Alexandru Ciolan

University of Bonn

Joint work with Pedro A. García-Sánchez and Pieter Moree

Levico Terme, July 7, 2016

For $\zeta = e^{2\pi i/n}$ a primitive *n*-th root of unity, let

$$\Phi_n(x) = \prod_{\substack{j=1\\ \gcd(j,n)=1}}^n \left(x - \zeta^j\right)$$

denote the *n*-th cyclotomic polynomial.

For $\zeta = e^{2\pi i/n}$ a primitive *n*-th root of unity, let

$$\Phi_n(x) = \prod_{\substack{j=1\\ \gcd(j,n)=1}}^n \left(x - \zeta^j\right)$$

denote the *n*-th cyclotomic polynomial.

It has integer coefficients, it is irreducible over \mathbb{Q} and monic of degree $\varphi(n)$, where φ denotes the Euler's totient function.

For $\zeta = e^{2\pi i/n}$ a primitive *n*-th root of unity, let

$$\Phi_n(x) = \prod_{\substack{j=1\\ \gcd(j,n)=1}}^n \left(x - \zeta^j\right)$$

denote the *n*-th cyclotomic polynomial.

It has integer coefficients, it is irreducible over \mathbb{Q} and monic of degree $\varphi(n)$, where φ denotes the Euler's totient function. Over \mathbb{Q} , $x^n - 1$ factorizes as

$$x^n-1=\prod_{d\mid n}\Phi_d(x),$$

For $\zeta = e^{2\pi i/n}$ a primitive *n*-th root of unity, let

$$\Phi_n(x) = \prod_{\substack{j=1\\ \gcd(j,n)=1}}^n \left(x - \zeta^j\right)$$

denote the *n*-th cyclotomic polynomial.

It has integer coefficients, it is irreducible over \mathbb{Q} and monic of degree $\varphi(n)$, where φ denotes the Euler's totient function. Over \mathbb{Q} , $x^n - 1$ factorizes as

$$x^n-1=\prod_{d\mid n}\Phi_d(x),$$

from where, by Möbius inversion,

$$\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)},$$

where μ denotes the Möbius' function.

Alexandru Ciolan (Bonn)

If follows that, for p, q distinct primes,

If follows that, for p, q distinct primes,

$$\Phi_{pq}(x) = \frac{(1-x)(1-x^{pq})}{(1-x^p)(1-x^q)}.$$

If follows that, for p, q distinct primes,

$$\Phi_{pq}(x) = \frac{(1-x)(1-x^{pq})}{(1-x^p)(1-x^q)}.$$

But the RHS should look familiar!

If follows that, for p, q distinct primes,

$$\Phi_{pq}(x) = rac{(1-x)(1-x^{pq})}{(1-x^p)(1-x^q)}.$$

But the RHS should look familiar!

Indeed, to a numerical semigroup S we associate its Hilbert series, $H_S(x) = \sum_{s \in S} x^s$,

If follows that, for p, q distinct primes,

$$\Phi_{pq}(x) = rac{(1-x)(1-x^{pq})}{(1-x^p)(1-x^q)}.$$

But the RHS should look familiar!

Indeed, to a numerical semigroup S we associate its Hilbert series, $H_S(x) = \sum_{s \in S} x^s$, and its semigroup polynomial, $P_S(x) = (1 - x)H_S(x)$.

If follows that, for p, q distinct primes,

$$\Phi_{pq}(x) = rac{(1-x)(1-x^{pq})}{(1-x^p)(1-x^q)}.$$

But the RHS should look familiar!

Indeed, to a numerical semigroup *S* we associate its Hilbert series, $H_S(x) = \sum_{s \in S} x^s$, and its semigroup polynomial, $P_S(x) = (1 - x)H_S(x)$. It is known that, if $S = \langle a, b \rangle$ is a numerical semigroup,

If follows that, for p, q distinct primes,

$$\Phi_{pq}(x) = rac{(1-x)(1-x^{pq})}{(1-x^p)(1-x^q)}.$$

But the RHS should look familiar!

