On a question of Eliahou and a conjecture of Wilf

Manuel Delgado
www.fc.up.pt/cmup/mdelgado/

UNIVERSIDADE DO PORTO

FACULDADE DE CIÊNCIAS UNIVERSIDADE DO PORTO

Departamento de Matemática

International meeting on numerical semigroups with applications Levico Terme 2016

Semigrupos Numéricos y Afines - MTM2014-55367-P

Outline

(1) Motivation

- A pictorial view of a numerical semigroup
- Terminology, notation and a conjecture of Wilf
- Some more notation and a problem of Eliahou
- Fromentin-Eliahou examples
(2) Every integer is the Eliahou number of infinitely many NS
- Defining the numerical semigroup $S(p)$
- A visual way to look to $S(p)$
- The $S(p)$ satisfy Wilf's conjecture
- Defining the numerical semigroup $S(p, \tau)$
- A visual way to look to $S(p, \tau)$
- Defining a sequence of numerical semigroups $S^{(i)}(p, \tau)$
- A visual way to look to $S^{(i)}(p, \tau)$
(3) References

Motivation

This work is motivated by a recent paper of Eliahou:
R. Eliahou, Wilf's conjecture and Macaulay's theorem, preprint.

It was presented in a special session on "Commutative Monoids" of the AMS-EMS-SPM joint meeting that held in Porto, in 2015.

Many talks in former editions of the IMNS series of conferences on numerical semigroups referred Wilf's conjecture...

A pictorial view of a numerical semigroup

We represent a numerical semigroup with multiplicity m and conductor c by highlighting some entries in a $(\lceil c / m\rceil+1) \times m$ table of consecutive integers.

The uppermost row starts in c. The lowest row contains 0 .

52	53	54	55	56	57	58	59	60	61	62
41	42	43	44	45	46	47	48	49	50	51
30	31	32	33	34	35	36	37	38	39	40
19	20	21	22	23	24	25	26	27	28	29
8	9	10	11	12	13	14	15	16	17	18
-3	-2	-1	0	1	2	3	4	5	6	7

Pictorial representation of the numerical semigroup $\langle 11,13,21,62\rangle$
Among the elements of the numerical semigroup, some are highlighted.

Terminology, notation and a conjecture of Wilf

Let S be a numerical semigroup.
Primitive elements of S (also known as minimal generators).......... $\mathrm{P}(S)$
Conductor of S...
the smallest integer from which all the integers belong to S
Lower elements of S (also known as left elements)
the elements of S that are smaller than $\mathrm{c}(S)$

Wilf number $W(S)=|P||L|-c$

Conjecture (Wilf)
If S is a numerical semigroup, then $W(S) \geq 0$.

Some more notation

Multiplicity of S $m(S)$ the smallest positive element of S

The non primitive elements are called decomposable.
Decomposable elements at level $q \ldots \ldots \ldots \ldots \ldots . D_{q}(S)=[c, c+m[\backslash P$.
A kind of a remainder $\ldots \ldots \ldots(S)=q \cdot m-c$.
Eliahou number

$$
\mathrm{E}(S)=|P \cap L||L|-q\left|D_{q}\right|+\rho
$$

Proposition (Eliahou)
If $\mathrm{E}(S) \geq 0$, then $\mathrm{W}(S) \geq 0$.
Theorem (Eliahou)
Numerical semigroups S satisfying $q(S)=3$ have positive Eliahou number.

A problem of Eliahou

Most numerical semigroups satisfy $q(S) \leq 3$... A natural question is:
"Is there any numerical semigroup S such that $\mathrm{E}(S)<0$?"
The answer is "yes". In fact, there are infinitely many, but...
For instance, the probability of a numerical semigroup taken at random from the set of numerical semigroups of genus up to 60 is $\simeq \frac{5}{10^{13}}$.
So, without computational tools, we would possibly never find a single example.

