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General commutative algebra

An ideal P in a ring R is prime if xy ∈ P implies that x or y is in
P. Equivalently, P is prime if and only if R/P is a domain
(x̄ · ȳ = 0̄ implies x̄ = 0̄ or ȳ = 0̄). An ideal Q is primary if
xy ∈ Q, x /∈ Q implies yn ∈ Q for some n > 0. Equivalently, every
zerodivisor in R/Q is nilpotent (x̄ · ȳ = 0̄, x̄ 6= 0 implies (ȳ)n = 0̄
for some n > 0). If Q is primary, then the radical√
Q = {x ; xn ∈ Q for some n > 0} is a prime P, one says that Q

is P-primary.



If R is Noetherian (such as a polynomial ring k[x1, . . . , xn] or a
power series ring k[[x1, . . . , xn]] over a field k), then every ideal I is
an irredundant intersection of primary ideals, I = Q1 ∩ · · · ∩Qs , Qi

Pi -primary, where the Pi ’s are different and unique. If P is a
maximal ideal, then P is prime and Pn are P-primary for all n > 0.
The primary ideals belonging to minimal primes in {Pi} are unique.
If I is a graded ideal (generated by homogeneous elements) in
k[x1, . . . , xn], then the primary ideal belonging to minimal primes
are graded, and the remaining (embedded) can be chosen to be
graded. If P is a prime ideal, it is no longer true that Pn must be
P-primary, Pn may have embedded components.



A bit more special commutative algebra

If I is an ideal in a Noetherian ring R, then the subring
R(I ) = R[It, I 2t2, I 3t3, . . .] of R[t] is called the Rees ring of I .
This was introduced by Rees, who showed that R(I ) is Noetherian
(so R(I ) = R[It, I 2t2, . . . , I ntn] for some n), in his proof of the
Artin-Rees lemma. If P is a prime ideal, then the primary
decomposition of Pn always contains a P-primary component, it is
P(n) = PnRP ∩ R, and it is called the symbolic nth power of P. It
is easy to see that Pn ⊆ P(n).



Cowsik asked if the symbolic Rees algebra
Rs(P) = R[Pt,P(2)t2,P(3)t3, . . .] always is Noetherian. This was
shown not to be true by Roberts. There are even counterexamples
when R = k[tn1 , tn2 , tn3 ] = k[x , y , z ]/P. Goto-Nishida-Watanabe
showed that for n ≥ 4 then k[t7n−3, t(5n−2)n, t8n−3] does not have
a finitely generated symbolic Rees algebra if char(k) = 0. The
smallest counterexample is
k[t25, t72, t29] = k[x , y , z ]/(x11 − yz7, y3 − x4z4, z11 − x7y2).



Numerical semigroup rings

If R = k[tn1 , . . . , tns ], we map k[x1, . . . , xs ] into k[t], by xi 7→ tni .
Then R ' k[x1, . . . , xs ]/P, and P is a prime ideal since R is a
domain. In the case of numerical semigroup rings, R is
1-dimensional, so P(n) = Pn or P(n) ∩ Q, where Q is
(x1, . . . , xs)-primary.



Hochster has shown that if k[x1, . . . , xs ]/P is a complete
intersection, then k[x1, . . . , xs ]/Pn is a Cohen-Macaulay ring.
Thus, if the semigroup ring is a complete intersection, then
P(n) = Pn, since a Cohen-Macaulay ring has no embedded
components. Thus, in this case Rs(P) = R(P) is Noetherian and
Pn is the primary decomposition of Pn. Huneke has shown that if
P(n) = Pn if n >> 0, then P is a complete intersection.



3-generated numerical semigroups

In the sequel we mean numerical semigroup when we write
semigroup. If the semigroup is generated by 3 elements, and is not
a complete intersection, then R = k[tn1 , tn2 , tn3 ] ' k[x , y , z ]/P
where P is generated by the three 2× 2-subdeterminants of a
matrix (the relation matrix)(

xa1 yb1 zc1

zc2 xa2 yb2

)
.



Herzog and Ulrich has shown that Rs(P) = R[Pt,P(2)t2] if and
only if a1 = a2, b1 ≤ b2, c1 ≥ c2 (or a permutation). Huneke has
shown that if P is a 2-dimensional prime in a 3-dimensional ring,
then P(2)/P2 is generated by one element ∆.



Schenzel has, in the case of a 3-generated semigroup, determined
∆. The result depends on whether Rs(P) = R[Pt,P(2)t2] or not.
If Rs(P) = R[Pt,P(2)t2], then if a1 ≤ a2, b1 ≥ b2, c1 ≥ c2.

∆ =

∣∣∣∣∣∣
xa1 yb1 zc1

zc2 xa2 yb2

yb1 xa2−a1yb1−b2zc2 ya1zc1−c2

∣∣∣∣∣∣ .
He also showed that (x , y , z)∆ ∈ P2.



In the other case, a1 > a2, b1 > b2, c1 > c2, there is a similar
result:

∆ =

∣∣∣∣∣∣
xa1 yb1 zc1

zc2 xa2 yb2

xa1−a2 yb1−b2zc1 xa1zc1−c2

∣∣∣∣∣∣
and (x , y , z)∆ ∈ P2.



Theorem
Suppose that R = k[ta, tb, tc ] = k[x , y , z]/P is not a complete intersection. Then
P2 = ((∆) + P2) ∩ ((z) + P2) is a primary decomposition. If furthermore
Rs(P) = R[Pt,P(2)t2], then P2n = (P(2))n ∩ ((zn) + P2n) and
P2n+1 = P(P(2))n ∩ ((zn) + P2n).

