# On a question of Eliahou and a conjecture of Wilf

Manuel Delgado www.fc.up.pt/cmup/mdelgado/





#### International meeting on numerical semigroups with applications Levico Terme 2016

Research partially supported by:

CMUP - UID/MAT/00144/2013

Semigrupos Numéricos y Afines - MTM2014-55367-P



## Outline

#### Motivation

- A pictorial view of a numerical semigroup
- Terminology, notation and a conjecture of Wilf
- Some more notation and a problem of Eliahou
- Fromentin-Eliahou examples

#### 2 Every integer is the Eliahou number of infinitely many NS

- Defining the numerical semigroup S(p)
- A visual way to look to S(p)
- The S(p) satisfy Wilf's conjecture
- Defining the numerical semigroup  $S(p, \tau)$
- A visual way to look to  $S(p, \tau)$
- Defining a sequence of numerical semigroups  $S^{(i)}(p,\tau)$
- A visual way to look to  $S^{(i)}(p,\tau)$

#### 3 References

## Motivation

This work is motivated by a recent paper of Eliahou:

S. Eliahou, Wilf's conjecture and Macaulay's theorem, preprint.

It was presented in a special session on "Commutative Monoids" of the AMS-EMS-SPM joint meeting that held in Porto, in 2015.

Many talks in former editions of the IMNS series of conferences on numerical semigroups referred Wilf's conjecture...

# A pictorial view of a numerical semigroup

We represent a numerical semigroup with multiplicity m and conductor c by highlighting some entries in a  $(\lceil c/m \rceil + 1) \times m$  table of consecutive integers.

The uppermost row starts in c. The lowest row contains 0.

| 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 |
|----|----|----|----|----|----|----|----|----|----|----|
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 |
|    |    | 32 |    |    |    |    |    |    |    |    |
| 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| -3 | -2 | -1 | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  |

Pictorial representation of the numerical semigroup  $\langle 11, 13, 21, 62\rangle$ 

Among the elements of the numerical semigroup, some are highlighted.

# Terminology, notation and a conjecture of Wilf

Let S be a numerical semigroup. **Primitive elements** of *S* (also known as minimal generators).....P(S)**Conductor** of *S* .....**c**(*S*) the smallest integer from which all the integers belong to S **Lower elements** of *S* (also known as left elements).....L(S)the elements of S that are smaller than c(S)Wilf number  $\dots W(S) = |P||L| - c$ Conjecture (Wilf)

If S is a numerical semigroup, then  $W(S) \ge 0$ .

## Some more notation

| Multiplicity of $S$                                         |  |  |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| <i>q</i> -number $q(S) = \lceil c / m \rceil$               |  |  |  |  |  |  |  |  |  |  |  |  |
| The non primitive elements are called <i>decomposable</i> . |  |  |  |  |  |  |  |  |  |  |  |  |
| Decomposable elements at level $q$ $D_q(S) = [c, c + m[ P.$ |  |  |  |  |  |  |  |  |  |  |  |  |
| A kind of a remainder $\dots \rho(S) = q \cdot m - c.$      |  |  |  |  |  |  |  |  |  |  |  |  |
| Eliahou number $E(S) =  P \cap L  L  - q D_q  + \rho$       |  |  |  |  |  |  |  |  |  |  |  |  |
| Proposition (Eliahou)                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| If $E(S) \ge 0$ , then $W(S) \ge 0$ .                       |  |  |  |  |  |  |  |  |  |  |  |  |
| Theorem (Eliahou)                                           |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                             |  |  |  |  |  |  |  |  |  |  |  |  |

Numerical semigroups S satisfying q(S) = 3 have positive Eliahou number.

## A problem of Eliahou

Most numerical semigroups satisfy  $q(S) \leq 3...$  A natural question is:

"Is there any numerical semigroup S such that E(S) < 0?"

The answer is "yes". In fact, there are infinitely many, but...

For instance, the probability of a numerical semigroup taken at random from the set of numerical semigroups of genus up to 60 is  $\simeq \frac{5}{10^{13}}$ .

So, without computational tools, we would possibly never find a single example.

