Some new results on Wilf's conjecture

Shalom Eliahou

Université du Littoral Côte d'Opale, Calais

IMNSA 2016 July 4th - 8th, Levico Terme

Shalom Eliahou (ULCO)

Some new results on Wilf's conjecture

IMNSA 2016 1 / 14

Denote the integer interval $[x, y] = \{n \in \mathbb{Z} \mid x \le n < y\}.$

Denote the integer interval $[x, y] = \{n \in \mathbb{Z} \mid x \le n < y\}.$

Let $S \subseteq \mathbb{N}$ be a numerical semigroup.

Denote the integer interval $[x, y] = \{n \in \mathbb{Z} \mid x \le n < y\}.$

Let $S \subseteq \mathbb{N}$ be a numerical semigroup.

Notation

•
$$m = \min S \setminus \{0\} = \min S^*$$
, its **multiplicity**

Denote the integer interval $[x, y] = \{n \in \mathbb{Z} \mid x \le n < y\}.$

Let $S \subseteq \mathbb{N}$ be a numerical semigroup.

- $m = \min S \setminus \{0\} = \min S^*$, its **multiplicity**
- c its conductor, i.e. $[c,\infty] \subseteq S$ with c minimal

Denote the integer interval $[x, y] = \{n \in \mathbb{Z} \mid x \le n < y\}.$

Let $S \subseteq \mathbb{N}$ be a numerical semigroup.

Notation

- $m = \min S \setminus \{0\} = \min S^*$, its **multiplicity**
- c its conductor, i.e. $[c,\infty] \subseteq S$ with c minimal

• $c = qm - \rho$ with $\rho \in [0, m[$. Thus $q = \lceil c/m \rceil$ and $\rho = qm - c$

Denote the integer interval $[x, y] = \{n \in \mathbb{Z} \mid x \le n < y\}.$

Let $S \subseteq \mathbb{N}$ be a numerical semigroup.

- $m = \min S \setminus \{0\} = \min S^*$, its **multiplicity**
- c its conductor, i.e. $[c,\infty] \subseteq S$ with c minimal
- $c = qm \rho$ with $\rho \in [0, m[$. Thus $q = \lceil c/m \rceil$ and $\rho = qm c$
- $L = S \cap [0, c[$, the left part of S

Denote the integer interval $[x, y] = \{n \in \mathbb{Z} \mid x \le n < y\}.$

Let $S \subseteq \mathbb{N}$ be a numerical semigroup.

- $m = \min S \setminus \{0\} = \min S^*$, its **multiplicity**
- c its conductor, i.e. $[c,\infty[\subseteq S \text{ with } c \text{ minimal}]$
- $c = qm \rho$ with $\rho \in [0, m[$. Thus $q = \lceil c/m \rceil$ and $\rho = qm c$
- $L = S \cap [0, c[$, the left part of S
- **D** = the set of **decomposable elements** = $S^* + S^*$

Denote the integer interval $[x, y] = \{n \in \mathbb{Z} \mid x \le n < y\}.$

Let $S \subseteq \mathbb{N}$ be a numerical semigroup.

- $m = \min S \setminus \{0\} = \min S^*$, its **multiplicity**
- c its conductor, i.e. $[c,\infty[\subseteq S \text{ with } c \text{ minimal}]$
- $c = qm \rho$ with $\rho \in [0, m[$. Thus $q = \lceil c/m \rceil$ and $\rho = qm c$
- $L = S \cap [0, c[$, the left part of S
- **D** = the set of **decomposable elements** = $S^* + S^*$
- *P* = S* \ *D* the set of primitive elements, i.e. minimal generators of S

Denote the integer interval $[x, y] = \{n \in \mathbb{Z} \mid x \le n < y\}.$

Let $S \subseteq \mathbb{N}$ be a numerical semigroup.

- $m = \min S \setminus \{0\} = \min S^*$, its **multiplicity**
- c its conductor, i.e. $[c,\infty] \subseteq S$ with c minimal
- $c = qm \rho$ with $\rho \in [0, m[$. Thus $q = \lceil c/m \rceil$ and $\rho = qm c$
- $L = S \cap [0, c[$, the left part of S
- **D** = the set of **decomposable elements** = $S^* + S^*$
- *P* = S* \ *D* the set of primitive elements, i.e. minimal generators of S
- $g = |\mathbb{N} \setminus S|$ the **genus** of S

Denote the integer interval $[x, y] = \{n \in \mathbb{Z} \mid x \le n < y\}.$

Let $S \subseteq \mathbb{N}$ be a numerical semigroup.

- $m = \min S \setminus \{0\} = \min S^*$, its **multiplicity**
- c its conductor, i.e. $[c,\infty] \subseteq S$ with c minimal
- $c = qm \rho$ with $\rho \in [0, m[$. Thus $q = \lceil c/m \rceil$ and $\rho = qm c$
- $L = S \cap [0, c[$, the left part of S
- **D** = the set of **decomposable elements** = $S^* + S^*$
- *P* = S* \ *D* the set of primitive elements, i.e. minimal generators of S
- $g = |\mathbb{N} \setminus S|$ the **genus** of S

Let S be a numerical semigroup. Set W(S) = |P||L| - c.

Let S be a numerical semigroup. Set W(S) = |P||L| - c.

Conjecture (Wilf, 1978)

 $W(S) \geq 0.$

Let S be a numerical semigroup. Set W(S) = |P||L| - c.

Conjecture (Wilf, 1978)

 $W(S) \geq 0.$

Some cases satisfying Wilf's conjecture:

Let S be a numerical semigroup. Set W(S) = |P||L| - c.