Indeed, to a numerical semigroup S we associate its Hilbert series, $H_S(x) = \sum_{s \in S} x^s$, and its semigroup polynomial, $P_S(x) = (1 - x)H_S(x)$. It is known that, if $S = \langle a, b \rangle$ is a numerical semigroup, then

$$P_{S}(x) = rac{(1-x)(1-x^{ab})}{(1-x^{a})(1-x^{b})}.$$

If follows that, for p, q distinct primes,

$$\Phi_{pq}(x) = \frac{(1-x)(1-x^{pq})}{(1-x^p)(1-x^q)}.$$

But the RHS should look familiar!

Indeed, to a numerical semigroup S we associate its Hilbert series, $H_S(x) = \sum_{s \in S} x^s$, and its semigroup polynomial, $P_S(x) = (1 - x)H_S(x)$. It is known that, if $S = \langle a, b \rangle$ is a numerical semigroup, then

$$P_{S}(x) = rac{(1-x)(1-x^{ab})}{(1-x^{a})(1-x^{b})}.$$

Therefore, if $S = \langle p, q \rangle$, then

3 / 25

If follows that, for p, q distinct primes,

$$\Phi_{pq}(x) = \frac{(1-x)(1-x^{pq})}{(1-x^p)(1-x^q)}.$$

But the RHS should look familiar!

Indeed, to a numerical semigroup S we associate its Hilbert series, $H_S(x) = \sum_{s \in S} x^s$, and its semigroup polynomial, $P_S(x) = (1 - x)H_S(x)$. It is known that, if $S = \langle a, b \rangle$ is a numerical semigroup, then

$$P_S(x) = rac{(1-x)(1-x^{ab})}{(1-x^a)(1-x^b)}$$

Therefore, if $S = \langle p, q \rangle$, then

$$P_S(x) = \Phi_{pq}(x).$$

3 / 25

Connections between cyclotomic polynomials and numerical semigroups;

• Connections between cyclotomic polynomials and numerical semigroups; for e.g., using that $\Phi_{pq}(x) = P_{\langle p,q \rangle}(x)$, one can study the coefficients of Φ_{pq} by relying entirely on numerical semigroups.

- Connections between cyclotomic polynomials and numerical semigroups; for e.g., using that $\Phi_{pq}(x) = P_{\langle p,q \rangle}(x)$, one can study the coefficients of Φ_{pq} by relying entirely on numerical semigroups.
- Various people (Bachman, Bzdęga, Carlitz, Kaplan, Moree etc.) have been interested in studying the coefficients of cyclotomic polynomials or of divisors of $x^n 1$.

- Connections between cyclotomic polynomials and numerical semigroups; for e.g., using that $\Phi_{pq}(x) = P_{\langle p,q \rangle}(x)$, one can study the coefficients of Φ_{pq} by relying entirely on numerical semigroups.
- Various people (Bachman, Bzdęga, Carlitz, Kaplan, Moree etc.) have been interested in studying the coefficients of cyclotomic polynomials or of divisors of $x^n 1$.

In general, given a cyclotomic polynomial, or a product of cyclotomic polynomials, it is hard to say something about the coefficients.

- Connections between cyclotomic polynomials and numerical semigroups; for e.g., using that $\Phi_{pq}(x) = P_{\langle p,q \rangle}(x)$, one can study the coefficients of Φ_{pq} by relying entirely on numerical semigroups.
- Various people (Bachman, Bzdęga, Carlitz, Kaplan, Moree etc.) have been interested in studying the coefficients of cyclotomic polynomials or of divisors of $x^n 1$.

In general, given a cyclotomic polynomial, or a product of cyclotomic polynomials, it is hard to say something about the coefficients. But:

- Connections between cyclotomic polynomials and numerical semigroups; for e.g., using that $\Phi_{pq}(x) = P_{\langle p,q \rangle}(x)$, one can study the coefficients of Φ_{pq} by relying entirely on numerical semigroups.
- Various people (Bachman, Bzdęga, Carlitz, Kaplan, Moree etc.) have been interested in studying the coefficients of cyclotomic polynomials or of divisors of $x^n 1$.

In general, given a cyclotomic polynomial, or a product of cyclotomic polynomials, it is hard to say something about the coefficients.

