Cyclotomic Numerical Semigroups I

Alexandru Ciolan
University of Bonn
Joint work with Pedro A. García-Sánchez and Pieter Moree
Levico Terme, July 7, 2016

Preliminaries

Preliminaries

For $\zeta=e^{2 \pi i / n}$ a primitive n-th root of unity, let

$$
\Phi_{n}(x)=\prod_{\substack{j=1 \\ \operatorname{ord}(i n)-1}}^{n}\left(x-\zeta^{j}\right)
$$

denote the n-th cyclotomic polynomial.

Preliminaries

For $\zeta=e^{2 \pi i / n}$ a primitive n-th root of unity, let

$$
\Phi_{n}(x)=\prod_{\substack{j=1 \\ \operatorname{gcd}(j, n)=1}}^{n}\left(x-\zeta^{j}\right)
$$

denote the n-th cyclotomic polynomial. It has integer coefficients, it is irreducible over \mathbb{Q} and monic of degree $\varphi(n)$, where φ denotes the Euler's totient function.

Preliminaries

For $\zeta=e^{2 \pi i / n}$ a primitive n-th root of unity, let

$$
\Phi_{n}(x)=\prod_{\substack{j=1 \\ \operatorname{gcd}(j, n)=1}}^{n}\left(x-\zeta^{j}\right)
$$

denote the n-th cyclotomic polynomial.
It has integer coefficients, it is irreducible over \mathbb{Q} and monic of degree $\varphi(n)$, where φ denotes the Euler's totient function. Over $\mathbb{Q}, x^{n}-1$ factorizes as

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)
$$

Preliminaries

For $\zeta=e^{2 \pi i / n}$ a primitive n-th root of unity, let

$$
\Phi_{n}(x)=\prod_{\substack{j=1 \\ \operatorname{gcd}(j, n)=1}}^{n}\left(x-\zeta^{j}\right)
$$

denote the n-th cyclotomic polynomial.
It has integer coefficients, it is irreducible over \mathbb{Q} and monic of degree $\varphi(n)$, where φ denotes the Euler's totient function. Over $\mathbb{Q}, x^{n}-1$ factorizes as

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)
$$

from where, by Möbius inversion,

$$
\Phi_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)}
$$

where μ denotes the Möbius' function.

Preliminaries

Preliminaries

If follows that, for p, q distinct primes,

Preliminaries

If follows that, for p, q distinct primes,

$$
\Phi_{p q}(x)=\frac{(1-x)\left(1-x^{p q}\right)}{\left(1-x^{p}\right)\left(1-x^{q}\right)}
$$

Preliminaries

If follows that, for p, q distinct primes,

$$
\Phi_{p q}(x)=\frac{(1-x)\left(1-x^{p q}\right)}{\left(1-x^{p}\right)\left(1-x^{q}\right)}
$$

But the RHS should look familiar!

Preliminaries

If follows that, for p, q distinct primes,

$$
\Phi_{p q}(x)=\frac{(1-x)\left(1-x^{p q}\right)}{\left(1-x^{p}\right)\left(1-x^{q}\right)}
$$

But the RHS should look familiar!
Indeed, to a numerical semigroup S we associate its Hilbert series, $H_{S}(x)=\sum_{s \in S} x^{s}$,

Preliminaries

If follows that, for p, q distinct primes,

$$
\Phi_{p q}(x)=\frac{(1-x)\left(1-x^{p q}\right)}{\left(1-x^{p}\right)\left(1-x^{q}\right)}
$$

But the RHS should look familiar!
Indeed, to a numerical semigroup S we associate its Hilbert series, $H_{S}(x)=\sum_{s \in S} x^{S}$, and its semigroup polynomial, $P_{S}(x)=(1-x) H_{S}(x)$.

Preliminaries

If follows that, for p, q distinct primes,

$$
\Phi_{p q}(x)=\frac{(1-x)\left(1-x^{p q}\right)}{\left(1-x^{p}\right)\left(1-x^{q}\right)}
$$

But the RHS should look familiar!
Indeed, to a numerical semigroup S we associate its Hilbert series, $H_{S}(x)=\sum_{s \in S} x^{s}$, and its semigroup polynomial, $P_{S}(x)=(1-x) H_{S}(x)$. It is known that, if $S=\langle a, b\rangle$ is a numerical semigroup,

Preliminaries

If follows that, for p, q distinct primes,

$$
\Phi_{p q}(x)=\frac{(1-x)\left(1-x^{p q}\right)}{\left(1-x^{p}\right)\left(1-x^{q}\right)}
$$

But the RHS should look familiar!
Indeed, to a numerical semigroup S we associate its Hilbert series, $H_{S}(x)=\sum_{s \in S} x^{s}$, and its semigroup polynomial, $P_{S}(x)=(1-x) H_{S}(x)$. It is known that, if $S=\langle a, b\rangle$ is a numerical semigroup, then

$$
P_{S}(x)=\frac{(1-x)\left(1-x^{a b}\right)}{\left(1-x^{a}\right)\left(1-x^{b}\right)}
$$

Preliminaries

If follows that, for p, q distinct primes,

$$
\Phi_{p q}(x)=\frac{(1-x)\left(1-x^{p q}\right)}{\left(1-x^{p}\right)\left(1-x^{q}\right)}
$$

But the RHS should look familiar!
Indeed, to a numerical semigroup S we associate its Hilbert series, $H_{S}(x)=\sum_{s \in S} x^{s}$, and its semigroup polynomial, $P_{S}(x)=(1-x) H_{S}(x)$. It is known that, if $S=\langle a, b\rangle$ is a numerical semigroup, then

$$
P_{S}(x)=\frac{(1-x)\left(1-x^{a b}\right)}{\left(1-x^{a}\right)\left(1-x^{b}\right)}
$$