Problem (Eliahou)

Characterize the numerical semigroups having negative Eliahou number.
$\left\langle\mathbf{m}, \mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{\mathbf{r}}\right\rangle_{\mathrm{c}}$ is the numerical semigroup containing $\left\{m, g_{1}, g_{2}, \ldots, g_{r}\right\}$ and all the integers greater than or equal to c .

| 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 |
| 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 |
| 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

| 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |
| 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

$$
S^{(1)}(4,0) \ldots\langle 16,25,26\rangle_{64}
$$

| 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 |
| 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

$\langle 17,26,28\rangle_{68}$

| 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 |
| 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

$\langle 17,27,28\rangle_{68}$

72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89
54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53
18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

$$
S^{(2)}(4,0) \ldots\langle 18,28,29\rangle_{72}
$$

The Fromentin-Eliahou examples have Eliahou number equal to -1 and are the only examples of numerical semigroups of genus not greater than 60 having negative Eliahou number.

Defining the numerical semigroup $S(p)$

A visual way to look to $S(p)$
We construct numerical semigroups whith pictorial representations similar to those of some of the Fromentin-Eliahou examples.

One can partition these tables into several blocks (where p is an even positive integer):
a block C consisting of the 2 leftmost columns; blocks $B_{i}, 1 \leq i \leq \frac{p}{2}$, consisting of $\frac{p}{2}+4$ consecutive columns.

The definition of $S(p)$

Let p be an even positive integer.
Consider the following integers (which depend on p):

$$
\begin{aligned}
& \mu(p)=\frac{p^{2}}{4}+2 p+2=\frac{p}{2}\left(\frac{p}{2}+4\right)+2 ; \\
& \gamma(p)=2 \mu(p)-\left(\frac{p}{2}+4\right) .
\end{aligned}
$$

Definition

The numerical semigroup $\langle\mu, \gamma, \gamma+1\rangle_{p \mu}$, which contains $\{\mu, \gamma, \gamma+1\}$ and all the integers greater than or equal to $p \mu$, is denoted by $S(p)$.

After some technical results one gets:

Corollary

The conductor of $S(p)$ is $p \mu$.

After some more technical results one gets:

Corollary

$$
|L|=\frac{p^{3}}{24}+\frac{3}{8} p^{2}+\frac{13}{12} p .
$$

And also:
Corollary
$\left|D_{P}\right|=\left(\frac{p^{2}}{4}+\frac{5}{2} p+6\right) / 2$.
Now we can state the main result:

Theorem

$$
E(S(p))=\frac{p}{4}\left(1-\frac{p}{2}\right)
$$

Corollary

There exist numerical semigroups with arbitrarily large negative Eliahou number.

The $S(p)$ satisfy Wilf's conjecture

From the previously stated results one gets:
Corollary
$|\mathrm{P}(S)|=\frac{p^{2}}{8}+\frac{3}{4} p+2$.
And gets that the Wilf's conjecture holds for all numerical semigroups $S(p)$.

Proposition

Let p be an even positive integer. Then

$$
\mathrm{W}(S(p))=\frac{p^{5}}{192}+\frac{5 p^{4}}{64}+\frac{p^{3}}{4}-\frac{7 p^{2}}{16}+\frac{p}{6}>0 .
$$

In particular, $\mathrm{W}(S(p))>0$.

Remark

When p grows, $\mathrm{E}(S(p))$ becomes large negative, while $\mathrm{W}(S(p))$ becomes large positive.

Defining the semigroup $S(p, \tau)$

A visual way to look to $S(p, \tau)$
Let τ be a non-negative integer τ.
For each of the figures representing one $S(p)$ do the following slight modifications:
add τ columns to the right of each of the B_{i} blocks, for $1 \leq i \leq \frac{p}{2}-1$;
concerning the block $B_{\frac{p}{2}}$, instead of adding columns to the right, τ columns are put at the left of the table. Block B is therefore split into two parts.
Block C now consists of the columns $\tau+1$ and $\tau+2$.

It is straightforward to observe that the former images represent the semigroups $S(p, \tau)$ defined below.

Consider the integers:

$$
\begin{aligned}
& m=\mu+\tau \frac{p}{2}=\frac{p}{2}\left(\frac{p}{2}+4+\tau\right)+2=\frac{p^{2}}{4}+2 p+2+\tau \frac{p}{2} ; \\
& g=\gamma+\tau(p-1)=2 m-\left(\frac{p}{2}+4+\tau\right)=2 m-(\tau+1)-\left(\frac{p}{2}+2+1\right) ; \\
& c=p \mu+\tau\left(\frac{p}{2}-1\right)=p m-\tau .
\end{aligned}
$$

Definition

The numerical semigroup $\langle m, g, g+1\rangle_{c}$ is denoted by $S(p, \tau)$.