### Problem (Eliahou)

Characterize the numerical semigroups having negative Eliahou number.

 $\langle \mathbf{m}, \mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_r \rangle_c$  is the numerical semigroup containing  $\{m, g_1, g_2, \dots, g_r\}$  and all the integers greater than or equal to c.

| Fromentin-Eliahou examples                                                                                                                  |                                                                         |          |                |                      |                                                                          |                |                            |                            |                |                            |                            |                            |  |  |                  |             |     |                  |       |       |                 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------|----------------|----------------------|--------------------------------------------------------------------------|----------------|----------------------------|----------------------------|----------------|----------------------------|----------------------------|----------------------------|--|--|------------------|-------------|-----|------------------|-------|-------|-----------------|--|
| 56     57     58     59       42     43     44     45       28     29     30     31       14     15     16     17       0     1     2     3 | 60     61       46     47       32     33       18     19       4     5 | 20       | 49<br>35<br>21 | 50 5<br>36 5<br>22 5 | 65     66       51     52       37     38       23     24       9     10 | 53<br>39<br>25 | 68<br>54<br>40<br>26<br>12 | 69<br>55<br>41<br>27<br>13 | ]              |                            |                            |                            |  |  |                  | <i>S</i> (- | 4). | <br>(14          | 1, 22 | 2,23  | ) <sub>56</sub> |  |
| 64     65     66     67       48     49     50     51       32     33     34     35       16     17     18     19       0     1     2     3 | 68     69       52     53       36     37       20     21       4     5 | 38<br>22 | 55<br>39<br>23 | 56<br>40<br>24       | 73 74   57 58   41 42   25 26   9 10                                     | 59<br>43<br>27 | 76<br>60<br>44<br>28<br>12 | 77<br>61<br>45<br>29<br>13 | 62<br>46<br>30 | 79<br>63<br>47<br>31<br>15 |                            |                            |  |  | S <sup>(1)</sup> | (4,         | ).  | <br>$\langle 16$ | 5, 25 | 5,26  | )<br>64         |  |
| 68     69     70     71       51     52     53     54       34     35     36     37       17     18     19     20       0     1     2     3 | 72     73       55     56       38     39       21     22       4     5 | 40<br>23 | 58<br>41<br>24 | 59 0<br>42 4<br>25 2 | 77     78       60     61       43     44       26     27       9     10 | 45<br>28       | 80<br>63<br>46<br>29<br>12 | 81<br>64<br>47<br>30<br>13 | 65<br>48<br>31 | 66<br>49<br>32             | 84<br>67<br>50<br>33<br>16 |                            |  |  |                  |             |     | <br>$\langle 17$ | 7,26  | 5, 28 | ) <sub>68</sub> |  |
| 68     69     70     71       51     52     53     54       34     35     36     37       17     18     19     20       0     1     2     3 | 72     73       55     56       38     39       21     22       4     5 | 40       | 58<br>41<br>24 | 59 (<br>42 4<br>25 2 | 77     78       60     61       43     44       26     27       9     10 | 62<br>45<br>28 | 80<br>63<br>46<br>29<br>12 | 81<br>64<br>47<br>30<br>13 | 65<br>48<br>31 | 66<br>49<br>32             | 84<br>67<br>50<br>33<br>16 |                            |  |  |                  |             |     | <br>$\langle 17$ | 7,27  | 7,28  | > <sub>68</sub> |  |
| 72     73     74     75       54     55     56     57       36     37     38     39       18     19     20     21       0     1     2     3 | 76     77       58     59       40     41       22     23       4     5 | 60<br>42 | 61<br>43<br>25 | 62 (<br>44 4<br>26 2 | 81     82       63     64       45     46       27     28       9     10 | 65<br>47<br>29 | 84<br>66<br>48<br>30<br>12 | 85<br>67<br>49<br>31<br>13 | 68<br>50<br>32 | 69<br>51<br>33             | 70 7<br>52 5<br>34 3       | 89<br>71<br>53<br>35<br>17 |  |  | S <sup>(2)</sup> | (4,         | D). | <br>(18          | 8, 28 | 3, 29 |                 |  |

The Fromentin-Eliahou examples have Eliahou number equal to -1 and are the only examples of numerical semigroups of genus not greater than 60 having negative Eliahou number.