Therefore, if $S=\langle p, q\rangle$, then

Preliminaries

If follows that, for p, q distinct primes,

$$
\Phi_{p q}(x)=\frac{(1-x)\left(1-x^{p q}\right)}{\left(1-x^{p}\right)\left(1-x^{q}\right)}
$$

But the RHS should look familiar!
Indeed, to a numerical semigroup S we associate its Hilbert series, $H_{S}(x)=\sum_{s \in S} x^{s}$, and its semigroup polynomial, $P_{S}(x)=(1-x) H_{S}(x)$. It is known that, if $S=\langle a, b\rangle$ is a numerical semigroup, then

$$
P_{S}(x)=\frac{(1-x)\left(1-x^{a b}\right)}{\left(1-x^{a}\right)\left(1-x^{b}\right)}
$$

Therefore, if $S=\langle p, q\rangle$, then

$$
P_{S}(x)=\Phi_{p q}(x)
$$

Motivation

Motivation

- Connections between cyclotomic polynomials and numerical semigroups;

Motivation

- Connections between cyclotomic polynomials and numerical semigroups; for e.g., using that $\Phi_{p q}(x)=P_{\langle p, q\rangle}(x)$, one can study the coefficients of $\Phi_{p q}$ by relying entirely on numerical semigroups.

Motivation

- Connections between cyclotomic polynomials and numerical semigroups; for e.g., using that $\Phi_{p q}(x)=P_{\langle p, q\rangle}(x)$, one can study the coefficients of $\Phi_{p q}$ by relying entirely on numerical semigroups.
- Various people (Bachman, Bzdęga, Carlitz, Kaplan, Moree etc.) have been interested in studying the coefficients of cyclotomic polynomials or of divisors of $x^{n}-1$.

Motivation

- Connections between cyclotomic polynomials and numerical semigroups; for e.g., using that $\Phi_{p q}(x)=P_{\langle p, q\rangle}(x)$, one can study the coefficients of $\Phi_{p q}$ by relying entirely on numerical semigroups.
- Various people (Bachman, Bzdęga, Carlitz, Kaplan, Moree etc.) have been interested in studying the coefficients of cyclotomic polynomials or of divisors of $x^{n}-1$.
In general, given a cyclotomic polynomial, or a product of cyclotomic polynomials, it is hard to say something about the coefficients.

Motivation

- Connections between cyclotomic polynomials and numerical semigroups; for e.g., using that $\Phi_{p q}(x)=P_{\langle p, q\rangle}(x)$, one can study the coefficients of $\Phi_{p q}$ by relying entirely on numerical semigroups.
- Various people (Bachman, Bzdęga, Carlitz, Kaplan, Moree etc.) have been interested in studying the coefficients of cyclotomic polynomials or of divisors of $x^{n}-1$.
In general, given a cyclotomic polynomial, or a product of cyclotomic polynomials, it is hard to say something about the coefficients. But:

Motivation

- Connections between cyclotomic polynomials and numerical semigroups; for e.g., using that $\Phi_{p q}(x)=P_{\langle p, q\rangle}(x)$, one can study the coefficients of $\Phi_{p q}$ by relying entirely on numerical semigroups.
- Various people (Bachman, Bzdęga, Carlitz, Kaplan, Moree etc.) have been interested in studying the coefficients of cyclotomic polynomials or of divisors of $x^{n}-1$.
In general, given a cyclotomic polynomial, or a product of cyclotomic polynomials, it is hard to say something about the coefficients.
But: If such a polynomial were of the form $P_{S}(x)$ for some numerical semigroup S, then its non-zero coefficients would alternate between 1 and -1 .

Cyclotomic Numerical Semigroups

Cyclotomic Numerical Semigroups

Definition

We say a numerical semigroup is cyclotomic if its semigroup polynomial is Kronecker, that is, a monic polynomial with integer coefficients having its roots in the unit disc.

Cyclotomic Numerical Semigroups

Definition

We say a numerical semigroup is cyclotomic if its semigroup polynomial is Kronecker, that is, a monic polynomial with integer coefficients having its roots in the unit disc.

Lemma (Kronecker, 1857)

If f is a Kronecker polynomial with $f(0) \neq 0$, then all roots of f are on the unit circle and f factorizes as a product of cyclotomic polynomials.

Cyclotomic Numerical Semigroups

Cyclotomic Numerical Semigroups

If S is cyclotomic, then $P_{S}(x) \mid\left(x^{d}-1\right)^{h}$ for some positive integers d and h.

Cyclotomic Numerical Semigroups

If S is cyclotomic, then $P_{S}(x) \mid\left(x^{d}-1\right)^{h}$ for some positive integers d and h.

Definition

We say that a numerical semigroup S is cyclotomic of depth d and height h if $P_{S}(x) \mid\left(x^{d}-1\right)^{h}$, where both d and h are chosen minimally, that is, $P_{S}(x)$ does not divide $\left(x^{n}-1\right)^{h-1}$ for any n and it does not divide $\left(x^{d_{1}}-1\right)^{h}$ for any $d_{1}<d$.

Cyclotomic Numerical Semigroups

If S is cyclotomic, then $P_{S}(x) \mid\left(x^{d}-1\right)^{h}$ for some positive integers d and h.