Conjecture (Wilf, 1978)

 $W(S) \geq 0.$

Some cases satisfying Wilf's conjecture:

• for |P| = 2 [Sylvester 1884]

Let S be a numerical semigroup. Set W(S) = |P||L| - c.

Conjecture (Wilf, 1978)

 $W(S) \geq 0.$

Some cases satisfying Wilf's conjecture:

- for |*P*| = 2 [Sylvester 1884]
- for |*P*| = 3 [Fröberg *et al.* 1987]

Let S be a numerical semigroup. Set W(S) = |P||L| - c.

Conjecture (Wilf, 1978)

 $W(S) \geq 0.$

Some cases satisfying Wilf's conjecture:

- for |*P*| = 2 [Sylvester 1884]
- for |*P*| = 3 [Fröberg *et al.* 1987]
- for $|L| \le 4$ [Dobbs and Matthews 2006]

Let S be a numerical semigroup. Set W(S) = |P||L| - c.

Conjecture (Wilf, 1978)

 $W(S) \geq 0.$

Some cases satisfying Wilf's conjecture:

- for |*P*| = 2 [Sylvester 1884]
- for |*P*| = 3 [Fröberg *et al.* 1987]
- for |L| ≤ 4 [Dobbs and Matthews 2006] (extended to |L| ≤ 10 in Cortona 2014, unpublished)

Let S be a numerical semigroup. Set W(S) = |P||L| - c.

Conjecture (Wilf, 1978)

 $W(S) \geq 0.$

Some cases satisfying Wilf's conjecture:

- for |*P*| = 2 [Sylvester 1884]
- for |*P*| = 3 [Fröberg *et al.* 1987]
- for |L| ≤ 4 [Dobbs and Matthews 2006] (extended to |L| ≤ 10 in Cortona 2014, unpublished)
- for $g \leq 50$ [M. Bras-Amoros 2008]

Let S be a numerical semigroup. Set W(S) = |P||L| - c.

Conjecture (Wilf, 1978)

 $W(S) \geq 0.$

Some cases satisfying Wilf's conjecture:

- for |*P*| = 2 [Sylvester 1884]
- for |*P*| = 3 [Fröberg *et al.* 1987]
- for |L| ≤ 4 [Dobbs and Matthews 2006] (extended to |L| ≤ 10 in Cortona 2014, unpublished)
- for $g \leq 50$ [M. Bras-Amoros 2008]

(extended to $g \leq 60$ in [Fromentin-Hivert 2015])

Let S be a numerical semigroup. Set W(S) = |P||L| - c.

Conjecture (Wilf, 1978)

 $W(S) \geq 0.$

Some cases satisfying Wilf's conjecture:

- for |*P*| = 2 [Sylvester 1884]
- for |*P*| = 3 [Fröberg *et al.* 1987]
- for |L| ≤ 4 [Dobbs and Matthews 2006] (extended to |L| ≤ 10 in Cortona 2014, unpublished)
- for $g \leq 50$ [M. Bras-Amoros 2008]

(extended to $g \leq 60$ in [Fromentin-Hivert 2015])

Shalom Eliahou (ULCO)

• . . .

Let S be a numerical semigroup. Set W(S) = |P||L| - c.

Conjecture (Wilf, 1978)

 $W(S) \geq 0.$

Some cases satisfying Wilf's conjecture:

- for |*P*| = 2 [Sylvester 1884]
- for |*P*| = 3 [Fröberg *et al.* 1987]
- for |L| ≤ 4 [Dobbs and Matthews 2006] (extended to |L| ≤ 10 in Cortona 2014, unpublished)
- for $g \leq 50$ [M. Bras-Amoros 2008]

(extended to $g \leq 60$ in [Fromentin-Hivert 2015])

Shalom Eliahou (ULCO)

• . . .

Shalom Eliahou (ULCO)

< D > < B

3 **IMNSA 2016** 4/14

• 3 >

< ∃ >

• for $c \leq 2m$, i.e. $q \leq 2$ [Kaplan 2012]

< D > < B

< ∃ >

- for $c \leq 2m$, i.e. $q \leq 2$ [Kaplan 2012]
- for $|P| \ge m/2$ and for $m \le 8$ [Sammartano 2012]

- for $c \leq 2m$, i.e. $q \leq 2$ [Kaplan 2012]
- for $|P| \ge m/2$ and for $m \le 8$ [Sammartano 2012]

Theorem (E., 2015, submitted)

Wilf's conjecture holds for $c \leq 3m$, i.e. $q \leq 3$.

- for $c \leq 2m$, i.e. $q \leq 2$ [Kaplan 2012]
- for $|P| \ge m/2$ and for $m \le 8$ [Sammartano 2012]

Theorem (E., 2015, submitted)

Wilf's conjecture holds for $c \leq 3m$, i.e. $q \leq 3$.

Main tool in proof: Macaulay's theorem on Hilbert functions (1927).

- for $c \leq 2m$, i.e. $q \leq 2$ [Kaplan 2012]
- for $|P| \ge m/2$ and for $m \le 8$ [Sammartano 2012]

Theorem (E., 2015, submitted)

Wilf's conjecture holds for $c \leq 3m$, i.e. $q \leq 3$.

Main tool in proof: Macaulay's theorem on Hilbert functions (1927).

Corollary

Wilf's conjecture is asymptotically true when the genus goes to ∞ .

- for $c \leq 2m$, i.e. $q \leq 2$ [Kaplan 2012]
- for $|P| \ge m/2$ and for $m \le 8$ [Sammartano 2012]

Theorem (E., 2015, submitted) Wilf's conjecture holds for c < 3m, i.e. q < 3.

Main tool in proof: Macaulay's theorem on Hilbert functions (1927).