But: If such a polynomial were of the form $P_S(x)$ for some numerical semigroup S, then its non-zero coefficients would alternate between 1 and -1.

Definition

We say a numerical semigroup is cyclotomic if its semigroup polynomial is Kronecker, that is, a monic polynomial with integer coefficients having its roots in the unit disc.

Definition

We say a numerical semigroup is cyclotomic if its semigroup polynomial is Kronecker, that is, a monic polynomial with integer coefficients having its roots in the unit disc.

Lemma (Kronecker, 1857)

If f is a Kronecker polynomial with $f(0) \neq 0$, then all roots of f are on the unit circle and f factorizes as a product of cyclotomic polynomials.

Alexandru Ciolan (Bonn)

If S is cyclotomic, then $P_S(x)|(x^d-1)^h$ for some positive integers d and h.

If S is cyclotomic, then $P_S(x)|(x^d-1)^h$ for some positive integers d and h.

Definition

We say that a numerical semigroup S is cyclotomic of depth d and height h if $P_S(x)|(x^d-1)^h$, where both d and h are chosen minimally, that is, $P_S(x)$ does not divide $(x^n-1)^{h-1}$ for any n and it does not divide $(x^{d_1}-1)^h$ for any $d_1 < d$.

If S is cyclotomic, then $P_S(x)|(x^d-1)^h$ for some positive integers d and h.

Definition

We say that a numerical semigroup S is cyclotomic of depth d and height h if $P_S(x)|(x^d-1)^h$, where both d and h are chosen minimally, that is, $P_S(x)$ does not divide $(x^n-1)^{h-1}$ for any n and it does not divide $(x^{d_1}-1)^h$ for any $d_1 < d$.

Lemma

Let S be a cyclotomic numerical semigroup. If

$$P_{\mathcal{S}}(x) = \prod_{i=1}^{n} \Phi_{d_i}(x)^{e_i},$$

then S is of depth $d = \text{lcm}(d_1, \ldots, d_n)$ and height $h = \max \{e_1, \ldots, e_n\}$.

Problem

Find an *intrinsic* characterization of a numerical semigroup S for which it is cyclotomic, that is, a characterization that does not involve P_S or its roots in any way.

Problem

Find an *intrinsic* characterization of a numerical semigroup S for which it is cyclotomic, that is, a characterization that does not involve P_S or its roots in any way.

For instance: symmetry

Problem

Find an *intrinsic* characterization of a numerical semigroup S for which it is cyclotomic, that is, a characterization that does not involve P_S or its roots in any way.

For instance: symmetry and (a bit later)

Problem

Find an *intrinsic* characterization of a numerical semigroup S for which it is cyclotomic, that is, a characterization that does not involve P_S or its roots in any way.

For instance: symmetry and (a bit later) complete intersection

Problem

Find an *intrinsic* characterization of a numerical semigroup S for which it is cyclotomic, that is, a characterization that does not involve P_S or its roots in any way.

For instance: symmetry and (a bit later) complete intersection

(Recall that S is symmetric if $S \cup (F(S) - S) = \mathbb{Z}$. This does not involve the roots of P_{S} .)
Main Questions

Problem

Find an *intrinsic* characterization of a numerical semigroup S for which it is cyclotomic, that is, a characterization that does not involve P_S or its roots in any way.

For instance: symmetry and (a bit later) complete intersection

(Recall that S is symmetric if $S \cup (F(S) - S) = \mathbb{Z}$. This does not involve the roots of P_{S} .)

Problem

Classify the cyclotomic numerical semigroups with prescribed depths and heights.

Lemma

If S is a cyclotomic numerical semigroup, then P_S is selfreciprocal.

Lemma

If S is a cyclotomic numerical semigroup, then P_S is selfreciprocal.

Proof.

 Φ_n is selfreciprocal for n > 1.

8 / 25

Lemma

If S is a cyclotomic numerical semigroup, then P_S is selfreciprocal.

Proof.

 Φ_n is selfreciprocal for n > 1.

Theorem

If S is a cyclotomic numerical semigroup, then S is symmetric.