Definition

We say that a numerical semigroup S is cyclotomic of depth d and height h if $P_{S}(x) \mid\left(x^{d}-1\right)^{h}$, where both d and h are chosen minimally, that is, $P_{S}(x)$ does not divide $\left(x^{n}-1\right)^{h-1}$ for any n and it does not divide $\left(x^{d_{1}}-1\right)^{h}$ for any $d_{1}<d$.

Lemma

Let S be a cyclotomic numerical semigroup. If

$$
P_{S}(x)=\prod_{i=1}^{n} \Phi_{d_{i}}(x)^{e_{i}}
$$

then S is of depth $d=\operatorname{Icm}\left(d_{1}, \ldots, d_{n}\right)$ and height $h=\max \left\{e_{1}, \ldots, e_{n}\right\}$.

Main Questions

Main Questions

Problem

Find an intrinsic characterization of a numerical semigroup S for which it is cyclotomic, that is, a characterization that does not involve P_{S} or its roots in any way.

Main Questions

Problem

Find an intrinsic characterization of a numerical semigroup S for which it is cyclotomic, that is, a characterization that does not involve P_{S} or its roots in any way.

For instance: symmetry

Main Questions

Problem

Find an intrinsic characterization of a numerical semigroup S for which it is cyclotomic, that is, a characterization that does not involve P_{S} or its roots in any way.

For instance: symmetry and (a bit later)

Main Questions

Problem

Find an intrinsic characterization of a numerical semigroup S for which it is cyclotomic, that is, a characterization that does not involve P_{S} or its roots in any way.

For instance: symmetry and (a bit later) complete intersection

Main Questions

Problem

Find an intrinsic characterization of a numerical semigroup S for which it is cyclotomic, that is, a characterization that does not involve P_{S} or its roots in any way.

For instance: symmetry and (a bit later) complete intersection
(Recall that S is symmetric if $S \cup(F(S)-S)=\mathbb{Z}$. This does not involve the roots of P_{S}.)

Main Questions

Problem

Find an intrinsic characterization of a numerical semigroup S for which it is cyclotomic, that is, a characterization that does not involve P_{S} or its roots in any way.

For instance: symmetry and (a bit later) complete intersection
(Recall that S is symmetric if $S \cup(F(S)-S)=\mathbb{Z}$. This does not involve the roots of P_{S}.)

Problem

Classify the cyclotomic numerical semigroups with prescribed depths and heights.

Symmetric Numerical Semigroups

Symmetric Numerical Semigroups

Lemma

If S is a cyclotomic numerical semigroup, then P_{S} is selfreciprocal.

Symmetric Numerical Semigroups

Lemma

If S is a cyclotomic numerical semigroup, then P_{S} is selfreciprocal.

Proof.

Φ_{n} is selfreciprocal for $n>1$.

Symmetric Numerical Semigroups

Lemma

If S is a cyclotomic numerical semigroup, then P_{S} is selfreciprocal.

Proof.

Φ_{n} is selfreciprocal for $n>1$.

Theorem

If S is a cyclotomic numerical semigroup, then S is symmetric.

Symmetric Numerical Semigroups

Lemma

If S is a cyclotomic numerical semigroup, then P_{S} is selfreciprocal.

Proof.

Φ_{n} is selfreciprocal for $n>1$.

Theorem

If S is a cyclotomic numerical semigroup, then S is symmetric.

Proof.

Use that S symmetric $\Leftrightarrow P_{S}$ selfreciprocal and the Lemma.

Symmetric Numerical Semigroups

Symmetric Numerical Semigroups

Theorem
 If $e(S) \leq 3$, then S is cyclotomic iff S is symmetric.

Symmetric Numerical Semigroups

Theorem

If $e(S) \leq 3$, then S is cyclotomic iff S is symmetric.

Proof.

Symmetric Numerical Semigroups

Theorem

If $e(S) \leq 3$, then S is cyclotomic iff S is symmetric.

Proof.

" \Rightarrow " From the previous Theorem.

Symmetric Numerical Semigroups

Theorem

If $e(S) \leq 3$, then S is cyclotomic iff S is symmetric.

Proof.

" \Rightarrow " From the previous Theorem.
$" \Leftarrow "$ Clear for $e(S)=2$.

Symmetric Numerical Semigroups

Theorem

If $e(S) \leq 3$, then S is cyclotomic iff S is symmetric.

Proof.

" \Rightarrow " From the previous Theorem.
" $\Leftarrow "$ Clear for $e(S)=2$. If S is symmetric with $e(S)=3$,

Symmetric Numerical Semigroups

Theorem

If $e(S) \leq 3$, then S is cyclotomic iff S is symmetric.

Proof.

" \Rightarrow " From the previous Theorem.
" \Leftarrow " Clear for $e(S)=2$. If S is symmetric with $e(S)=3$, then $S=\left\langle a m_{1}, a m_{2}, b m_{1}+c m_{2}\right\rangle$ with $a, b, c, m_{1}, m_{2} \in \mathbb{N}$ such that $m_{1}, m_{2}, a, b+c \geq 2$ and $\operatorname{gcd}\left(m_{1}, m_{2}\right)=\operatorname{gcd}\left(a, b m_{1}+c m_{2}\right)=1$.

Symmetric Numerical Semigroups

Theorem

If $e(S) \leq 3$, then S is cyclotomic iff S is symmetric.

Proof.