Remark

(1) $|\mathrm{L}(S(p))|=|\mathrm{L}(S(p, \tau))|$;
(2) $\left|D_{p}(S(p))\right|=\left|D_{p}(S(p, \tau))\right|$;

Theorem

Let p be an even positive integer and let τ be a non negative integer. Then $\mathrm{E}(S(p, \tau))=\frac{p}{4}\left(1-\frac{p}{2}\right)+\tau$.

Corollary

Every integer is the Eliahou number of some numerical semigroup of the form $S(p, \tau)$.

Remark
 $|\mathrm{P}(S(p, \tau))|=|\mathrm{P}(S(p))|+\tau \frac{p}{2} ; \mathrm{c}(S(p, \tau))=\mathrm{c}(S(p))+p \frac{p}{2} \tau-\tau$.

Proposition

Let p be an even positive integer and let τ be a non negative integer. Then $\mathrm{W}(S(p, \tau))>0$.

Defining the semigroups $S^{(i)}(p, \tau)$

A visual way to look to $S^{(i)}(p, \tau)$
Consider the image obtained by adding one column to the right of each of the B_{i} blocks...
In the case of the block $B_{\frac{\rho}{2}}$ we add one column to its right part.

The definition of $S^{(i)}(p, \tau)$

For p and τ as above, we define a sequence of semigroups $S^{(i)}(p, \tau), i \geq 0$ as follows. We take $S^{(0)}(p, \tau)=S(p, \tau)$ and give the following recursive definition for the numbers involved.

$$
\begin{aligned}
& m^{(i+1)}=m^{(i)}+\frac{p}{2} \\
& g^{(i+1)}=g^{(i)}+p-1 \\
& c^{(i+1)}=p m^{(i)}+\frac{p^{2}}{2}-\tau=c^{(i)}+\frac{p^{2}}{2} .
\end{aligned}
$$

Definition

Now, for $i \in \mathbb{Z}$, we define the semigroup $S^{(i)}(p, \tau)$ as the semigroup $\left\langle m^{(i)}, g^{(i)}, g^{(i)}+1\right\rangle_{c^{(i)}}$.

Remark

The sequence $S^{(i)}(p, \tau)$ is infinite.

One can easily observe that the constants involved in the Eliahou number do not change when we from i to $i+1$... Thus:

Theorem

Let p be an even positive integer and let τ be a non negative integer. For any positive integer $i, \mathrm{E}(S(p, \tau))=\mathrm{E}\left(S^{(i)}(p, \tau)\right)$.
The $S^{(i)}(p, \tau)$ satisfy Wilf's conjecture:

Theorem

Let p be an even positive integer and let τ be a non negative integer. Then $\mathrm{W}\left(S^{(i)}(p, \tau)\right)>0$, for every positive integer i.

The proof uses:

Lemma

$\mathrm{W}\left(S^{(i+1)}(p, \tau)\right)=\mathrm{W}\left(S^{(i)}(p, \tau)\right)+\frac{p^{2}\left(p^{2}+9 p+2\right)}{48}$

Corollary

Given integers n and N, there are infinitely many numerical semigroups S such that $\mathrm{E}(S)=n$ and $\mathrm{W}(S)>N$.
(M. Delgado, "intpic", a GAP package for drawing integers, Version 0.2.1; 2015. Available via http://www.gap-system.org/.

雷 M. Delgado, On a question of Eliahou and a conjecture of Wilf, http://arxiv.org/abs/1608.01353.

- M. Delgado, P. A. García-Sánchez and J. Morais, "NumericalSgps", a GAP package for numerical semigroups, Version 1.0.1; 2015. Available via http://www.gap-system.org/.
The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.8.2; 2016. Available via http://www.gap-system.org/.
S. Eliahou, Wilf's conjecture and Macaulay's theorem, preprint. Available at http:
//www.ugr.es/~imns2010/2016/preprints/eliahou-imns2016.pdf
冨 J. C. Rosales and P. A. García-Sánchez, "Numerical Semigroups", Developments in Maths. 20, Springer (2010).

Grazie