Corollary

Wilf's conjecture is asymptotically true when the genus goes to ∞ .

Proof.

According to [Zhai 2013], the proportion of those S satisfying $c \leq 3m$ tends to 1 as $g \rightarrow \infty$,

Shalom Eliahou (ULCO)

- for $c \leq 2m$, i.e. $q \leq 2$ [Kaplan 2012]
- for $|P| \ge m/2$ and for $m \le 8$ [Sammartano 2012]

Theorem (E., 2015, submitted) Wilf's conjecture holds for c < 3m, i.e. q < 3.

Main tool in proof: Macaulay's theorem on Hilbert functions (1927).

Corollary

Wilf's conjecture is asymptotically true when the genus goes to ∞ .

Proof.

According to [Zhai 2013], the proportion of those *S* satisfying $c \leq 3m$ tends to 1 as $g \to \infty$, and those *S* satisfy Wilf's conjecture.

Shalom Eliahou (ULCO)

- for $c \leq 2m$, i.e. $q \leq 2$ [Kaplan 2012]
- for $|P| \ge m/2$ and for $m \le 8$ [Sammartano 2012]

Theorem (E., 2015, submitted) Wilf's conjecture holds for c < 3m, i.e. q < 3.

Main tool in proof: Macaulay's theorem on Hilbert functions (1927).

Corollary

Wilf's conjecture is asymptotically true when the genus goes to ∞ .

Proof.

According to [Zhai 2013], the proportion of those *S* satisfying $c \leq 3m$ tends to 1 as $g \to \infty$, and those *S* satisfy Wilf's conjecture.

Shalom Eliahou (ULCO)

< D > < B

▶ < Ξ >

-

Distribution of $q = \lceil c/m \rceil$ by genus *g*.

• • • • • • •

Distribution of $q = \lceil c/m \rceil$ by genus g. The case $c \le 3m$, i.e. $q \le 3$, is in red.

Distribution of $q = \lceil c/m \rceil$ by genus g. The case $c \leq 3m$, i.e. $q \leq 3$, is in red.

$g \backslash q$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
21	1	17710	34069	7943	1750	453	172	46	19	15	9	2	2	2	0
22	1	28656	57566	13108	2806	707	249	81	32	16	16	2	2	2	1
23	1	46367	96949	21509	4453	1102	357	132	44	16	17	9	2	2	2
24	1	75024	162911	35248	7052	1741	500	221	60	26	17	18	2	2	2
25	1	121392	273139	57649	11149	2648	750	301	100	42	17	18	10	2	2

Numerical illustration of Zhai's result

Distribution of $q = \lceil c/m \rceil$ by genus g. The case $c \leq 3m$, i.e. $q \leq 3$, is in red.

$g \backslash q$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
21	1	17710	34069	7943	1750	453	172	46	19	15	9	2	2	2	0
22	1	28656	57566	13108	2806	707	249	81	32	16	16	2	2	2	1
23	1	46367	96949	21509	4453	1102	357	132	44	16	17	9	2	2	2
24	1	75024	162911	35248	7052	1741	500	221	60	26	17	18	2	2	2
25	1	121392	273139	57649	11149	2648	750	301	100	42	17	18	10	2	2

Shalom Eliahou (ULCO)

Some new results on Wilf's conjecture

▲ ■ ▶ ■ つへの IMNSA 2016 6/14

• A standard graded algebra is a commutative algebra $R = \bigoplus_{i \ge 0} R_i$ over the field $\mathbb{K} = R_0$, with $R_i R_j \subseteq R_{i+j}$ for all *i*, *j*, finitely generated by R_1 .

• A standard graded algebra is a commutative algebra $R = \bigoplus_{i \ge 0} R_i$ over the field $\mathbb{K} = R_0$, with $R_i R_j \subseteq R_{i+j}$ for all *i*, *j*, finitely generated by R_1 .

• Equivalently, $\mathbf{R} = \mathbb{K}[X_1, \dots, X_n]/J$ where deg $X_i = 1$ for all *i*, and where *J* is a homogeneous ideal.

• A standard graded algebra is a commutative algebra $R = \bigoplus_{i \ge 0} R_i$ over the field $\mathbb{K} = R_0$, with $R_i R_j \subseteq R_{i+j}$ for all *i*, *j*, finitely generated by R_1 .

- Equivalently, $R = \mathbb{K}[X_1, \dots, X_n]/J$ where deg $X_i = 1$ for all *i*, and where *J* is a homogeneous ideal.
- The Hilbert function of *R* is the map $i \mapsto h_i = \dim_{\mathbb{K}} R_i \quad \forall i \ge 0$.

• A standard graded algebra is a commutative algebra $R = \bigoplus_{i \ge 0} R_i$ over the field $\mathbb{K} = R_0$, with $R_i R_j \subseteq R_{i+j}$ for all *i*, *j*, finitely generated by R_1 .

- Equivalently, $R = \mathbb{K}[X_1, \dots, X_n]/J$ where deg $X_i = 1$ for all *i*, and where *J* is a homogeneous ideal.
- The Hilbert function of *R* is the map $i \mapsto h_i = \dim_{\mathbb{K}} R_i \quad \forall i \ge 0$.

Macaulay's theorem characterizes those numerical functions $i \mapsto h_i$ which arise as the Hilbert function of a suitable *R*.

• A standard graded algebra is a commutative algebra $R = \bigoplus_{i \ge 0} R_i$ over the field $\mathbb{K} = R_0$, with $R_i R_j \subseteq R_{i+j}$ for all *i*, *j*, finitely generated by R_1 .