" \Rightarrow " From the previous Theorem.
" \Leftarrow " Clear for $e(S)=2$. If S is symmetric with $e(S)=3$, then $S=\left\langle a m_{1}, a m_{2}, b m_{1}+c m_{2}\right\rangle$ with $a, b, c, m_{1}, m_{2} \in \mathbb{N}$ such that $m_{1}, m_{2}, a, b+c \geq 2$ and $\operatorname{gcd}\left(m_{1}, m_{2}\right)=\operatorname{gcd}\left(a, b m_{1}+c m_{2}\right)=1$. The semigroup polynomial can then be easily computed:

$$
P_{S}(x)=\frac{(1-x)\left(1-x^{a m_{1} m_{2}}\right)\left(1-x^{a\left(b m_{1}+c m_{2}\right)}\right)}{\left(1-x^{b m_{1}+c m_{2}}\right)\left(1-x^{a m_{1}}\right)\left(1-x^{a m_{2}}\right)}
$$

Symmetric Numerical Semigroups

Symmetric Numerical Semigroups

However, symmetric numerical semigroups need not always be cyclotomic!

Symmetric Numerical Semigroups

However, symmetric numerical semigroups need not always be cyclotomic!
Example
$S=\langle 5,6,7,8\rangle$, with $F(S)=9$, is the symmetric numerical semigroup with the smallest Frobenius number that is not cyclotomic.

Symmetric Numerical Semigroups

However, symmetric numerical semigroups need not always be cyclotomic!

Example

$S=\langle 5,6,7,8\rangle$, with $F(S)=9$, is the symmetric numerical semigroup with the smallest Frobenius number that is not cyclotomic.

Example

Two symmetric numerical semigroups with $F(S)=11$ that are not cyclotomic:

$$
S=\langle 5,7,8,9\rangle \text { and } S=\langle 6,7,8,9,10\rangle .
$$

Symmetric Numerical Semigroups

Symmetric Numerical Semigroups

We suspect the following two families of symmetric numerical semigroups are not cyclotomic for $e \geq 4$. Using GAP, we verified this hypothesis up to multiplicity 30.

Example

$S=\langle m, m+1, q m+2 q+2, \ldots, q m+(m-1)\rangle$, where m and q are positive integers such that $m \geq 2 q+3$.

Example

$S=\langle m, m+1,(q+1) m+q+2, \ldots,(q+1) m+m-q-2\rangle$, where m and q are non-negative integers such that $m \geq 2 q+4$.

Complete Intersection Numerical Semigroups

Complete Intersection Numerical Semigroups

We know from Delorme (1976) that S is a complete intersection iff S is either \mathbb{N} or the gluing of two complete intersection numerical semigroups.

Complete Intersection Numerical Semigroups

We know from Delorme (1976) that S is a complete intersection iff S is either \mathbb{N} or the gluing of two complete intersection numerical semigroups. Let $S=\left\langle a_{1}, \ldots, a_{t}\right\rangle$ be a minimally generated complete intersection numerical semigroup.

Complete Intersection Numerical Semigroups

We know from Delorme (1976) that S is a complete intersection iff S is either \mathbb{N} or the gluing of two complete intersection numerical semigroups. Let $S=\left\langle a_{1}, \ldots, a_{t}\right\rangle$ be a minimally generated complete intersection numerical semigroup. Recursively, we find positive integers g_{1}, \ldots, g_{t-1} such that

$$
S=a_{1} \mathbb{N}+g_{1} \cdots+g_{t-1} a_{t} \mathbb{N}
$$

Complete Intersection Numerical Semigroups

We know from Delorme (1976) that S is a complete intersection iff S is either \mathbb{N} or the gluing of two complete intersection numerical semigroups. Let $S=\left\langle a_{1}, \ldots, a_{t}\right\rangle$ be a minimally generated complete intersection numerical semigroup. Recursively, we find positive integers g_{1}, \ldots, g_{t-1} such that

$$
S=a_{1} \mathbb{N}+g_{1} \cdots+g_{t-1} a_{t} \mathbb{N}
$$

By a Theorem of Assi et al. (2015) we then obtain

$$
H_{S}(x)=\prod_{i=1}^{t-1}\left(1-x^{g_{i}}\right) \prod_{i=1}^{t}\left(1-x^{a_{i}}\right)^{-1}
$$

Complete Intersection Numerical Semigroups

We know from Delorme (1976) that S is a complete intersection iff S is either \mathbb{N} or the gluing of two complete intersection numerical semigroups. Let $S=\left\langle a_{1}, \ldots, a_{t}\right\rangle$ be a minimally generated complete intersection numerical semigroup. Recursively, we find positive integers g_{1}, \ldots, g_{t-1} such that

$$
S=a_{1} \mathbb{N}+g_{1} \cdots+g_{t-1} a_{t} \mathbb{N}
$$

By a Theorem of Assi et al. (2015) we then obtain

$$
H_{S}(x)=\prod_{i=1}^{t-1}\left(1-x^{g_{i}}\right) \prod_{i=1}^{t}\left(1-x^{a_{i}}\right)^{-1}
$$

and

$$
P_{S}(x)=(1-x) \prod_{i=1}^{t-1}\left(1-x^{g_{i}}\right) \prod_{i=1}^{t}\left(1-x^{a_{i}}\right)^{-1}
$$

A Conjecture

A Conjecture

Theorem

Every complete intersection numerical semigroup is cyclotomic.

A Conjecture

Theorem
 Every complete intersection numerical semigroup is cyclotomic.

Based on computer experiments, we strongly believe the converse is true.

A Conjecture

Theorem

Every complete intersection numerical semigroup is cyclotomic.
Based on computer experiments, we strongly believe the converse is true.