Proof Since P(2) = (∆) + P2 and since (z) + P2 is
(x , y , z)-primary, it suffices to note that (z) ∩ (∆) ⊆ P2 to see the
first statement. If Rs(P) = R[Pt,P(2)t2], then
P(2n) =

∑n
i=0(P(2))iP2n−2i = (P(2))n since P2 ⊆ P(2). In the

same way we see that P(2n+1) = PP(2n). Finally
(zn) ∩ P(2n) = (zn) ∩ ((∆) + P2)n ⊆ P2n since z∆ ⊆ P2.



The remaining part is a search for examples when
Rs(P) = R[Pt,P(2)t2].



Arithmetic sequences

Now suppose that the semigroup is generated by
m,m + d ,m + 2d , gcd(m,m + d ,m + 2d) = 1. The semigroup is
symmetric (so the semigroup ring is a complete intersection) if m
is even and d odd. Otherwise the relation matrix is(

xk+d y z
zk x y

)
.

Thus Rs(P) = R[Pt,P(2)t2].



Semigroups generated by a < b < c , c − a ≤ 4

If the semigroup is not generated by an arithmetic sequence, the
generators are m,m + 1,m + 3 or m,m + 1,m + 4 or
m,m + 2,m + 3 or m,m + 3,m + 4,



If the semigroup is generated by m,m + 1,m + 3, it is symmetric if
m ≡ 0 (mod 3). If m = 3k + 1 the relation matrix is(

xk y z
zk x2 y2

)
and Rs(P) 6= R[Pt,P(2)t2] for all k.



If m = 3k + 2, k ≥ 2, the relation matrix is(
xk+1 y2 z
zk x2 y

)
and Rs(P) 6= R[Pt,P(2)t2].
For m = 5 the relation matrix is(

x2 y2 z
z x3 y

)
and Rs(P) = R[Pt,P(2)t2].



If the semigroup is generated by m,m + 1,m + 4, it is symmetric if
m ≡ 0 (mod 4) (and if m = 5).
If m = 4k + 1, k ≥ 2, the relation matrix is(

xk−1 y z
zk x3 y3

)
and Rs(P) 6= R[Pt,P(2)t2].



If m = 4k + 2, k ≥ 2, the relation matrix is(
xk y2 z
zk x3 y2

)
and Rs(P) = R[Pt,P(2)t2] for all k ≥ 3.



If m = 4k + 3 the relation matrix is(
xk+1 y3 z
zk x3 y

)
and Rs(P) = R[Pt,P(2)t2] only if k = 1 or k = 2.



If the semigroup is generated by m,m + 2,m + 3, it is symmetric if
m ≡ 0 (mod 3) (and if m = 4).



If m = 3k + 1 the relation matrix is(
xk+1 y2 z2

zk−1 x y

)
and Rs(P) 6= R[Pt,P(2)t2].



If m = 3k + 2 the relation matrix is(
xk y2 z2

zk x y

)
and Rs(P) 6= R[Pt,P(2)t2] for all k .



If the semigroup is generated by m,m + 3,m + 4, it is symmetric if
m ≡ 0 (mod 4) (and if m = 6 or m = 9).



If m = 4k + 1, k ≥ 2, the relation matrix is(
xk+1 y3 z3

zk−1 x y

)
and Rs(P) 6= R[Pt,P(2)t2].



If m = 4k + 2, k ≥ 2, the relation matrix is(
xk+1 y2 z3

zk−1 x y2

)
and Rs(P) = R[Pt,P(2)t2] if and only if k ≥ 4.



If m = 4k + 3 the relation matrix is(
xk+1 y z3

zk x y3

)
and Rs(P) = R[Pt,P(2)t2] only if k = 3.



Theorem
If the semigroup is generated by a < b < c, c − a ≤ 4, not symmetric, and a, b, c not an
arithmetic sequence, then Rs(P) = R[Pt,P(2)t2] if and only if the generators are 5,6,8 or
15,18,19 or 7,10,11 or 11,14,15 or 4k + 2, 4k + 3, 4k + 6, k ≥ 3, or
4k + 2, 4k + 5, 4k + 6, k ≥ 4.



Semigroups of multiplicity 3

Suppose that the semigroup is generated by 3, 3k + 1, 3l + 2. In
order to have a 3-generated semigroup we must have l ≤ 2k and
k ≤ 2l + 1. The semigroup is never symmetric. The relation
matrix is (

x2l−k+1 y z
z x2k−l y

)
and Rs(P) = R[Pt,P(2)t2].



Semigroups of multiplicity 4

If a 3-generated semigroup has multiplicity 4 and is not
symmeteric, it has generators 4, 4k + 1, 4l + 3. If k > l the relation
matrix is (

x3l−k+2 y z2

z x2k−2l−1 y

)
and Rs(P) = R[Pt,P(2)t2] if and only if 5l − 3k + 3 ≤ 0. If k ≤ l
the relation matrix is(

x2l−2k+1 y z
z x3k−l y2

)
and Rs(P) = R[Pt,P(2)t2] if and only if 3l − 5k + 1 ≥ 0.



Theorem
If the semigroup is 3-generated and has multiplicity 3, then Rs(P) = R[Pt,P(2)t2]. If the
multiplicity is 4 and not symmetric, it is generated by 4, 4k + 1, 4l + 3, and
Rs(P) = R[Pt,P(2)t2] if and only if k > l and 5l − 3k + 3 ≤ 0 or if k ≤ l and
3l − 5k + 1 ≥ 0.


