Feng-Rao distances in Arf and inductive semigroups

José I. Farrán Pedro A. García-Sánchez

International Meeting on Numerical Semigroups - Levico Terme

July 5th, 2016

José I. Farrán, Pedro A. García-Sánchez Feng-Rao distances in Arf and inductive semigroups

Outline

1 AG codes

2 Numerical semigroups

3 Arf semigroups

4 Inductive semigroups

José I. Farrán, Pedro A. García-Sánchez Feng-Rao distances in Arf and inductive semigroups

Error-correcting codes

Parameters

- Alphabet $\mathcal{A} = \mathbb{F}_q$
- Code $C \subseteq \mathbb{F}_q^n$
- Dimension dim $C = k \le n$

Hamming distance

• The Hamming distance in \mathbb{F}_q^n is defined by

$$d(\mathbf{x},\mathbf{y}) \doteq \sharp\{i \mid x_i \neq y_i\}$$

• The minimum distance of C is

$$d \doteq d(C) \doteq \min \left\{ d(\mathbf{c}, \mathbf{c}') \mid \mathbf{c}, \mathbf{c}' \in C, \ \mathbf{c} \neq \mathbf{c}'
ight\}$$

- The parameters of a code are $C \equiv [n, k, d]_q$
- *d* is connected with the error correction capacity of the code, so that it is important either
 - the exact value of d, or
 - a lower-bound for d
- In the case of AG codes some numerical semigroup helps

One-point AG Codes

- χ "curve" over a finite field $\mathbb{F} \equiv \mathbb{F}_q$
- P and P_1, \ldots, P_n "rational" points of χ
- C_m^* image of the linear map

$$ev_D : \mathcal{L}(mP) \longrightarrow \mathbb{F}^n$$

 $f \mapsto (f(P_1), \dots, f(P_n))$

• *C_m* the orthogonal code of *C^{*}_m* with respect to the canonical bilinear form

$$\langle \mathbf{a}, \mathbf{b} \rangle \doteq \sum_{i=1}^{n} a_i b_i$$

- If we assume that 2g 2 < m < n, then the parameters of C_m are
 - k = n m + g 1
 - $d \ge m + 2 2g$ (Goppa bound)

by using the Riemann-Roch theorem

Weierstrass semigroups

The Goppa bound can actually be improved by using the Weierstrass semigroup of χ at the point p

$$\Gamma_P \doteq \{ m \in \mathbb{N} \mid \exists f \text{ with } (f)_{\infty} = mP \}$$

Note that $\Gamma_P = \mathbb{N} \setminus \{\ell_1, \dots, \ell_g\}$ where g is the genus of χ and the numbers ℓ_i are called the Weierstrass gaps of χ at P

- $k = n k_m$, where $k_m \doteq \sharp (\Gamma_P \cap [0, m])$ (note that $k_m = m + 1 - g$ for m >> 0)
- $d \ge \delta(m+1)$ (the so-called Feng–Rao distance)
- We have an improvement, since $\delta(m+1) \ge m+2-2g$, and they coincide for m >> 0

Generalized Hamming weights

• Define the support of a linear code C as

$$\operatorname{supp}(C) := \{i \, | \, c_i \neq 0 \ \text{ for some } \mathbf{c} \in C\}$$

• The *r*-th generalized weight of *C* is defined by

 $d_r(\mathcal{C}) := \min\{ \sharp \operatorname{supp}(\mathcal{C}') \mid \mathcal{C}' \leq \mathcal{C} \text{ with } \dim(\mathcal{C}') = r \}$

- The above definition only makes sense if $r \leq k$, where k = dim(C)
- The set of numbers GHW(C) := {d₁,...,d_k} is called the weight hierarchy of the code C
- It is possible to generalize the generalized Feng-Rao distance for higher order *r*, and for a one-point AG code *C_m* one has

$$d_r(C_m) \geq \delta_{FR}^r(m+1)$$

(the details on Feng-Rao distances are given later)

Feng-Rao distance

Let $S = \{\rho_1 = 0 < \rho_2 < \cdots\}$ be a numerical semigroup of genus g and conductor c