Conjecture

Every cyclotomic numerical semigroup is a complete intersection.

A Conjecture

Theorem

Every complete intersection numerical semigroup is cyclotomic.
Based on computer experiments, we strongly believe the converse is true.

Conjecture

Every cyclotomic numerical semigroup is a complete intersection.
The hypothesis was tested with GAP for all the symmetric numerical semigroups with Frobenius number up to 69.

A Conjecture

Theorem

Every complete intersection numerical semigroup is cyclotomic.
Based on computer experiments, we strongly believe the converse is true.

Conjecture

Every cyclotomic numerical semigroup is a complete intersection.
The hypothesis was tested with GAP for all the symmetric numerical semigroups with Frobenius number up to 69.

Theorem

If $e(S) \leq 3$ then S cyclotomic $\Leftrightarrow S$ complete intersection $\Leftrightarrow S$ symmetric.

A Conjecture

Theorem

Every complete intersection numerical semigroup is cyclotomic.
Based on computer experiments, we strongly believe the converse is true.

Conjecture

Every cyclotomic numerical semigroup is a complete intersection.
The hypothesis was tested with GAP for all the symmetric numerical semigroups with Frobenius number up to 69.

Theorem

If $e(S) \leq 3$ then S cyclotomic $\Leftrightarrow S$ complete intersection $\Leftrightarrow S$ symmetric.
In general, we have the inclusions
$\{$ complete intersection $\} \subseteq\{$ cyclotomic $\} \subsetneq\{$ symmetric $\}$.

Cyclotomic Exponent Sequence

Cyclotomic Exponent Sequence

According to Székely and Wormald (1986), if $S=\left\langle n_{1}, \ldots, n_{e}\right\rangle$ is minimally generated,

Cyclotomic Exponent Sequence

According to Székely and Wormald (1986), if $S=\left\langle n_{1}, \ldots, n_{e}\right\rangle$ is minimally generated, then

$$
\mathcal{K}(x)=H_{S}(x) \prod_{i=1}^{e}\left(1-x^{n_{i}}\right)
$$

is a polynomial whose only non-zero terms are those of degree $n \in S$ such that the Euler characteristic of the shaded set of n, i.e.
$\Delta_{n}=\left\{L \subset\left\{n_{1}, \ldots, n_{e}\right\}: n-\sum_{s \in L} s \in S\right\}$, is not zero, that is, $\chi_{S}(n)=\sum_{L \in \Delta_{n}}(-1)^{\# L} \neq 0$.

Cyclotomic Exponent Sequence

According to Székely and Wormald (1986), if $S=\left\langle n_{1}, \ldots, n_{e}\right\rangle$ is minimally generated, then

$$
\mathcal{K}(x)=H_{S}(x) \prod_{i=1}^{e}\left(1-x^{n_{i}}\right)
$$

is a polynomial whose only non-zero terms are those of degree $n \in S$ such that the Euler characteristic of the shaded set of n, i.e.
$\Delta_{n}=\left\{L \subset\left\{n_{1}, \ldots, n_{e}\right\}: n-\sum_{s \in L} s \in S\right\}$, is not zero, that is, $\chi_{s}(n)=\sum_{L \in \Delta_{n}}(-1)^{\# L} \neq 0$.

If S is cyclotomic, does $\mathcal{K}(x)$ factorize as $\prod_{b \in \operatorname{Betti}(S)}\left(1-x^{b}\right)^{m_{b}}$?

Cyclotomic Exponent Sequence

Cyclotomic Exponent Sequence

One might wonder whether an expression like

$$
P_{S}(x)=(1-x) \prod_{i=1}^{t-1}\left(1-x^{g_{i}}\right) \prod_{i=1}^{t}\left(1-x^{a_{i}}\right)^{-1}
$$

is unique. In fact, more is true.

Cyclotomic Exponent Sequence

One might wonder whether an expression like

$$
P_{S}(x)=(1-x) \prod_{i=1}^{t-1}\left(1-x^{g_{i}}\right) \prod_{i=1}^{t}\left(1-x^{a_{i}}\right)^{-1}
$$

is unique. In fact, more is true.

Lemma

If f is a polynomial with integer coefficients such that $f(0)=1$, then there exist unique $\epsilon_{j} \in \mathbb{Z}$ such that, for $|x|$ small enough,

$$
f(x)=\prod_{j=1}^{\infty}\left(1-x^{j}\right)^{\epsilon_{j}}
$$

Cyclotomic Exponent Sequence

Cyclotomic Exponent Sequence

As a consequence, given a numerical semigroup S, there are unique integers $\epsilon_{1}, \epsilon_{2}, \ldots$ such that

$$
P_{S}(x)=\prod_{j=1}^{\infty}\left(1-x^{j}\right)^{\epsilon_{j}}
$$

Cyclotomic Exponent Sequence

As a consequence, given a numerical semigroup S, there are unique integers $\epsilon_{1}, \epsilon_{2}, \ldots$ such that

$$
P_{S}(x)=\prod_{j=1}^{\infty}\left(1-x^{j}\right)^{\epsilon_{j}}
$$

Definition

We call $\epsilon=\left\{\epsilon_{1}, \epsilon_{2}, \ldots\right\}$ the cyclotomic exponent sequence of S.

Cyclotomic Exponent Sequence

As a consequence, given a numerical semigroup S, there are unique integers $\epsilon_{1}, \epsilon_{2}, \ldots$ such that

$$
P_{S}(x)=\prod_{j=1}^{\infty}\left(1-x^{j}\right)^{\epsilon_{j}}
$$

Definition

We call $\epsilon=\left\{\epsilon_{1}, \epsilon_{2}, \ldots\right\}$ the cyclotomic exponent sequence of S.