- Equivalently, $R = \mathbb{K}[X_1, \dots, X_n]/J$ where deg $X_i = 1$ for all *i*, and where *J* is a homogeneous ideal.
- The Hilbert function of *R* is the map $i \mapsto h_i = \dim_{\mathbb{K}} R_i \quad \forall i \ge 0$.

Macaulay's theorem characterizes those numerical functions $i \mapsto h_i$ which arise as the Hilbert function of a suitable *R*.

Useful for us: knowing h_i for some $i \ge 1$, Macaulay's theorem gives an upper bound on h_{i+1} .

• A standard graded algebra is a commutative algebra $R = \bigoplus_{i \ge 0} R_i$ over the field $\mathbb{K} = R_0$, with $R_i R_j \subseteq R_{i+j}$ for all *i*, *j*, finitely generated by R_1 .

- Equivalently, $R = \mathbb{K}[X_1, \dots, X_n]/J$ where deg $X_i = 1$ for all *i*, and where *J* is a homogeneous ideal.
- The Hilbert function of *R* is the map $i \mapsto h_i = \dim_{\mathbb{K}} R_i \quad \forall i \ge 0$.

Macaulay's theorem characterizes those numerical functions $i \mapsto h_i$ which arise as the Hilbert function of a suitable *R*.

Useful for us: knowing h_i for some $i \ge 1$, Macaulay's theorem gives an upper bound on h_{i+1} .

For instance, if dim $R_1 = n$, then dim $R_2 \le (n+1)n/2$.

・ロト ・ ア・ ・ ア・ ・ ア・ ア

• A standard graded algebra is a commutative algebra $R = \bigoplus_{i \ge 0} R_i$ over the field $\mathbb{K} = R_0$, with $R_i R_j \subseteq R_{i+j}$ for all *i*, *j*, finitely generated by R_1 .

- Equivalently, $R = \mathbb{K}[X_1, \dots, X_n]/J$ where deg $X_i = 1$ for all *i*, and where *J* is a homogeneous ideal.
- The Hilbert function of *R* is the map $i \mapsto h_i = \dim_{\mathbb{K}} R_i \quad \forall i \ge 0$.

Macaulay's theorem characterizes those numerical functions $i \mapsto h_i$ which arise as the Hilbert function of a suitable *R*.

Useful for us: knowing h_i for some $i \ge 1$, Macaulay's theorem gives an upper bound on h_{i+1} .

For instance, if dim $R_1 = n$, then dim $R_2 \le (n+1)n/2$. That is,

$$h_1 = \begin{pmatrix} n \\ 1 \end{pmatrix} \implies h_2 \leq \begin{pmatrix} n+1 \\ 1+1 \end{pmatrix}.$$

・ロト ・ ア・ ・ ア・ ・ ア・ ア

• A standard graded algebra is a commutative algebra $R = \bigoplus_{i \ge 0} R_i$ over the field $\mathbb{K} = R_0$, with $R_i R_j \subseteq R_{i+j}$ for all *i*, *j*, finitely generated by R_1 .

- Equivalently, $R = \mathbb{K}[X_1, \dots, X_n]/J$ where deg $X_i = 1$ for all *i*, and where *J* is a homogeneous ideal.
- The Hilbert function of *R* is the map $i \mapsto h_i = \dim_{\mathbb{K}} R_i \quad \forall i \ge 0$.

Macaulay's theorem characterizes those numerical functions $i \mapsto h_i$ which arise as the Hilbert function of a suitable *R*.

Useful for us: knowing h_i for some $i \ge 1$, Macaulay's theorem gives an upper bound on h_{i+1} .

For instance, if dim $R_1 = n$, then dim $R_2 \le (n+1)n/2$. That is,

$$h_1 = \begin{pmatrix} n \\ 1 \end{pmatrix} \implies h_2 \leq \begin{pmatrix} n+1 \\ 1+1 \end{pmatrix}.$$

・ロト ・ ア・ ・ ア・ ・ ア・ ア

Theorem (E., 2015, submitted) Let *R* be a standard graded algebra. Let $i \ge 1$. Let $x \ge i - 1$ be the unique **real number** such that $h_i = \begin{pmatrix} x \\ i \end{pmatrix}$.

Theorem (E., 2015, submitted) Let *R* be a standard graded algebra. Let $i \ge 1$. Let $x \ge i-1$ be the unique **real number** such that $h_i = \begin{pmatrix} x \\ i \end{pmatrix}$. Then $h_{i+1} \le \begin{pmatrix} x+1 \\ i+1 \end{pmatrix}$.

Theorem (E., 2015, submitted) Let *R* be a standard graded algebra. Let $i \ge 1$. Let $x \ge i - 1$ be the unique **real number** such that $h_i = \begin{pmatrix} x \\ i \end{pmatrix}$. Then $h_{i+1} \le \begin{pmatrix} x+1 \\ i+1 \end{pmatrix}$.

Apply this estimate to the following standard graded algebra.

Theorem (E., 2015, submitted) Let *R* be a standard graded algebra. Let $i \ge 1$. Let $x \ge i - 1$ be the unique **real number** such that $h_i = \begin{pmatrix} x \\ i \end{pmatrix}$. Then $h_{i+1} \le \begin{pmatrix} x+1 \\ i+1 \end{pmatrix}$.

Apply this estimate to the following standard graded algebra.

Let $A = P \cap L = \{m = a_1, ..., a_n\}$, and let

 $\boldsymbol{R} = \boldsymbol{K}[t^{\boldsymbol{a}_1}\boldsymbol{u},\ldots,t^{\boldsymbol{a}_n}\boldsymbol{u}]$

where deg(t) = 0, deg(u) = 1.