• The Feng-Rao distance in S is defined as

$$\delta_{FR}(m) := \min\{
u(m') \mid m' \ge m, \ m' \in S\}$$

where $u(m') := \sharp N(m')$ and

$$N(m') := \{(a, b) \in S^2 \mid a + b = m'\}$$

Basic results:

(i) $\nu(m) = m + 1 - 2g + D(m)$ for $m \ge c$, where

 $D(m) \doteq \sharp\{(x,y) \mid x,y \notin S \text{ and } x+y=m\}$

(ii)
$$\nu(m) = m + 1 - 2g$$
 for $m \ge 2c - 1$
(iii) $\delta_{FR}(m) \ge m + 1 - 2g \doteq d^*(m - 1) \quad \forall m \in S$,
"and equality holds for $m \ge 2c - 1$ "

Generalized Feng-Rao distances

- The classical Feng-Rao distance corresponds to r = 1 in the following definition:
 - Let S be a numerical semigroup. For any integer r ≥ 1, the r-th Feng-Rao distance of S is defined by

 $\delta_{FR}^{r}(m) :=$

$$\min\{\nu(m_1,\ldots,m_r) \mid m \leq m_1 < \cdots < m_r, \ m_i \in S\}$$

• where
$$u(m_1,\ldots,m_r):=\sharp N(m_1,\ldots,m_r)$$
 and $N(m_1,\ldots,m_r):=N(m_1)\cup\cdots\cup N(m_r)$

Feng-Rao numbers

• There exists a certain constant $E_r = E(S, r)$, depending on r and S, such that

$$\delta^r_{FR}(m) = m + 1 - 2g + E_r$$

for $m \geq 2c-1$

- This constant is called the *r*-th Feng-Rao number of S
- Furthermore, δ^r_{FR}(m) ≥ m+1-2g+E(S, r) for m ≥ c, and equality holds if S is symmetric and m = 2g 1 + ρ for some ρ ∈ S \ {0}
- We may consider E(S, 1) = 0
- If g = 0 then E(S, r) = r 1

Feng-Rao numbers

We summarize some general properties of the Feng-Rao numbers, for $r\geq 2$ and S fixed, with $g\geq 1$:

1 The function E(S, r) is non-decreasing in r

2
$$r \leq E(S, r) \leq \rho_r$$

3 If furthermore $r \ge c$, then $E(S, r) = \rho_r = r + g - 1$

Computing the Feng-Rao numbers is hard, even in simple examples

• E(S,2) can be computed with an algorithm based on Apéry sets

• If
$$S = \langle a, b \rangle$$
 then $E(S, r) = \rho_r$, and hence by symmetry

- 2 $\delta_{FR}^r(m) \ge \rho_r + \ell_i$ if $m = 2g 1 + \ell_i$, where $\ell_i \in \operatorname{G}(S)$ is a gap of S
- E(S, r) is also known for semigroups generated by intervals

Arf semigroups

- Let S = {ρ₁ = 0 < ρ₂ < · · · }, and assume that c = ρ_r is the conductor, so that g = c − r + 1 is the genus
- S is called an Arf semigroup if $\rho_i + \rho_j \rho_k \in S$ for every $i, j, k \in \mathbb{N}$ with $i \ge j \ge k$
- Notice that if ρ_i ≥ c, then for every i ≥ j ≥ k one has ρ_i + ρ_j − ρ_k ∈ S, so that the Arf condition only needs to be imposed in the range k ≤ j ≤ i < r
- We can call to such a sequence $0 = \rho_1 < \cdots < \rho_r = c$ satisfying the Arf condition an Arf sequence
- Let $S = \{\rho_1 = 0 < \rho_2 < \cdots\}$ be a numerical semigroup; for each $i \ge 1$ define

$$S^{(i)} = \{\rho_k - \rho_i \ge \mathbf{0} \mid \rho_k \in S\}$$

- Note that not always $S^{(i)}$ is a semigroup
- In fact, S⁽ⁱ⁾ is a semigroup for all i if and only if S is Arf (and all the S⁽ⁱ⁾ are Arf, as a consequence)