Problem

Relate the properties of S to its cyclotomic exponent sequence.

Attempts at Proving the Conjecture

Attempts at Proving the Conjecture

Lemma
 A numerical semigroup S has a cyclotomic exponent sequence with finitely many non-zero terms iff S is cyclotomic.

Attempts at Proving the Conjecture

Lemma

A numerical semigroup S has a cyclotomic exponent sequence with finitely many non-zero terms iff S is cyclotomic.

Under certain assumptions, if $S=\left\langle n_{1}, \ldots, n_{e}\right\rangle$ is cyclotomic and minimally generated, then there exist $k \in \mathbb{N}, 1<\delta_{1}<\delta_{2}<\cdots<\delta_{k}$ and $\epsilon_{i} \geq 1$, $i=1, \ldots, k$ such that

$$
H_{S}(x)=\frac{\left(1-x^{\delta_{1}}\right)^{\epsilon_{1}} \cdots\left(1-x^{\delta_{k}}\right)^{\epsilon_{k}}}{\left(1-x^{n_{1}}\right) \cdots\left(1-x^{n_{e}}\right)}
$$

Attempts at Proving the Conjecture

Attempts at Proving the Conjecture

As a first step confirming our hypothesis, we have the following.

Attempts at Proving the Conjecture

As a first step confirming our hypothesis, we have the following.
Lemma
Suppose $S=\left\langle n_{1}, \ldots, n_{e}\right\rangle$ is cyclotomic, minimally generated and that

$$
H_{S}(x)=\frac{\left(1-x^{\delta_{1}}\right)^{\epsilon_{1}} \cdots\left(1-x^{\delta_{k}}\right)^{\epsilon_{k}}}{\left(1-x^{n_{1}}\right) \cdots\left(1-x^{n_{e}}\right)} .
$$

Then $\delta_{i} \in S$ for $1 \leq i \leq k$ and $\delta_{1}=\min \{s: s \in \operatorname{Betti}(S)\}$.

Attempts at Proving the Conjecture

As a first step confirming our hypothesis, we have the following.

Lemma

Suppose $S=\left\langle n_{1}, \ldots, n_{e}\right\rangle$ is cyclotomic, minimally generated and that

$$
H_{S}(x)=\frac{\left(1-x^{\delta_{1}}\right)^{\epsilon_{1}} \cdots\left(1-x^{\delta_{k}}\right)^{\epsilon_{k}}}{\left(1-x^{n_{1}}\right) \cdots\left(1-x^{n_{e}}\right)}
$$

Then $\delta_{i} \in S$ for $1 \leq i \leq k$ and $\delta_{1}=\min \{s: s \in \operatorname{Betti}(S)\}$.

Proof.

Attempts at Proving the Conjecture

As a first step confirming our hypothesis, we have the following.

Lemma

Suppose $S=\left\langle n_{1}, \ldots, n_{e}\right\rangle$ is cyclotomic, minimally generated and that

$$
H_{S}(x)=\frac{\left(1-x^{\delta_{1}}\right)^{\epsilon_{1}} \cdots\left(1-x^{\delta_{k}}\right)^{\epsilon_{k}}}{\left(1-x^{n_{1}}\right) \cdots\left(1-x^{n_{e}}\right)}
$$

Then $\delta_{i} \in S$ for $1 \leq i \leq k$ and $\delta_{1}=\min \{s: s \in \operatorname{Betti}(S)\}$.

Proof.

Let $d(s)$ be the denumerant of $s \in S$.

Attempts at Proving the Conjecture

As a first step confirming our hypothesis, we have the following.

Lemma

Suppose $S=\left\langle n_{1}, \ldots, n_{e}\right\rangle$ is cyclotomic, minimally generated and that

$$
H_{S}(x)=\frac{\left(1-x^{\delta_{1}}\right)^{\epsilon_{1}} \cdots\left(1-x^{\delta_{k}}\right)^{\epsilon_{k}}}{\left(1-x^{n_{1}}\right) \cdots\left(1-x^{n_{e}}\right)}
$$

Then $\delta_{i} \in S$ for $1 \leq i \leq k$ and $\delta_{1}=\min \{s: s \in \operatorname{Betti}(S)\}$.

Proof.

Let $d(s)$ be the denumerant of $s \in S$. Rewriting the above as

$$
\sum_{s \in S} x^{s}=\left(1-\epsilon_{1} x^{\delta_{1}}+\cdots\right) \sum_{s \in S} d(s) x^{s}=\sum_{\substack{s \in S \\ s<\delta_{1}}} d(s) x^{s}+\left(d\left(\delta_{1}\right)-\epsilon_{1}\right) x^{\delta_{1}}+\cdots
$$

it follows that δ_{1} is the first $s \in S$ with $d(s) \geq 2$,

Attempts at Proving the Conjecture

As a first step confirming our hypothesis, we have the following.

Lemma

Suppose $S=\left\langle n_{1}, \ldots, n_{e}\right\rangle$ is cyclotomic, minimally generated and that

$$
H_{S}(x)=\frac{\left(1-x^{\delta_{1}}\right)^{\epsilon_{1}} \cdots\left(1-x^{\delta_{k}}\right)^{\epsilon_{k}}}{\left(1-x^{n_{1}}\right) \cdots\left(1-x^{n_{e}}\right)}
$$

Then $\delta_{i} \in S$ for $1 \leq i \leq k$ and $\delta_{1}=\min \{s: s \in \operatorname{Betti}(S)\}$.