Theorem (E., 2015, submitted) Let *R* be a standard graded algebra. Let $i \ge 1$. Let $x \ge i - 1$ be the unique **real number** such that $h_i = \begin{pmatrix} x \\ i \end{pmatrix}$. Then $h_{i+1} \le \begin{pmatrix} x+1 \\ i+1 \end{pmatrix}$.

Apply this estimate to the following standard graded algebra.

Let $A = P \cap L = \{m = a_1, ..., a_n\}$, and let

 $R = K[t^{a_1}u, \ldots, t^{a_n}u]$

where deg(t) = 0, deg(u) = 1. Then dim $R_i = |iA|$ for all i.

Theorem (E., 2015, submitted) Let *R* be a standard graded algebra. Let $i \ge 1$. Let $x \ge i - 1$ be the unique **real number** such that $h_i = \begin{pmatrix} x \\ i \end{pmatrix}$. Then $h_{i+1} \le \begin{pmatrix} x+1 \\ i+1 \end{pmatrix}$.

Apply this estimate to the following standard graded algebra.

Let $A = P \cap L = \{m = a_1, ..., a_n\}$, and let

 $R = K[t^{a_1}u, \ldots, t^{a_n}u]$

where deg(t) = 0, deg(u) = 1. Then dim $R_i = |iA|$ for all *i*. Let $J \subseteq R$ be the ideal spanned by all monomials of the form $t^b u^2$, $t^c u^3$, where b, c either are not Apéry elements or are too large in some specific sense.

Theorem (E., 2015, submitted) Let *R* be a standard graded algebra. Let $i \ge 1$. Let $x \ge i - 1$ be the unique **real number** such that $h_i = \begin{pmatrix} x \\ i \end{pmatrix}$. Then $h_{i+1} \le \begin{pmatrix} x+1 \\ i+1 \end{pmatrix}$.

Apply this estimate to the following standard graded algebra.

Let $A = P \cap L = \{m = a_1, ..., a_n\}$, and let

 $R = K[t^{a_1}u, \ldots, t^{a_n}u]$

where deg(*t*) = 0, deg(*u*) = 1. Then dim $R_i = |iA|$ for all *i*. Let $J \subseteq R$ be the ideal spanned by all monomials of the form $t^b u^2$, $t^c u^3$, where *b*, *c* either are not Apéry elements or are too large in some specific sense. Let R' = R/J.

Theorem (E., 2015, submitted) Let *R* be a standard graded algebra. Let $i \ge 1$. Let $x \ge i - 1$ be the unique **real number** such that $h_i = \begin{pmatrix} x \\ i \end{pmatrix}$. Then $h_{i+1} \le \begin{pmatrix} x+1 \\ i+1 \end{pmatrix}$.

Apply this estimate to the following standard graded algebra.

Let $A = P \cap L = \{m = a_1, ..., a_n\}$, and let

 $R = K[t^{a_1}u, \ldots, t^{a_n}u]$

where deg(*t*) = 0, deg(*u*) = 1. Then dim $R_i = |iA|$ for all *i*. Let $J \subseteq R$ be the ideal spanned by all monomials of the form $t^b u^2, t^c u^3$, where *b*, *c* either are not Apéry elements or are too large in some specific sense. Let R' = R/J. Applying condensed Macaulay to R' yields Wilf's conjecture for $q \leq 3$ after some calculations.

Shalom Eliahou (ULCO)

Theorem (E., 2015, submitted) Let *R* be a standard graded algebra. Let $i \ge 1$. Let $x \ge i - 1$ be the unique **real number** such that $h_i = \begin{pmatrix} x \\ i \end{pmatrix}$. Then $h_{i+1} \le \begin{pmatrix} x+1 \\ i+1 \end{pmatrix}$.

Apply this estimate to the following standard graded algebra.

Let $A = P \cap L = \{m = a_1, ..., a_n\}$, and let

 $R = K[t^{a_1}u, \ldots, t^{a_n}u]$

where deg(*t*) = 0, deg(*u*) = 1. Then dim $R_i = |iA|$ for all *i*. Let $J \subseteq R$ be the ideal spanned by all monomials of the form $t^b u^2, t^c u^3$, where *b*, *c* either are not Apéry elements or are too large in some specific sense. Let R' = R/J. Applying condensed Macaulay to R' yields Wilf's conjecture for $q \leq 3$ after some calculations.

Shalom Eliahou (ULCO)

Define the depth $\delta \colon S \to \mathbb{Z}$ as follows:

< D > < B

→ < Ξ → < Ξ</p>

Define the depth $\delta: S \to \mathbb{Z}$ as follows: for $s \in S$, set $\delta(s) =$ the smallest integer such that $s + \delta(s)m \ge c$.

Define the depth $\delta: S \to \mathbb{Z}$ as follows: for $s \in S$, set $\delta(s) =$ the smallest integer such that $s + \delta(s)m \ge c$.

Thus:

• the elements of depth 0 are those elements in the interval [c, c+m]. Call it the threshold interval.

Define the depth $\delta: S \to \mathbb{Z}$ as follows: for $s \in S$, set $\delta(s) =$ the smallest integer such that $s + \delta(s)m \ge c$.

Thus:

- the elements of depth 0 are those elements in the interval [c, c+m]. Call it the threshold interval.
- the elements of depth 1 are those $s \in [c m, c[\cap S.$

Define the depth $\delta: S \to \mathbb{Z}$ as follows: for $s \in S$, set $\delta(s) =$ the smallest integer such that $s + \delta(s)m \ge c$.

Thus:

- the elements of depth 0 are those elements in the interval [c, c+m]. Call it the threshold interval.
- the elements of depth 1 are those $s \in [c m, c[\cap S.$
- . . .
- We have $\delta(0) = q$, since $qm \ge c$ and q minimal

Define the depth $\delta: S \to \mathbb{Z}$ as follows: for $s \in S$, set $\delta(s) =$ the smallest integer such that $s + \delta(s)m \ge c$.