Lemma

If S is a cyclotomic numerical semigroup, then P_S is selfreciprocal.

Proof.

 Φ_n is selfreciprocal for n > 1.

Theorem

If S is a cyclotomic numerical semigroup, then S is symmetric.

Proof.

Use that S symmetric $\Leftrightarrow P_S$ selfreciprocal and the Lemma.

Theorem

If $e(S) \leq 3$, then S is cyclotomic iff S is symmetric.

Theorem

If $e(S) \leq 3$, then S is cyclotomic iff S is symmetric.

Proof.

Theorem

If $e(S) \leq 3$, then S is cyclotomic iff S is symmetric.

Proof.

" \Rightarrow " From the previous Theorem.

Theorem

If $e(S) \leq 3$, then S is cyclotomic iff S is symmetric.

Proof.

- " \Rightarrow " From the previous Theorem.
- " \Leftarrow " Clear for e(S) = 2.

Theorem

If $e(S) \leq 3$, then S is cyclotomic iff S is symmetric.

Proof.

" \Rightarrow " From the previous Theorem.

" \Leftarrow " Clear for e(S) = 2. If S is symmetric with e(S) = 3,

Theorem

If $e(S) \leq 3$, then S is cyclotomic iff S is symmetric.

Proof.

" \Rightarrow " From the previous Theorem.

" \Leftarrow " Clear for e(S) = 2. If S is symmetric with e(S) = 3, then $S = \langle am_1, am_2, bm_1 + cm_2 \rangle$ with $a, b, c, m_1, m_2 \in \mathbb{N}$ such that

 $m_1, m_2, a, b + c \ge 2$ and $gcd(m_1, m_2) = gcd(a, bm_1 + cm_2) = 1$.

Theorem

If $e(S) \leq 3$, then S is cyclotomic iff S is symmetric.

Proof.

" \Rightarrow " From the previous Theorem.

" \Leftarrow " Clear for e(S) = 2. If S is symmetric with e(S) = 3, then $S = \langle am_1, am_2, bm_1 + cm_2 \rangle$ with $a, b, c, m_1, m_2 \in \mathbb{N}$ such that $m_1, m_2, a, b + c \ge 2$ and $gcd(m_1, m_2) = gcd(a, bm_1 + cm_2) = 1$. The semigroup polynomial can then be easily computed:

$$P_{S}(x) = \frac{(1-x)(1-x^{am_{1}m_{2}})(1-x^{a(bm_{1}+cm_{2})})}{(1-x^{bm_{1}+cm_{2}})(1-x^{am_{1}})(1-x^{am_{2}})}$$

9 / 25

However, symmetric numerical semigroups need not always be cyclotomic!

However, symmetric numerical semigroups need not always be cyclotomic!

Example

 $S = \langle 5, 6, 7, 8 \rangle$, with F(S) = 9, is the symmetric numerical semigroup with the smallest Frobenius number that is not cyclotomic.

However, symmetric numerical semigroups need not always be cyclotomic!

Example

 $S = \langle 5, 6, 7, 8 \rangle$, with F(S) = 9, is the symmetric numerical semigroup with the smallest Frobenius number that is not cyclotomic.

Example

Two symmetric numerical semigroups with F(S) = 11 that are not cyclotomic:

$$S = \langle 5, 7, 8, 9 \rangle$$
 and $S = \langle 6, 7, 8, 9, 10 \rangle$.

We suspect the following two families of symmetric numerical semigroups are not cyclotomic for $e \ge 4$. Using GAP, we verified this hypothesis up to multiplicity 30.

Example

 $S = \langle m, m+1, qm+2q+2, \dots, qm+(m-1) \rangle$, where m and q are positive integers such that $m \ge 2q+3$.

Example

 $S = \langle m, m+1, (q+1)m + q + 2, \dots, (q+1)m + m - q - 2 \rangle$, where m and q are non-negative integers such that $m \ge 2q + 4$.

11 / 25

We know from Delorme (1976) that S is a complete intersection iff S is either \mathbb{N} or the gluing of two complete intersection numerical semigroups.