Proof.

Let $d(s)$ be the denumerant of $s \in S$. Rewriting the above as

$$
\sum_{s \in S} x^{s}=\left(1-\epsilon_{1} x^{\delta_{1}}+\cdots\right) \sum_{s \in S} d(s) x^{s}=\sum_{\substack{s \in S \\ s<\delta_{1}}} d(s) x^{s}+\left(d\left(\delta_{1}\right)-\epsilon_{1}\right) x^{\delta_{1}}+\cdots
$$

it follows that δ_{1} is the first $s \in S$ with $d(s) \geq 2$, hence the claim.

Further Examples

Further Examples

Example (Free semigroups)

Let $S=\left\langle n_{1}, \ldots, n_{t}\right\rangle$. We say that S is free if either $S=\mathbb{N}$ or it is the gluing of the free semigroup $\left\langle n_{1}, \ldots, n_{t-1}\right\rangle$ and $\left\langle n_{t}\right\rangle$ (the order is important).

Let $n \geq 2$ and $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a sequence of coprime positive integers. For every $k=1, \ldots, n$, let $d_{k}=\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)$. For $k=2, \ldots, n$, let $c_{k}=d_{k-1} / d_{k}$. Let S_{k} be the semigroup generated by $\left\{a_{1}, \ldots, a_{k}\right\}$. We say that the sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is smooth if $c_{k} a_{k} \in S_{k-1}$ for every $k=2, \ldots, n$.
S is free iff S is generated by a smooth sequence.
If $S=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ then, according to Leher's Ph.D. Thesis (2007),

$$
P_{S}(x)=(1-x) \prod_{i=2}^{n}\left(1-x^{c_{i} a_{i}}\right) \prod_{i=1}^{n}\left(1-x^{a_{i}}\right)^{-1}
$$

Further Examples

Further Examples

Example (Binomial semigroups)

Consider $B_{n}(a, b)=\left\langle a^{n}, b a^{n-1}, \ldots, a b^{n-1}, b^{n}\right\rangle$, where $a, b>1$ are coprime. Putting $a_{k}=a^{n-k} b^{k}$ for $k=0, \ldots, n$, the sequence $\left(a_{0}, \ldots, a_{n}\right)$ is smooth. We have

$$
P_{B_{n}(a, b)}(x)=(1-x) \prod_{k=1}^{n}\left(1-x^{a^{n+1-k} b^{k}}\right) \prod_{k=0}^{n}\left(1-x^{a^{n-k} b^{k}}\right)^{-1} .
$$

In particular, if p, q are distinct primes, we compute

$$
P_{B_{n}(p, q)}(x)=\prod_{l=2}^{n+1} \prod_{\substack{i+j=l \\ 1 \leq i, j \leq l}} \Phi_{p^{i} q^{j}}
$$

so that $B_{n}(p, q)$ is of depth $d=p^{n} q^{n}$ and height $h=1$.

Semigroup Polynomial Divisors of $x^{n}-1$

Semigroup Polynomial Divisors of $x^{n}-1$

Theorem
Let p, q, r be distinct primes. If S is cyclotomic of depth $d=p q r$ and height $h=1$, then $S=\langle p q, r\rangle$ or a cyclic permutation.

Semigroup Polynomial Divisors of $x^{n}-1$

Theorem

Let p, q, r be distinct primes. If S is cyclotomic of depth $d=p q r$ and height $h=1$, then $S=\langle p q, r\rangle$ or a cyclic permutation.

Theorem

Let p, q, r be distinct primes. If S is cyclotomic of depth $d=p q r$ and height $h=2$, then $S=\langle p q, q r, p r\rangle$.

Semigroup Polynomial Divisors of $x^{n}-1$

Theorem

Let p, q, r be distinct primes. If S is cyclotomic of depth $d=p q r$ and height $h=1$, then $S=\langle p q, r\rangle$ or a cyclic permutation.

Theorem

Let p, q, r be distinct primes. If S is cyclotomic of depth $d=p q r$ and height $h=2$, then $S=\langle p q, q r, p r\rangle$.

Theorem

Let p, q be distinct primes. If S is cyclotomic of depth $d=p^{n} q$, with $n \geq 1$ and height $h=1$, then $S=\left\langle p^{n}, q\right\rangle$.

Semigroup Polynomial Divisors of $x^{n}-1$

Theorem

Let p, q, r be distinct primes. If S is cyclotomic of depth $d=p q r$ and height $h=1$, then $S=\langle p q, r\rangle$ or a cyclic permutation.

Theorem

Let p, q, r be distinct primes. If S is cyclotomic of depth $d=p q r$ and height $h=2$, then $S=\langle p q, q r, p r\rangle$.

Theorem

Let p, q be distinct primes. If S is cyclotomic of depth $d=p^{n} q$, with $n \geq 1$ and height $h=1$, then $S=\left\langle p^{n}, q\right\rangle$.

For $d=p^{n} q^{n}, n \geq 2$ and $h=1$ we obtain $S=\left\langle p^{n}, q^{n}\right\rangle$ and the binomial semigroup $B_{n}(p, q)=\left\langle p^{n}, p^{n-1} q, \ldots, p q^{n-1}, q^{n}\right\rangle$.

Semigroup Polynomial Divisors of $x^{n}-1$

Theorem

Let p, q, r be distinct primes. If S is cyclotomic of depth $d=p q r$ and height $h=1$, then $S=\langle p q, r\rangle$ or a cyclic permutation.