Thus:

- the elements of depth 0 are those elements in the interval [c, c+m]. Call it the threshold interval.
- the elements of depth 1 are those $s \in [c m, c[\cap S]$.

• We have $\delta(0) = q$, since $qm \ge c$ and q minimal

Lemma

For all $s, t \in S$, we have

$$\delta(s+t) \geq \delta(s) + \delta(t) + q - \min(\rho, 1).$$

<ロト <回 > < 回 > < 三 > < 三

Define the depth $\delta: S \to \mathbb{Z}$ as follows: for $s \in S$, set $\delta(s) =$ the smallest integer such that $s + \delta(s)m \ge c$.

Thus:

- the elements of depth 0 are those elements in the interval [c, c+m]. Call it the threshold interval.
- the elements of depth 1 are those $s \in [c m, c[\cap S]$.

• We have $\delta(0) = q$, since $qm \ge c$ and q minimal

Lemma

For all $s, t \in S$, we have

$$\delta(s+t) \geq \delta(s) + \delta(t) + q - \min(\rho, 1).$$

<ロト <回 > < 回 > < 三 > < 三

Notation

For a finite subset
$$A \subset S$$
, set $\tau(A) = \sum_{s \in A} \delta(s)$.

Notation

For a finite subset
$$A \subset S$$
, set $\tau(A) = \sum_{s \in A} \delta(s)$.

Notation

Set $X = Ap(S, m) \setminus \{0\}$, the set of nonzero Apéry elements.

Notation

For a finite subset
$$A \subset S$$
, set $\tau(A) = \sum_{s \in A} \delta(s)$.

Notation

Set $X = Ap(S, m) \setminus \{0\}$, the set of nonzero Apéry elements.

Proposition

We have $W(S) = |P|\tau(X \cap L) - q|X \cap D| + \rho$.

Notation

For a finite subset
$$A \subset S$$
, set $\tau(A) = \sum_{s \in A} \delta(s)$.

Notation

Set $X = Ap(S, m) \setminus \{0\}$, the set of nonzero Apéry elements.

Proposition

We have
$$W(S) = |P|\tau(X \cap L) - q|X \cap D| + \rho$$
.

Notation

For a finite subset
$$A \subset S$$
, set $\tau(A) = \sum_{s \in A} \delta(s)$.

Notation

Set $X = Ap(S, m) \setminus \{0\}$, the set of nonzero Apéry elements.

Proposition

We have
$$W(S) = |P|\tau(X \cap L) - q|X \cap D| + \rho$$
.

A graph-theoretic approach

-

・ロト ・ 日 ・ ・ 日 ・ ・

A graph-theoretic approach

To usefully apply the formula $W(S) = |P|\tau(X \cap L) - q|X \cap D| + \rho$ to Wilf's conjecture, we need good estimates on the red parts.

To usefully apply the formula $W(S) = |P|\tau(X \cap L) - q|X \cap D| + \rho$ to Wilf's conjecture, we need good estimates on the red parts.

Definition

The graph G = G(S) is defined as follows:

To usefully apply the formula $W(S) = |P|\tau(X \cap L) - q|X \cap D| + \rho$ to Wilf's conjecture, we need good estimates on the red parts.

Definition

The graph G = G(S) is defined as follows:

• Vertex set $V(G) = X \cap L$, the nonzero left Apéry elements.

To usefully apply the formula $W(S) = |P|\tau(X \cap L) - q|X \cap D| + \rho$ to Wilf's conjecture, we need good estimates on the red parts.

Definition

The graph G = G(S) is defined as follows:

- Vertex set $V(G) = X \cap L$, the nonzero left Apéry elements.
- Edge set E(G): all pairs $\{x, y\}$ of vertices such that $x + y \in X$.

To usefully apply the formula $W(S) = |P|\tau(X \cap L) - q|X \cap D| + \rho$ to Wilf's conjecture, we need good estimates on the red parts.

Definition

The graph G = G(S) is defined as follows:

- Vertex set $V(G) = X \cap L$, the nonzero left Apéry elements.
- Edge set E(G): all pairs $\{x, y\}$ of vertices such that $x + y \in X$.

We have: $|X \cap D| \leq |E(G)|$.

To usefully apply the formula $W(S) = |P|\tau(X \cap L) - q|X \cap D| + \rho$ to Wilf's conjecture, we need good estimates on the red parts.

Definition

The graph G = G(S) is defined as follows:

- Vertex set $V(G) = X \cap L$, the nonzero left Apéry elements.
- Edge set E(G): all pairs $\{x, y\}$ of vertices such that $x + y \in X$.

We have: $|X \cap D| \le |E(G)|$. Moreover, if *G* admits a *k*-matching, i.e. here a set of independent edges touching at least *k* vertices, then

 $\tau(X\cap L) \geq k(q-1)/2.$

To usefully apply the formula $W(S) = |P|\tau(X \cap L) - q|X \cap D| + \rho$ to Wilf's conjecture, we need good estimates on the red parts.

Definition

The graph G = G(S) is defined as follows:

- Vertex set $V(G) = X \cap L$, the nonzero left Apéry elements.
- Edge set E(G): all pairs $\{x, y\}$ of vertices such that $x + y \in X$.

We have: $|X \cap D| \le |E(G)|$. Moreover, if *G* admits a *k*-matching, i.e. here a set of independent edges touching at least *k* vertices, then

 $\tau(X\cap L) \geq k(q-1)/2.$

This allows in many cases to prove $W(S) \ge 0$.