The Feng-Rao distance in Arf semigroups

- For i >> 0 one gets $S^{(i)} = \mathbb{N}$
- We could call these $S^{(i)}$ "derivatives" of S
- For the reverse construction, get an Arf sequence

$$0 = \rho_1 < \rho_2 < \cdots < \rho_r = c$$

and define $d_k = \rho_{k+1} - \rho_k$ for $k = 1, \dots, r-1$

• Now we start from $\Gamma = S^{(r)} = \mathbb{N}$ and iterate the construction

$$\Gamma_* = \{0\} \cup (d + \Gamma)$$

for $d = d_{r-1}, d_{r-2}, \ldots, d_1$, obtaining $S^{(r-1)}, S^{(r-2)}, \ldots, S^{(1)} = S$

• Using this construction, one can prove recursively for S being Arf:

1
$$\nu(c + \rho_i - 1) = 2(i - 1)$$
 for $i = 2, ..., r$
2 $\delta_{FR}(m) = 2(i - 1)$ if $c + \rho_{i-1} \le m \le c + \rho_i - 1$, for $i = 2, ..., r$

Inductive semigroups

• Starting with *S*₀ = ℕ (that is Arf) we can iterate *n* times the following construction:

$$S_k = a_k \cdot S_{k-1} \cup (c_k + \mathbb{N})$$

- Notice that if S_k is Arf then also S_{k+1} is Arf
- Thus, every semigroup constructed as above is always Arf
- Question: which Arf semigroups cannot be constructed in this way?
- For the sake of regularity, we impose extra conditions:

$$a_k \geq 2$$
, and $c_k = a_k b_k$ with $b_k \geq c_{k-1}$

- These semigroups are called inductive
- Ordinary semigroups are inductive, with n = 1 and $b_1 = 1$

The Feng-Rao distance for inductive semigroups

- Inductive semigroups $\Gamma \equiv \Gamma_n$ are very comfortable to work with, since we can easily enumerate their elements
- Assume that $n \ge 1$, set $\lambda_1 = b_1$ and $\lambda_{i+1} = b_{i+1} a_i b_i$ for $i \ge 2$
- From the sequences (a_1, \ldots, a_n) and $(\lambda_1, \ldots, \lambda_n)$ we can retrieve $b_1 = \lambda_1$ and $b_{i+1} = \lambda_{i+1} + a_i b_i$
- For $i \in \{1, \ldots, n\}$, define $A_i = \prod_{j=i}^n a_i$ (A_1 is the multiplicity of Γ_n , and $1 < A_n < \cdots < A_1$)
- The numerical semigroup Γ is a disjoint union of the following sets:

•
$$\Lambda^1 = \{0, A_1, 2A_1, \dots, \lambda_1A_1\}$$

• $\Lambda^2 = b_1A_1 + \{A_2, 2A_2, \dots, \lambda_2A_2\}$

- . . .
- $\Lambda^n = b_{n-1}A_{n-1} + \{A_n, 2A_n, \ldots, \lambda_n A_n\}$
- $\Lambda^{n+1} = (a_n b_n + 1) + \mathbb{N}$
- In [Campillo–Farrán–Munuera] the Feng-Rao distance is made explicit in terms of the above parameters

The second Feng-Rao number for inductive semigroups

- Our purpose is now to compute the second Feng-Rao number of inductive semigroups [García–Farrán]
- To that end, we recall the following technical result from [Farrán–Munuera]:

 $\mathrm{E}(\Gamma, 2) = \min\{ \#\mathrm{Ap}(\Gamma, x) \mid 1 \le x \le \rho_2 \}$

where the Apéry set of the semigroup Γ related to x is

$$\operatorname{Ap}(\Gamma, x) = \{y \in \Gamma \mid y - x \notin \Gamma\}$$

- It is known that #Ap(Γ, x) = x if and only if x ∈ Γ (in this case, the set Ap(Γ, x) \ {0}) ∪ {x} is a very nice generating system of Γ)
- If x is a gap of Γ , then $\sharp \operatorname{Ap}(\Gamma, x) > x$

The second Feng-Rao number for inductive semigroups

 By studying the behaviour of #Ap(Γ, x) in subintervals and multiples, one reduces the computations to

$$\operatorname{E}(\Gamma,2) = \min\{\sharp S_1, \sharp S_{A_n}, \sharp S_{A_{n-1}}, \ldots, \sharp S_{A_2}, \sharp S_{A_1}\}$$