We know from Delorme (1976) that *S* is a complete intersection iff *S* is either \mathbb{N} or the gluing of two complete intersection numerical semigroups. Let $S = \langle a_1, \ldots, a_t \rangle$ be a minimally generated complete intersection numerical semigroup.

We know from Delorme (1976) that S is a complete intersection iff S is either \mathbb{N} or the gluing of two complete intersection numerical semigroups. Let $S = \langle a_1, \ldots, a_t \rangle$ be a minimally generated complete intersection numerical semigroup. Recursively, we find positive integers g_1, \ldots, g_{t-1} such that

$$S = a_1 \mathbb{N} +_{g_1} \cdots +_{g_{t-1}} a_t \mathbb{N}.$$

We know from Delorme (1976) that S is a complete intersection iff S is either \mathbb{N} or the gluing of two complete intersection numerical semigroups. Let $S = \langle a_1, \ldots, a_t \rangle$ be a minimally generated complete intersection numerical semigroup. Recursively, we find positive integers g_1, \ldots, g_{t-1} such that

$$S = a_1 \mathbb{N} +_{g_1} \cdots +_{g_{t-1}} a_t \mathbb{N}.$$

By a Theorem of Assi et al. (2015) we then obtain

$$H_{\mathcal{S}}(x) = \prod_{i=1}^{t-1} (1-x^{g_i}) \prod_{i=1}^{t} (1-x^{a_i})^{-1},$$

We know from Delorme (1976) that S is a complete intersection iff S is either \mathbb{N} or the gluing of two complete intersection numerical semigroups. Let $S = \langle a_1, \ldots, a_t \rangle$ be a minimally generated complete intersection numerical semigroup. Recursively, we find positive integers g_1, \ldots, g_{t-1} such that

$$S = a_1 \mathbb{N} +_{g_1} \cdots +_{g_{t-1}} a_t \mathbb{N}.$$

By a Theorem of Assi et al. (2015) we then obtain

$$H_{S}(x) = \prod_{i=1}^{t-1} (1-x^{g_{i}}) \prod_{i=1}^{t} (1-x^{a_{i}})^{-1},$$

and

$$P_{S}(x) = (1-x)\prod_{i=1}^{t-1}(1-x^{g_{i}})\prod_{i=1}^{t}(1-x^{a_{i}})^{-1}.$$

Theorem

Every complete intersection numerical semigroup is cyclotomic.

Theorem

Every complete intersection numerical semigroup is cyclotomic.

Based on computer experiments, we strongly believe the converse is true.

Theorem

Every complete intersection numerical semigroup is cyclotomic.

Based on computer experiments, we strongly believe the converse is true.

Conjecture

Every cyclotomic numerical semigroup is a complete intersection.

Theorem

Every complete intersection numerical semigroup is cyclotomic.

Based on computer experiments, we strongly believe the converse is true.

Conjecture

Every cyclotomic numerical semigroup is a complete intersection.

The hypothesis was tested with GAP for all the symmetric numerical semigroups with Frobenius number up to 69.

Theorem

Every complete intersection numerical semigroup is cyclotomic.

Based on computer experiments, we strongly believe the converse is true.

Conjecture

Every cyclotomic numerical semigroup is a complete intersection.

The hypothesis was tested with GAP for all the symmetric numerical semigroups with Frobenius number up to 69.

Theorem

If $e(S) \leq 3$ then S cyclotomic $\Leftrightarrow S$ complete intersection $\Leftrightarrow S$ symmetric.

Theorem

Every complete intersection numerical semigroup is cyclotomic.

Based on computer experiments, we strongly believe the converse is true.

Conjecture

Every cyclotomic numerical semigroup is a complete intersection.

The hypothesis was tested with GAP for all the symmetric numerical semigroups with Frobenius number up to 69.

Theorem

If $e(S) \leq 3$ then S cyclotomic $\Leftrightarrow S$ complete intersection $\Leftrightarrow S$ symmetric.