To usefully apply the formula $W(S) = |P|\tau(X \cap L) - q|X \cap D| + \rho$ to Wilf's conjecture, we need good estimates on the red parts.

Definition

The graph G = G(S) is defined as follows:

- Vertex set $V(G) = X \cap L$, the nonzero left Apéry elements.
- Edge set E(G): all pairs $\{x, y\}$ of vertices such that $x + y \in X$.

We have: $|X \cap D| \le |E(G)|$. Moreover, if *G* admits a *k*-matching, i.e. here a set of independent edges touching at least *k* vertices, then

 $\tau(X\cap L) \geq k(q-1)/2.$

This allows in many cases to prove $W(S) \ge 0$.

• First application

• First application

Sylvester settled Wilf's conjecture for two generators, i.e. for |P| = 2.

<ロト <回 > < 回 > < 三 > < 三

First application

Sylvester settled Wilf's conjecture for two generators, i.e. for |P| = 2.

Theorem (E., ongoing work)

Wilf's conjecture holds for $|P \cap L| = 2$,

First application

Sylvester settled Wilf's conjecture for two generators, i.e. for |P| = 2.

Theorem (E., ongoing work)

Wilf's conjecture holds for $|P \cap L| = 2$, i.e. when there are exactly two left primitives, and any number of right primitives.

• First application

Sylvester settled Wilf's conjecture for two generators, i.e. for |P| = 2.

Theorem (E., ongoing work)

Wilf's conjecture holds for $|P \cap L| = 2$, i.e. when there are exactly two left primitives, and any number of right primitives.

(See also Example 4 in Waldi's talk yesterday.)

• First application

Sylvester settled Wilf's conjecture for two generators, i.e. for |P| = 2.

Theorem (E., ongoing work)

Wilf's conjecture holds for $|P \cap L| = 2$, i.e. when there are exactly two left primitives, and any number of right primitives.

(See also Example 4 in Waldi's talk yesterday.)

Second application

First application

Sylvester settled Wilf's conjecture for two generators, i.e. for |P| = 2.

Theorem (E., ongoing work)

Wilf's conjecture holds for $|P \cap L| = 2$, i.e. when there are exactly two left primitives, and any number of right primitives.

(See also Example 4 in Waldi's talk yesterday.)

Second application

A. Sammartano proved Wilf's conjecture for $|P| \ge m/2$ and for $m \le 8$.

First application

Sylvester settled Wilf's conjecture for two generators, i.e. for |P| = 2.

Theorem (E., ongoing work)

Wilf's conjecture holds for $|P \cap L| = 2$, i.e. when there are exactly two left primitives, and any number of right primitives.

(See also Example 4 in Waldi's talk yesterday.)

Second application

A. Sammartano proved Wilf's conjecture for $|P| \ge m/2$ and for $m \le 8$.

Theorem (E., ongoing work) Wilf's conjecture holds for $|P| \ge m/3$,

First application

Sylvester settled Wilf's conjecture for two generators, i.e. for |P| = 2.

Theorem (E., ongoing work)

Wilf's conjecture holds for $|P \cap L| = 2$, i.e. when there are exactly two left primitives, and any number of right primitives.

(See also Example 4 in Waldi's talk yesterday.)

Second application

A. Sammartano proved Wilf's conjecture for $|P| \ge m/2$ and for $m \le 8$.

Theorem (E., ongoing work)

Wilf's conjecture holds for $|P| \ge m/3$, for $m \le 12$

First application

Sylvester settled Wilf's conjecture for two generators, i.e. for |P| = 2.

Theorem (E., ongoing work)

Wilf's conjecture holds for $|P \cap L| = 2$, i.e. when there are exactly two left primitives, and any number of right primitives.

(See also Example 4 in Waldi's talk yesterday.)

Second application

A. Sammartano proved Wilf's conjecture for $|P| \ge m/2$ and for $m \le 8$.

Theorem (E., ongoing work)

Wilf's conjecture holds for $|P| \ge m/3$, for $m \le 12$ and for $|L| \le 11$.

First application

Sylvester settled Wilf's conjecture for two generators, i.e. for |P| = 2.

Theorem (E., ongoing work)

Wilf's conjecture holds for $|P \cap L| = 2$, i.e. when there are exactly two left primitives, and any number of right primitives.

(See also Example 4 in Waldi's talk yesterday.)

Second application

A. Sammartano proved Wilf's conjecture for $|P| \ge m/2$ and for $m \le 8$.

Theorem (E., ongoing work)

Wilf's conjecture holds for $|P| \ge m/3$, for $m \le 12$ and for $|L| \le 11$.

• It suffices to prove Wilf for |L| < 3q. Indeed, if this is done, it remains to examine the case $|L| \ge 3q$.

• It suffices to prove Wilf for |L| < 3q. Indeed, if this is done, it remains to examine the case $|L| \ge 3q$.

$$W(S) = |P||L| - c \geq m/3 \cdot 3q - qm + \rho = \rho \geq 0.$$

• It suffices to prove Wilf for |L| < 3q. Indeed, if this is done, it remains to examine the case $|L| \ge 3q$.

• Since $|P| \ge m/3$ by hypothesis, we get

$$W(S) = |P||L| - c \ge m/3 \cdot 3q - qm + \rho = \rho \ge 0.$$

Assume $12 \ge m$. Since Wilf holds for $|P| \le 3$, we may assume $|P| \ge 4$. Then $|P| \ge 12/3 \ge m/3$, so Wilf holds in this case.

