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Introduction

Denote the integer interval [x ,y [ = {n ∈ Z | x ≤ n < y}.

Let S ⊆ N be a numerical semigroup.

Notation
m = minS \{0}= minS∗, its multiplicity

c its conductor, i.e. [c,∞[⊆ S with c minimal

c = qm−ρ with ρ ∈ [0,m[. Thus q = dc/me and ρ = qm− c

L = S∩ [0,c[, the left part of S

D = the set of decomposable elements = S∗+S∗

P = S∗ \D the set of primitive elements, i.e. minimal
generators of S

g = |N\S| the genus of S
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Notation
Let S be a numerical semigroup. Set W (S) = |P||L|− c.

Conjecture (Wilf, 1978)
W (S)≥ 0.

Some cases satisfying Wilf’s conjecture:
for |P|= 2 [Sylvester 1884]

for |P|= 3 [Fröberg et al. 1987]

for |L| ≤ 4 [Dobbs and Matthews 2006]

(extended to |L| ≤ 10 in Cortona 2014, unpublished)

for g ≤ 50 [M. Bras-Amoros 2008]

(extended to g ≤ 60 in [Fromentin-Hivert 2015])

. . .
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More cases satisfying Wilf’s conjecture:

for c ≤ 2m, i.e. q ≤ 2 [Kaplan 2012]

for |P| ≥m/2 and for m ≤ 8 [Sammartano 2012]

Theorem (E., 2015, submitted)
Wilf’s conjecture holds for c ≤ 3m, i.e. q ≤ 3.

Main tool in proof: Macaulay’s theorem on Hilbert functions (1927).

Corollary
Wilf’s conjecture is asymptotically true when the genus goes to ∞.

Proof.
According to [Zhai 2013], the proportion of those S satisfying c ≤ 3m
tends to 1 as g→ ∞, and those S satisfy Wilf’s conjecture.
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Numerical illustration of Zhai’s result

Distribution of q = dc/me by genus g. The case c ≤ 3m, i.e. q ≤ 3, is
in red.

g\q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 1 17710 34069 7943 1750 453 172 46 19 15 9 2 2 2 0
22 1 28656 57566 13108 2806 707 249 81 32 16 16 2 2 2 1
23 1 46367 96949 21509 4453 1102 357 132 44 16 17 9 2 2 2
24 1 75024 162911 35248 7052 1741 500 221 60 26 17 18 2 2 2
25 1 121392 273139 57649 11149 2648 750 301 100 42 17 18 10 2 2
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Macaulay’s theorem

• A standard graded algebra is a commutative algebra R =⊕i≥0Ri over
the field K= R0, with RiRj ⊆ Ri+j for all i, j , finitely generated by R1.

• Equivalently, R =K[X1, . . . ,Xn]/J where degXi = 1 for all i , and
where J is a homogeneous ideal.

• The Hilbert function of R is the map i 7→ hi = dimKRi ∀i ≥ 0.

Macaulay’s theorem characterizes those numerical functions i 7→ hi

which arise as the Hilbert function of a suitable R.

Useful for us: knowing hi for some i ≥ 1, Macaulay’s theorem gives an
upper bound on hi+1.

For instance, if dimR1 = n, then dimR2 ≤ (n+1)n/2. That is,

h1 =

(
n
1

)
=⇒ h2 ≤

(
n+1
1+1

)
.
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A condensed version

Theorem (E., 2015, submitted)
Let R be a standard graded algebra. Let i ≥ 1. Let x ≥ i−1 be the

unique real number such that hi =

(
x
i

)
. Then hi+1 ≤

(
x +1
i +1

)
.

Apply this estimate to the following standard graded algebra.

Let A = P ∩L = {m = a1, . . . ,an}, and let

R = K [ta1u, . . . , tanu]

where deg(t) = 0,deg(u) = 1. Then dimRi = |iA| for all i . Let J ⊆ R be
the ideal spanned by all monomials of the form tbu2, tcu3, where b,c
either are not Apéry elements or are too large in some specific sense.
Let R′ = R/J. Applying condensed Macaulay to R′ yields Wilf’s
conjecture for q ≤ 3 after some calculations.
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The depth function

Define the depth δ : S→ Z as follows: for s ∈ S, set δ(s) = the
smallest integer such that s+δ(s)m ≥ c.

Thus:

the elements of depth 0 are those elements in the interval
[c,c+m[. Call it the threshold interval.

the elements of depth 1 are those s ∈ [c−m,c[∩S.

. . .

We have δ(0) = q, since qm ≥ c and q minimal

Lemma
For all s, t ∈ S, we have

δ(s+ t) ≥ δ(s)+δ(t)+q−min(ρ,1).
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Summing depths

Notation
For a finite subset A⊂ S, set τ(A) = ∑

s∈A
δ(s).

Notation
Set X = Ap(S,m)\{0}, the set of nonzero Apéry elements.

Proposition
We have W (S) = |P|τ(X ∩L)−q|X ∩D|+ρ.

Proof.
Use |L|= q+ τ(X ∩L) and m−1 = |X |= |P|−1+ |X ∩D|.
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A graph-theoretic approach

To usefully apply the formula W (S) = |P|τ(X ∩L)−q|X ∩D|+ρ to
Wilf’s conjecture, we need good estimates on the red parts.

Definition
The graph G = G(S) is defined as follows:

Vertex set V (G) = X ∩L, the nonzero left Apéry elements.

Edge set E(G): all pairs {x ,y} of vertices such that x + y ∈ X.

We have: |X ∩D| ≤ |E(G)|. Moreover, if G admits a k -matching, i.e.
here a set of independent edges touching at least k vertices, then

τ(X ∩L) ≥ k(q−1)/2.

This allows in many cases to prove W (S)≥ 0.
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Two applications

• First application

Sylvester settled Wilf’s conjecture for two generators, i.e. for |P|= 2.

Theorem (E., ongoing work)
Wilf’s conjecture holds for |P ∩L|= 2, i.e. when there are exactly two
left primitives, and any number of right primitives.

(See also Example 4 in Waldi’s talk yesterday.)

• Second application

A. Sammartano proved Wilf’s conjecture for |P| ≥m/2 and for m ≤ 8.

Theorem (E., ongoing work)
Wilf’s conjecture holds for |P| ≥m/3, for m ≤ 12 and for |L| ≤ 11.
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Sketch of proof

1 It suffices to prove Wilf for |L|< 3q. Indeed, if this is done, it
remains to examine the case |L| ≥ 3q.

1 Since |P| ≥m/3 by hypothesis, we get

W (S) = |P||L|− c ≥ m/3 ·3q−qm+ρ = ρ ≥ 0.

2 Assume 12≥m. Since Wilf holds for |P| ≤ 3, we may assume
|P| ≥ 4. Then |P| ≥ 12/3≥m/3, so Wilf holds in this case.

3 Since Wilf holds for q ≤ 3, we may assume q ≥ 4. Thus, if Wilf is
shown to hold for |L|< 3q, then it will hold for |L|< 12.

2 It suffices to prove Wilf for τ(X ∩L)< 2q. Indeed, we have
|L|= q+ τ(X ∩L).

3 If τ(X ∩L)< 2q, then the graph G(S) cannot have a 5-matching.
This is a strong restriction on G! One may then look at all possible
such graphs. In each case, specific arguments allow to settle Wilf.
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Some open cases

1 for |P| ≥ 4
2 for |P ∩L| ≥ 3
3 for q ≥ 4
4 for m ≥ 13
5 for |L| ≥ 12
6 . . .
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