In general, we have the inclusions

```
\{ \mathsf{complete intersection} \} \subseteq \{ \mathsf{cyclotomic} \} \subsetneq \{ \mathsf{symmetric} \}.
```

Alexandru Ciolan (Bonn)

Cyclotomic Numerical Semigroups I

Cyclotomic Exponent Sequence

Cyclotomic Exponent Sequence

According to Székely and Wormald (1986), if $S = \langle n_1, \ldots, n_e \rangle$ is minimally generated,

Cyclotomic Exponent Sequence

According to Székely and Wormald (1986), if $S = \langle n_1, \ldots, n_e \rangle$ is minimally generated, then

$$\mathcal{K}(x) = H_{\mathcal{S}}(x) \prod_{i=1}^{e} (1 - x^{n_i})$$

is a polynomial whose only non-zero terms are those of degree $n \in S$ such that the Euler characteristic of the shaded set of n, i.e.

$$\begin{aligned} \Delta_n &= \left\{ L \subset \{n_1, \dots, n_e\} : n - \sum_{s \in L} s \in S \right\}, \text{ is not zero, that is,} \\ \chi_S(n) &= \sum_{L \in \Delta_n} (-1)^{\#L} \neq 0. \end{aligned}$$
According to Székely and Wormald (1986), if $S = \langle n_1, \ldots, n_e \rangle$ is minimally generated, then

$$\mathcal{K}(x) = H_{\mathcal{S}}(x) \prod_{i=1}^{e} (1 - x^{n_i})$$

is a polynomial whose only non-zero terms are those of degree $n \in S$ such that the Euler characteristic of the shaded set of n, i.e.

$$\begin{aligned} \Delta_n &= \left\{ L \subset \{n_1, \dots, n_e\} : n - \sum_{s \in L} s \in S \right\}, \text{ is not zero, that is,} \\ \chi_S(n) &= \sum_{L \in \Delta_n} (-1)^{\#L} \neq 0. \end{aligned}$$

If S is cyclotomic, does $\mathcal{K}(x)$ factorize as $\prod_{b \in \text{Betti}(S)} (1-x^b)^{m_b}$?

One might wonder whether an expression like

$$P_{\mathcal{S}}(x) = (1-x)\prod_{i=1}^{t-1} (1-x^{g_i}) \prod_{i=1}^{t} (1-x^{a_i})^{-1}$$

is unique. In fact, more is true.

One might wonder whether an expression like

$$P_{\mathcal{S}}(x) = (1-x)\prod_{i=1}^{t-1} (1-x^{g_i}) \prod_{i=1}^t (1-x^{a_i})^{-1}$$

is unique. In fact, more is true.

Lemma

If f is a polynomial with integer coefficients such that f(0) = 1, then there exist unique $\epsilon_j \in \mathbb{Z}$ such that, for |x| small enough,

$$f(x) = \prod_{j=1}^{\infty} (1-x^j)^{\epsilon_j}.$$

As a consequence, given a numerical semigroup S, there are unique integers $\epsilon_1, \epsilon_2, \ldots$ such that

$$P_{\mathcal{S}}(x) = \prod_{j=1}^{\infty} (1-x^j)^{\epsilon_j}.$$

As a consequence, given a numerical semigroup S, there are unique integers $\epsilon_1, \epsilon_2, \ldots$ such that

$$P_{\mathcal{S}}(x) = \prod_{j=1}^{\infty} (1-x^j)^{\epsilon_j}.$$

Definition

We call $\epsilon = {\epsilon_1, \epsilon_2, \ldots}$ the cyclotomic exponent sequence of *S*.

As a consequence, given a numerical semigroup S, there are unique integers $\epsilon_1, \epsilon_2, \ldots$ such that

$$\mathcal{P}_{\mathcal{S}}(x) = \prod_{j=1}^{\infty} (1-x^j)^{\epsilon_j}.$$

Definition

We call $\epsilon = {\epsilon_1, \epsilon_2, \ldots}$ the cyclotomic exponent sequence of *S*.

Problem

Relate the properties of S to its cyclotomic exponent sequence.

Lemma

A numerical semigroup S has a cyclotomic exponent sequence with finitely many non-zero terms iff S is cyclotomic.

Lemma

A numerical semigroup S has a cyclotomic exponent sequence with finitely many non-zero terms iff S is cyclotomic.

