbolic nth power of P. It is easy to see that $P^{n} \subseteq P^{(n)}$.

Cowsik asked if the symbolic Rees algebra $R_{s}(P)=R\left[P t, P^{(2)} t^{2}, P^{(3)} t^{3}, \ldots\right]$ always is Noetherian. This was shown not to be true by Roberts. There are even counterexamples when $R=k\left[t^{n_{1}}, t^{n_{2}}, t^{n_{3}}\right]=k[x, y, z] / P$. Goto-Nishida-Watanabe showed that for $n \geq 4$ then $k\left[t^{7 n-3}, t^{(5 n-2) n}, t^{8 n-3}\right]$ does not have a finitely generated symbolic Rees algebra if $\operatorname{char}(k)=0$. The smallest counterexample is $k\left[t^{25}, t^{72}, t^{29}\right]=k[x, y, z] /\left(x^{11}-y z^{7}, y^{3}-x^{4} z^{4}, z^{11}-x^{7} y^{2}\right)$.

Numerical semigroup rings

If $R=k\left[t^{n_{1}}, \ldots, t^{n_{s}}\right]$, we map $k\left[x_{1}, \ldots, x_{s}\right]$ into $k[t]$, by $x_{i} \mapsto t^{n_{i}}$. Then $R \simeq k\left[x_{1}, \ldots, x_{s}\right] / P$, and P is a prime ideal since R is a domain. In the case of numerical semigroup rings, R is 1-dimensional, so $P^{(n)}=P^{n}$ or $P^{(n)} \cap Q$, where Q is $\left(x_{1}, \ldots, x_{s}\right)$-primary.

Hochster has shown that if $k\left[x_{1}, \ldots, x_{s}\right] / P$ is a complete intersection, then $k\left[x_{1}, \ldots, x_{s}\right] / P^{n}$ is a Cohen-Macaulay ring. Thus, if the semigroup ring is a complete intersection, then $P^{(n)}=P^{n}$, since a Cohen-Macaulay ring has no embedded components. Thus, in this case $R_{s}(P)=R(P)$ is Noetherian and P^{n} is the primary decomposition of P^{n}. Huneke has shown that if $P^{(n)}=P^{n}$ if $n \gg 0$, then P is a complete intersection.

3-generated numerical semigroups

In the sequel we mean numerical semigroup when we write semigroup. If the semigroup is generated by 3 elements, and is not a complete intersection, then $R=k\left[t^{n_{1}}, t^{n_{2}}, t^{n_{3}}\right] \simeq k[x, y, z] / P$ where P is generated by the three 2×2-subdeterminants of a matrix (the relation matrix)

$$
\left(\begin{array}{lll}
x^{a_{1}} & y^{b_{1}} & z^{c_{1}} \\
z^{c_{2}} & x^{a_{2}} & y^{b_{2}}
\end{array}\right)
$$

Herzog and Ulrich has shown that $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$ if and only if $a_{1}=a_{2}, b_{1} \leq b_{2}, c_{1} \geq c_{2}$ (or a permutation). Huneke has shown that if P is a 2-dimensional prime in a 3-dimensional ring, then $P^{(2)} / P^{2}$ is generated by one element Δ.

Schenzel has, in the case of a 3-generated semigroup, determined Δ. The result depends on whether $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$ or not. If $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$, then if $a_{1} \leq a_{2}, b_{1} \geq b_{2}, c_{1} \geq c_{2}$.

$$
\Delta=\left|\begin{array}{ccc}
x^{a_{1}} & y^{b_{1}} & z^{c_{1}} \\
z^{c_{2}} & x^{a_{2}} & y^{b_{2}} \\
y^{b_{1}} & x^{a_{2}-a_{1}} y^{b_{1}-b_{2}} z^{c_{2}} & y^{a_{1}} z^{c_{1}-c_{2}}
\end{array}\right|
$$

He also showed that $(x, y, z) \Delta \in P^{2}$.