# Defining the numerical semigroup S(p)

#### A visual way to look to S(p)

We construct numerical semigroups whith pictorial representations similar to those of some of the Fromentin-Eliahou examples.



One can partition these tables into several blocks (where p is an even positive integer):

a block C consisting of the 2 leftmost columns;

blocks  $B_i$ ,  $1 \le i \le \frac{p}{2}$ , consisting of  $\frac{p}{2} + 4$  consecutive columns.

#### The definition of S(p)

Let p be an **even** positive integer.

Consider the following integers (which depend on p):

$$\mu(p) = \frac{p^2}{4} + 2p + 2 = \frac{p}{2} \left(\frac{p}{2} + 4\right) + 2;$$
  
$$\gamma(p) = 2\mu(p) - \left(\frac{p}{2} + 4\right).$$

#### Definition

The numerical semigroup  $\langle \mu, \gamma, \gamma + 1 \rangle_{p\mu}$ , which contains  $\{\mu, \gamma, \gamma + 1\}$  and all the integers greater than or equal to  $p\mu$ , is denoted by S(p).

After some technical results one gets:

Corollary

```
The conductor of S(p) is p\mu.
```

#### After some more technical results one gets:

Corollary

$$|L| = \frac{p^3}{24} + \frac{3}{8}p^2 + \frac{13}{12}p.$$

#### And also:

Corollary

$$|D_p| = \left(\frac{p^2}{4} + \frac{5}{2}p + 6\right)/2.$$

Now we can state the main result:

#### Theorem

$$\mathsf{E}(S(p)) = \frac{p}{4} \left(1 - \frac{p}{2}\right)$$

#### Corollary

There exist numerical semigroups with arbitrarily large negative Eliahou number.

M. Delgado

# The S(p) satisfy Wilf's conjecture

From the previously stated results one gets:

Corollary

 $|\mathsf{P}(S)| = \frac{p^2}{8} + \frac{3}{4}p + 2.$ 

And gets that the Wilf's conjecture holds for all numerical semigroups S(p).

#### Proposition

Let p be an even positive integer. Then

$$W(S(p)) = rac{p^5}{192} + rac{5p^4}{64} + rac{p^3}{4} - rac{7p^2}{16} + rac{p}{6} > 0.$$

In particular, W(S(p)) > 0.

#### Remark

When p grows, E(S(p)) becomes large negative, while W(S(p)) becomes large positive.

M. Delgado

# Defining the semigroup $S(p, \tau)$

#### A visual way to look to $S(p, \tau)$

Let  $\tau$  be a non-negative integer  $\tau$ .

For each of the figures representing one S(p) do the following slight modifications:

add  $\tau$  columns to the right of each of the  $B_i$  blocks, for  $1 \le i \le \frac{p}{2} - 1$ ;

concerning the block  $B_{\frac{p}{2}}$ , instead of adding columns to the right,  $\tau$  columns are put at the left of the table. Block B is therefore split into two parts.

Block C now consists of the columns  $\tau + 1$  and  $\tau + 2$ .



It is straightforward to observe that the former images represent the semigroups  $S(p, \tau)$  defined below.

Consider the integers:

$$\begin{split} m &= \mu + \tau \frac{p}{2} = \frac{p}{2} \left( \frac{p}{2} + 4 + \tau \right) + 2 = \frac{p^2}{4} + 2p + 2 + \tau \frac{p}{2};\\ g &= \gamma + \tau \left( p - 1 \right) = 2m - \left( \frac{p}{2} + 4 + \tau \right) = 2m - (\tau + 1) - \left( \frac{p}{2} + 2 + 1 \right);\\ c &= p\mu + \tau \left( \frac{p}{2} - 1 \right) = pm - \tau. \end{split}$$

#### Definition

The numerical semigroup  $\langle m, g, g+1 \rangle_c$  is denoted by  $S(p, \tau)$ .