Theorem

Let p, q, r be distinct primes. If S is cyclotomic of depth $d=p q r$ and height $h=2$, then $S=\langle p q, q r, p r\rangle$.

Theorem

Let p, q be distinct primes. If S is cyclotomic of depth $d=p^{n} q$, with $n \geq 1$ and height $h=1$, then $S=\left\langle p^{n}, q\right\rangle$.

For $d=p^{n} q^{n}, n \geq 2$ and $h=1$ we obtain $S=\left\langle p^{n}, q^{n}\right\rangle$ and the binomial semigroup $B_{n}(p, q)=\left\langle p^{n}, p^{n-1} q, \ldots, p q^{n-1}, q^{n}\right\rangle$.
We do not know whether these are all...

Polynomially Related Numerical Semigroups

Polynomially Related Numerical Semigroups

Definition

We say that the numerical semigroup S is polynomially related to the numerical semigroup T, and denote this by $S \leq_{P} T$, if there exist $f(x) \in \mathbb{Z}[x]$ and an integer $w \geq 1$ such that

$$
H_{S}\left(x^{w}\right) f(x)=H_{T}(x)
$$

or equivalently, $P_{S}\left(x^{w}\right) f(x)=P_{T}(x)\left(1+x+\cdots+x^{w-1}\right)$.

Polynomially Related Numerical Semigroups

Definition

We say that the numerical semigroup S is polynomially related to the numerical semigroup T, and denote this by $S \leq_{p} T$, if there exist $f(x) \in \mathbb{Z}[x]$ and an integer $w \geq 1$ such that

$$
H_{S}\left(x^{w}\right) f(x)=H_{T}(x),
$$

or equivalently, $P_{S}\left(x^{w}\right) f(x)=P_{T}(x)\left(1+x+\cdots+x^{w-1}\right)$.

Example

a) $\left\langle p^{a}, q^{b}\right\rangle \leq_{p}\left\langle p^{m}, q^{n}\right\rangle$ if $1 \leq a \leq m$ and $1 \leq b \leq n$.
b) $\left\langle p^{a}, q^{b}\right\rangle \leq_{p} B_{n}(p, q)$ if $a, b \geq 1$ and $2 \leq a+b \leq n+1$.

Polynomially Related Numerical Semigroups

Definition

We say that the numerical semigroup S is polynomially related to the numerical semigroup T, and denote this by $S \leq_{p} T$, if there exist $f(x) \in \mathbb{Z}[x]$ and an integer $w \geq 1$ such that

$$
H_{S}\left(x^{w}\right) f(x)=H_{T}(x),
$$

or equivalently, $P_{S}\left(x^{w}\right) f(x)=P_{T}(x)\left(1+x+\cdots+x^{w-1}\right)$.

Example

a) $\left\langle p^{a}, q^{b}\right\rangle \leq_{p}\left\langle p^{m}, q^{n}\right\rangle$ if $1 \leq a \leq m$ and $1 \leq b \leq n$.
b) $\left\langle p^{a}, q^{b}\right\rangle \leq_{p} B_{n}(p, q)$ if $a, b \geq 1$ and $2 \leq a+b \leq n+1$.

Problem

Find necessary and sufficient conditions such that $S \leq_{P} T$.

Polynomially Related Numerical Semigroups

Polynomially Related Numerical Semigroups

In proving the following, we make repeated use of the fact that $P_{S}(1)=1$ and $P_{S}^{\prime}(1)=g(S)$.

Polynomially Related Numerical Semigroups

In proving the following, we make repeated use of the fact that $P_{S}(1)=1$ and $P_{S}^{\prime}(1)=g(S)$.

Lemma

Suppose that $H_{S}\left(x^{w}\right) f(x)=H_{T}(x)$ holds with S, T numerical semigroups. Then
a) $f(0)=1$.
b) $f(1)=w$.
c) $f^{\prime}(1)=w(g(T)-w g(S)+(w-1) / 2)$.
d) $F(T)=w F(S)+\operatorname{deg} f$.
e) If w is even, then $f(-1)=0$.
f) If w is odd, then $f(-1)=P_{T}(-1) / P_{S}(-1)$.
g) If T is cyclotomic, then so is S.
h) If S is cyclotomic, then T is cyclotomic iff f is Kronecker.

An Application

An Application

Theorem

Let $p \neq q$ be primes and m, n positive integers. The quotient

$$
Q(x)=P_{\left\langle p^{m}, q^{n}\right\rangle}(x) / \Phi_{p^{m} q^{n}}(x)
$$

is in $\mathbb{Z}[x]$, is monic and has constant coefficient 1. Its non-zero coefficients alternate between 1 and -1 .

An Application

Theorem

Let $p \neq q$ be primes and m, n positive integers. The quotient

$$
Q(x)=P_{\left\langle p^{m}, q^{n}\right\rangle}(x) / \Phi_{p^{m} q^{n}}(x)
$$

is in $\mathbb{Z}[x]$, is monic and has constant coefficient 1. Its non-zero coefficients alternate between 1 and -1 .

In fact, a more general result holds.

Theorem

Suppose that S and T are numerical semigroups with $H_{S}\left(x^{w}\right) f(x)=H_{T}(x)$ for some $w \geq 1$ and $f \in \mathbb{N}[x]$. Put $Q(x)=P_{T}(x) / P_{S}\left(x^{w}\right)$. Then $Q(0)=1$ and $Q(x)$ is a monic polynomial having non-zero coefficients that alternate between 1 and -1 .

Thank you for attention!

Stay tuned for part II ;)