In the other case, $a_{1}>a_{2}, b_{1}>b_{2}, c_{1}>c_{2}$, there is a similar result:

$$
\Delta=\left|\begin{array}{ccc}
x^{a_{1}} & y^{b_{1}} & z^{c_{1}} \\
z^{c_{2}} & x^{a_{2}} & y^{b_{2}} \\
x^{a_{1}-a_{2}} & y^{b_{1}-b_{2}} z^{c_{1}} & x^{a_{1}} z^{c_{1}-c_{2}}
\end{array}\right|
$$

and $(x, y, z) \Delta \in P^{2}$.

Theorem

Suppose that $R=k\left[t^{a}, t^{b}, t^{c}\right]=k[x, y, z] / P$ is not a complete intersection. Then $P^{2}=\left((\Delta)+P^{2}\right) \cap\left((z)+P^{2}\right)$ is a primary decomposition. If furthermore $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$, then $P^{2 n}=\left(P^{(2)}\right)^{n} \cap\left(\left(z^{n}\right)+P^{2 n}\right)$ and $P^{2 n+1}=P\left(P^{(2)}\right)^{n} \cap\left(\left(z^{n}\right)+P^{2 n}\right)$.

Proof Since $P^{(2)}=(\Delta)+P^{2}$ and since $(z)+P^{2}$ is (x, y, z)-primary, it suffices to note that $(z) \cap(\Delta) \subseteq P^{2}$ to see the first statement. If $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$, then $P^{(2 n)}=\sum_{i=0}^{n}\left(P^{(2)}\right)^{i} P^{2 n-2 i}=\left(P^{(2)}\right)^{n}$ since $P^{2} \subseteq P^{(2)}$. In the same way we see that $P^{(2 n+1)}=P P^{(2 n)}$. Finally $\left(z^{n}\right) \cap P^{(2 n)}=\left(z^{n}\right) \cap\left((\Delta)+P^{2}\right)^{n} \subseteq P^{2 n}$ since $z \Delta \subseteq P^{2}$.

The remaining part is a search for examples when $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$.

Arithmetic sequences

Now suppose that the semigroup is generated by $m, m+d, m+2 d, \operatorname{gcd}(m, m+d, m+2 d)=1$. The semigroup is symmetric (so the semigroup ring is a complete intersection) if m is even and d odd. Otherwise the relation matrix is

$$
\left(\begin{array}{ccc}
x^{k+d} & y & z \\
z^{k} & x & y
\end{array}\right)
$$

Thus $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$.

Semigroups generated by $a<b<c, c-a \leq 4$

If the semigroup is not generated by an arithmetic sequence, the generators are $m, m+1, m+3$ or $m, m+1, m+4$ or $m, m+2, m+3$ or $m, m+3, m+4$,

If the semigroup is generated by $m, m+1, m+3$, it is symmetric if $m \equiv 0(\bmod 3)$. If $m=3 k+1$ the relation matrix is

$$
\left(\begin{array}{ccc}
x^{k} & y & z \\
z^{k} & x^{2} & y^{2}
\end{array}\right)
$$

and $R_{s}(P) \neq R\left[P t, P^{(2)} t^{2}\right]$ for all k.

If $m=3 k+2, k \geq 2$, the relation matrix is

$$
\left(\begin{array}{ccc}
x^{k+1} & y^{2} & z \\
z^{k} & x^{2} & y
\end{array}\right)
$$

and $R_{s}(P) \neq R\left[P t, P^{(2)} t^{2}\right]$.
For $m=5$ the relation matrix is

$$
\left(\begin{array}{lll}
x^{2} & y^{2} & z \\
z & x^{3} & y
\end{array}\right)
$$

and $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$.

If the semigroup is generated by $m, m+1, m+4$, it is symmetric if $m \equiv 0(\bmod 4)($ and if $m=5)$.
If $m=4 k+1, k \geq 2$, the relation matrix is

$$
\left(\begin{array}{ccc}
x^{k-1} & y & z \\
z^{k} & x^{3} & y^{3}
\end{array}\right)
$$

and $R_{s}(P) \neq R\left[P t, P^{(2)} t^{2}\right]$.

If $m=4 k+2, k \geq 2$, the relation matrix is

$$
\left(\begin{array}{ccc}
x^{k} & y^{2} & z \\
z^{k} & x^{3} & y^{2}
\end{array}\right)
$$

and $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$ for all $k \geq 3$.