#### Remark

(1) 
$$|L(S(p))| = |L(S(p, \tau))|;$$

(2) 
$$|D_p(S(p))| = |D_p(S(p,\tau))|;$$

#### Theorem

Let p be an even positive integer and let  $\tau$  be a non negative integer. Then  $E(S(p,\tau)) = \frac{p}{4} \left(1 - \frac{p}{2}\right) + \tau$ .

#### Corollary

Every integer is the Eliahou number of some numerical semigroup of the form  $S(p, \tau)$ .

#### Remark

$$|\mathsf{P}(S(p,\tau))| = |\mathsf{P}(S(p))| + \tau \frac{p}{2}; \mathsf{c}(S(p,\tau)) = \mathsf{c}(S(p)) + p \frac{p}{2} \tau - \tau$$

#### Proposition

Let p be an even positive integer and let  $\tau$  be a non negative integer. Then  $W(S(p,\tau)) > 0$ .

# Defining the semigroups $S^{(i)}(p, \tau)$

A visual way to look to  $S^{(i)}(p,\tau)$ 

Consider the image obtained by adding one column to the right of each of the  $B_i$  blocks...

In the case of the block  $B_{\frac{p}{2}}$  we add one column to its right part.



#### The definition of $S^{(i)}(p,\tau)$

For p and  $\tau$  as above, we define a sequence of semigroups  $S^{(i)}(p,\tau)$ ,  $i \ge 0$  as follows. We take  $S^{(0)}(p,\tau) = S(p,\tau)$  and give the following recursive definition for the numbers involved.

$$\begin{split} m^{(i+1)} &= m^{(i)} + \frac{p}{2}; \\ g^{(i+1)} &= g^{(i)} + p - 1; \\ c^{(i+1)} &= pm^{(i)} + \frac{p^2}{2} - \tau = c^{(i)} + \frac{p^2}{2}. \end{split}$$

#### Definition

Now, for  $i \in \mathbb{Z}$ , we define the semigroup  $S^{(i)}(p,\tau)$  as the semigroup  $\langle m^{(i)}, g^{(i)}, g^{(i)} + 1 \rangle_{c^{(i)}}$ .

#### Remark

The sequence  $S^{(i)}(p, \tau)$  is infinite.

One can easily observe that the constants involved in the Eliahou number do not change when we go from i to i + 1... Thus:

#### Theorem

Let p be an even positive integer and let  $\tau$  be a non negative integer. For any positive integer i,  $E(S(p, \tau)) = E(S^{(i)}(p, \tau))$ .

The  $S^{(i)}(p,\tau)$  satisfy Wilf's conjecture:

#### Theorem

Let p be an even positive integer and let  $\tau$  be a non negative integer. Then  $W(S^{(i)}(p,\tau)) > 0$ , for every positive integer i.

The proof uses:

#### Lemma

$$W(S^{(i+1)}(p,\tau)) = W(S^{(i)}(p,\tau)) + \frac{p^2(p^2+9p+2)}{48}$$

#### Corollary

Given integers n and N, there are infinitely many numerical semigroups S such that E(S) = n and W(S) > N.

M. Delgado

- M. Delgado, "intpic", a GAP package for drawing integers, Version 0.2.1; 2015. Available via http://www.gap-system.org/.
- M. Delgado, On a question of Eliahou and a conjecture of Wilf, http://arxiv.org/abs/1608.01353.
- M. Delgado, P. A. García-Sánchez and J. Morais, "NumericalSgps", a GAP package for numerical semigroups, Version 1.0.1; 2015. Available via http://www.gap-system.org/.
- The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.8.2; 2016. Available via http://www.gap-system.org/.
- S. Eliahou, Wilf's conjecture and Macaulay's theorem, preprint. Available at http: //www.www.co./minne2010/2016/preprints/aliahow.ime2016.adf

//www.ugr.es/~imns2010/2016/preprints/eliahou-imns2016.pdf

J. C. Rosales and P. A. García-Sánchez, "Numerical Semigroups", *Developments in Maths.* **20**, Springer (2010).

# Grazie