• In fact, we found an explicit formula for these numbers:

$$\sharp S_1 = \lambda_1 + \dots + \lambda_n + 1$$

where $\lambda_1 = b_1$ and

$$\sharp S_{A_{n-k}} = \lambda_1 + \dots + \lambda_{n-k-1} + A_{n-k}$$

for $k \in \{0, ..., n-1\}$

- Every of the above numbers can be reached as minimum, so that this formula is sharp
- It can be applied to towers of function fields

Towers of Function Fields

Consider the tower of function fields (*T_n*) over 𝔽_{q²}, where
 *T*₁ = 𝔽_{q²}(*x*₁) and for *n* ≥ 2, *T_n* is obtained from *T_{n-1}* by adjoining a new element *x_n* satisfying

$$x_n^q + x_n = \frac{x_{n-1}^q}{x_{n-1}^{q-1} + 1}$$

 Let Q_n be the rational place on T_n that is the unique pole of x₁; then the Weierstrass semigroups Γ_n of T_n at Q_n are inductive: Γ₁ = N, and for n ≥ 2,

$$\Gamma_n = q \cdot \Gamma_{n-1} \cup \{m \in \mathbb{N} \mid m \ge c_n\},\$$

where

$$c_n = \begin{cases} q^n - q^{\frac{n+1}{2}} & \text{if } n \text{ is odd,} \\ q^n - q^{\frac{n}{2}} & \text{if } n \text{ is even.} \end{cases}$$

• We apply the above formulas, with $a_1=1$ and $\lambda_1=0$, as follows \ldots

Towers of Function Fields

• First note that $a_n = q$ for all $n \ge 2$, and

$$b_n = \frac{c_n}{a_n} = \begin{cases} q^{n-1} - q^{\frac{n-1}{2}} & \text{if } n \text{ is odd} \\ q^{n-1} - q^{\frac{n-2}{2}} & \text{if } n \text{ is even} \end{cases}$$

so that
$$\lambda_2 = b_2 = q-1$$

• For $n \geq 3$, we have

$$\lambda_n = b_n - c_{n-1} = \begin{cases} 0 & \text{if } n \text{ is odd} \\ (q-1)q^{\frac{n-2}{2}} & \text{if } n \text{ is even} \end{cases}$$

• As a consequence, by writing n = 2m + b with $b \in \{0, 1\}$: (1) $A_{n-k} = q^{k+1}$, for $0 \le k \le n-2$. (2) $\sharp S_{q^{n-1}} = q^{n-1}$. (3) $\sharp S_1 = q^m = q^{\lfloor \frac{n}{2} \rfloor}$. (4) If n = 2m, then for $i \in \{1, \dots, n-2\}$, $\sharp S_{q^i} = (q^{\lfloor m - \frac{i}{2} \rfloor} - 1) + q^i$. (5) If n = 2m + 1, then for $i \in \{1, \dots, n-2\}$, $\sharp S_{q^i} = (q^{\lceil m - \frac{i}{2} \rceil} - 1) + q^i$.

Towers of function fields

 Extra reduction: the second Feng-Rao number of the Weierstrass semigroup Γ_n of the function field T_n at Q_n is given by the minimum of the following numbers:

$$\begin{split} & \sharp S_1 = q^{\lfloor \frac{n}{2} \rfloor} \\ & \sharp S_{q^{n-1}} = q^{n-1} \\ & \sharp S_{q^{n-1-2k}} = (q^k - 1) + q^{n-1-2k}, \text{ for } k \in \{1, \dots, \lfloor \frac{n}{2} \rfloor - 1\} \end{split}$$

• Thus we conclude that:

(1)
$$E(\Gamma_1, 2) = 1$$
.
(2) $E(\Gamma_2, 2) = E(\Gamma_3, 2) = q$.
(3) $E(\Gamma_4, 2) = 2q - 1$.
(4) $E(\Gamma_5, 2) = q^2$.
(5) For $n \ge 6$, $E(\Gamma_n, 2) = q^{\lceil \frac{n-1}{3} \rceil} + q^{n-1-2\lceil \frac{n-1}{3} \rceil} - 1$

Thank you

José I. Farrán, Pedro A. García-Sánchez Feng-Rao distances in Arf and inductive semigroups