• It suffices to prove Wilf for |L| < 3q. Indeed, if this is done, it remains to examine the case $|L| \ge 3q$.

$$W(S) = |P||L| - c \geq m/3 \cdot 3q - qm + \rho = \rho \geq 0.$$

- Assume $12 \ge m$. Since Wilf holds for $|P| \le 3$, we may assume $|P| \ge 4$. Then $|P| \ge 12/3 \ge m/3$, so Wilf holds in this case.
- Since Wilf holds for $q \le 3$, we may assume $q \ge 4$. Thus, if Wilf is shown to hold for |L| < 3q, then it will hold for |L| < 12.

• It suffices to prove Wilf for |L| < 3q. Indeed, if this is done, it remains to examine the case $|L| \ge 3q$.

$$W(S) = |P||L| - c \geq m/3 \cdot 3q - qm + \rho = \rho \geq 0.$$

- Assume $12 \ge m$. Since Wilf holds for $|P| \le 3$, we may assume $|P| \ge 4$. Then $|P| \ge 12/3 \ge m/3$, so Wilf holds in this case.
- Since Wilf holds for $q \le 3$, we may assume $q \ge 4$. Thus, if Wilf is shown to hold for |L| < 3q, then it will hold for |L| < 12.
- **2** It suffices to prove Wilf for $\tau(X \cap L) < 2q$.

• It suffices to prove Wilf for |L| < 3q. Indeed, if this is done, it remains to examine the case $|L| \ge 3q$.

$$W(S) = |P||L| - c \geq m/3 \cdot 3q - qm + \rho = \rho \geq 0.$$

- Assume $12 \ge m$. Since Wilf holds for $|P| \le 3$, we may assume $|P| \ge 4$. Then $|P| \ge 12/3 \ge m/3$, so Wilf holds in this case.
- Since Wilf holds for $q \le 3$, we may assume $q \ge 4$. Thus, if Wilf is shown to hold for |L| < 3q, then it will hold for |L| < 12.
- It suffices to prove Wilf for $\tau(X \cap L) < 2q$. Indeed, we have $|L| = q + \tau(X \cap L)$.

• It suffices to prove Wilf for |L| < 3q. Indeed, if this is done, it remains to examine the case $|L| \ge 3q$.

• Since $|P| \ge m/3$ by hypothesis, we get

$$W(S) = |P||L| - c \geq m/3 \cdot 3q - qm + \rho = \rho \geq 0.$$

- Assume $12 \ge m$. Since Wilf holds for $|P| \le 3$, we may assume $|P| \ge 4$. Then $|P| \ge 12/3 \ge m/3$, so Wilf holds in this case.
- Since Wilf holds for $q \le 3$, we may assume $q \ge 4$. Thus, if Wilf is shown to hold for |L| < 3q, then it will hold for |L| < 12.
- It suffices to prove Wilf for $\tau(X \cap L) < 2q$. Indeed, we have $|L| = q + \tau(X \cap L)$.
- If $\tau(X \cap L) < 2q$, then the graph G(S) cannot have a 5-matching. This is a strong restriction on G!

• It suffices to prove Wilf for |L| < 3q. Indeed, if this is done, it remains to examine the case $|L| \ge 3q$.

$$W(S) = |P||L| - c \geq m/3 \cdot 3q - qm + \rho = \rho \geq 0.$$

- Assume $12 \ge m$. Since Wilf holds for $|P| \le 3$, we may assume $|P| \ge 4$. Then $|P| \ge 12/3 \ge m/3$, so Wilf holds in this case.
- Since Wilf holds for $q \le 3$, we may assume $q \ge 4$. Thus, if Wilf is shown to hold for |L| < 3q, then it will hold for |L| < 12.
- It suffices to prove Wilf for $\tau(X \cap L) < 2q$. Indeed, we have $|L| = q + \tau(X \cap L)$.
- If τ(X ∩ L) < 2q, then the graph G(S) cannot have a 5-matching. This is a strong restriction on G! One may then look at all possible such graphs. In each case, specific arguments allow to settle Wilf.

• It suffices to prove Wilf for |L| < 3q. Indeed, if this is done, it remains to examine the case $|L| \ge 3q$.

$$W(S) = |P||L| - c \geq m/3 \cdot 3q - qm + \rho = \rho \geq 0.$$

- Assume $12 \ge m$. Since Wilf holds for $|P| \le 3$, we may assume $|P| \ge 4$. Then $|P| \ge 12/3 \ge m/3$, so Wilf holds in this case.
- Since Wilf holds for $q \le 3$, we may assume $q \ge 4$. Thus, if Wilf is shown to hold for |L| < 3q, then it will hold for |L| < 12.
- It suffices to prove Wilf for $\tau(X \cap L) < 2q$. Indeed, we have $|L| = q + \tau(X \cap L)$.
- If τ(X ∩ L) < 2q, then the graph G(S) cannot have a 5-matching. This is a strong restriction on G! One may then look at all possible such graphs. In each case, specific arguments allow to settle Wilf.

for |P| ≥ 4
for |P ∩ L| ≥ 3

- If for |P| ≥ 4
- 2 for $|P \cap L| \ge 3$
- for $q \ge 4$

- If or |P| ≥ 4
- 2 for $|P \cap L| \ge 3$
- for $q \ge 4$
- If or *m* ≥ 13

- for $|P| \ge 4$
- 2 for $|P \cap L| \ge 3$
- for $q \ge 4$
- If or *m* ≥ 13
- In the second secon

- for $|P| \ge 4$
- 2 for $|P \cap L| \ge 3$
- for $q \ge 4$
- If or *m* ≥ 13
- If for |L| ≥ 12
- 6 ...

- for $|P| \ge 4$
- 2 for $|P \cap L| \ge 3$
- for $q \ge 4$
- If or *m* ≥ 13
- If for |L| ≥ 12
- 6 ...

Grazie mille per la sua attenzione :-)

< D > < B

▶ < ≣ ▶ <