If $m=4 k+3$ the relation matrix is

$$
\left(\begin{array}{ccc}
x^{k+1} & y^{3} & z \\
z^{k} & x^{3} & y
\end{array}\right)
$$

and $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$ only if $k=1$ or $k=2$.

If the semigroup is generated by $m, m+2, m+3$, it is symmetric if $m \equiv 0(\bmod 3)$ (and if $m=4)$.

If $m=3 k+1$ the relation matrix is

$$
\left(\begin{array}{ccc}
x^{k+1} & y^{2} & z^{2} \\
z^{k-1} & x & y
\end{array}\right)
$$

and $R_{s}(P) \neq R\left[P t, P^{(2)} t^{2}\right]$.

If $m=3 k+2$ the relation matrix is

$$
\left(\begin{array}{ccc}
x^{k} & y^{2} & z^{2} \\
z^{k} & x & y
\end{array}\right)
$$

and $R_{s}(P) \neq R\left[P t, P^{(2)} t^{2}\right]$ for all k.

If the semigroup is generated by $m, m+3, m+4$, it is symmetric if $m \equiv 0(\bmod 4)$ (and if $m=6$ or $m=9)$.

If $m=4 k+1, k \geq 2$, the relation matrix is

$$
\left(\begin{array}{lll}
x^{k+1} & y^{3} & z^{3} \\
z^{k-1} & x & y
\end{array}\right)
$$

and $R_{s}(P) \neq R\left[P t, P^{(2)} t^{2}\right]$.

If $m=4 k+2, k \geq 2$, the relation matrix is

$$
\left(\begin{array}{ccc}
x^{k+1} & y^{2} & z^{3} \\
z^{k-1} & x & y^{2}
\end{array}\right)
$$

and $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$ if and only if $k \geq 4$.

If $m=4 k+3$ the relation matrix is

$$
\left(\begin{array}{ccc}
x^{k+1} & y & z^{3} \\
z^{k} & x & y^{3}
\end{array}\right)
$$

and $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$ only if $k=3$.

Theorem

If the semigroup is generated by $a<b<c, c-a \leq 4$, not symmetric, and a, b, c not an arithmetic sequence, then $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$ if and only if the generators are $5,6,8$ or $15,18,19$ or $7,10,11$ or $11,14,15$ or $4 k+2,4 k+3,4 k+6, k \geq 3$, or $4 k+2,4 k+5,4 k+6, k \geq 4$.

Semigroups of multiplicity 3

Suppose that the semigroup is generated by $3,3 k+1,3 I+2$. In order to have a 3 -generated semigroup we must have $I \leq 2 k$ and $k \leq 2 l+1$. The semigroup is never symmetric. The relation matrix is

$$
\left(\begin{array}{ccc}
x^{2 l-k+1} & y & z \\
z & x^{2 k-1} & y
\end{array}\right)
$$

and $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$.

Semigroups of multiplicity 4

If a 3-generated semigroup has multiplicity 4 and is not symmeteric, it has generators $4,4 k+1,4 l+3$. If $k>l$ the relation matrix is

$$
\left(\begin{array}{ccc}
x^{3 /-k+2} & y & z^{2} \\
z & x^{2 k-2 /-1} & y
\end{array}\right)
$$

and $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$ if and only if $5 I-3 k+3 \leq 0$. If $k \leq 1$ the relation matrix is

$$
\left(\begin{array}{ccc}
x^{2 l-2 k+1} & y & z \\
z & x^{3 k-1} & y^{2}
\end{array}\right)
$$

and $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$ if and only if $3 /-5 k+1 \geq 0$.

Theorem

If the semigroup is 3-generated and has multiplicity 3, then $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$. If the multiplicity is 4 and not symmetric, it is generated by $4,4 k+1,4 I+3$, and $R_{s}(P)=R\left[P t, P^{(2)} t^{2}\right]$ if and only if $k>I$ and $5 I-3 k+3 \leq 0$ or if $k \leq I$ and $3 /-5 k+1 \geq 0$.