Under certain assumptions, if $S = \langle n_1, \ldots, n_e \rangle$ is cyclotomic and minimally generated, then there exist $k \in \mathbb{N}$, $1 < \delta_1 < \delta_2 < \cdots < \delta_k$ and $\epsilon_i \ge 1$, $i = 1, \ldots, k$ such that

$$H_{S}(x) = \frac{(1-x^{\delta_{1}})^{\epsilon_{1}}\cdots(1-x^{\delta_{k}})^{\epsilon_{k}}}{(1-x^{n_{1}})\cdots(1-x^{n_{e}})}$$

As a first step confirming our hypothesis, we have the following.

As a first step confirming our hypothesis, we have the following.

Lemma

Suppose $S = \langle n_1, \dots, n_e \rangle$ is cyclotomic, minimally generated and that

$$H_{S}(x) = rac{(1-x^{\delta_{1}})^{\epsilon_{1}}\cdots(1-x^{\delta_{k}})^{\epsilon_{k}}}{(1-x^{n_{1}})\cdots(1-x^{n_{e}})}.$$

Then $\delta_i \in S$ for $1 \le i \le k$ and $\delta_1 = \min \{s : s \in Betti(S)\}$.

As a first step confirming our hypothesis, we have the following.

Lemma

Suppose $S = \langle n_1, \dots, n_e \rangle$ is cyclotomic, minimally generated and that

$$H_{S}(x) = rac{(1-x^{\delta_{1}})^{\epsilon_{1}}\cdots(1-x^{\delta_{k}})^{\epsilon_{k}}}{(1-x^{n_{1}})\cdots(1-x^{n_{e}})}.$$

Then $\delta_i \in S$ for $1 \le i \le k$ and $\delta_1 = \min \{s : s \in Betti(S)\}$.

Proof.

As a first step confirming our hypothesis, we have the following.

Lemma

Suppose $S = \langle n_1, \dots, n_e \rangle$ is cyclotomic, minimally generated and that

$$\mathcal{H}_{\mathcal{S}}(x) = rac{(1-x^{\delta_1})^{\epsilon_1}\cdots(1-x^{\delta_k})^{\epsilon_k}}{(1-x^{n_1})\cdots(1-x^{n_e})}.$$

Then $\delta_i \in S$ for $1 \le i \le k$ and $\delta_1 = \min \{s : s \in Betti(S)\}$.

Proof.

Let d(s) be the denumerant of $s \in S$.

As a first step confirming our hypothesis, we have the following.

Lemma

Suppose $S = \langle n_1, \dots, n_e \rangle$ is cyclotomic, minimally generated and that

$$\mathcal{H}_{\mathcal{S}}(x) = rac{(1-x^{\delta_1})^{\epsilon_1}\cdots(1-x^{\delta_k})^{\epsilon_k}}{(1-x^{n_1})\cdots(1-x^{n_e})}.$$

Then $\delta_i \in S$ for $1 \le i \le k$ and $\delta_1 = \min \{s : s \in Betti(S)\}$.

Proof.

Let d(s) be the denumerant of $s \in S$. Rewriting the above as

$$\sum_{s\in S} x^s = (1-\epsilon_1 x^{\delta_1}+\cdots) \sum_{s\in S} d(s) x^s = \sum_{\substack{s\in S\\s<\delta_1}} d(s) x^s + (d(\delta_1)-\epsilon_1) x^{\delta_1}+\cdots,$$

it follows that δ_1 is the first $s \in S$ with $d(s) \ge 2$,

As a first step confirming our hypothesis, we have the following.

Lemma

Suppose $S = \langle n_1, \dots, n_e \rangle$ is cyclotomic, minimally generated and that

$$\mathcal{H}_{\mathcal{S}}(x) = rac{(1-x^{\delta_1})^{\epsilon_1}\cdots(1-x^{\delta_k})^{\epsilon_k}}{(1-x^{n_1})\cdots(1-x^{n_e})}.$$

Then $\delta_i \in S$ for $1 \le i \le k$ and $\delta_1 = \min \{s : s \in Betti(S)\}$.

Proof.

Let d(s) be the denumerant of $s \in S$. Rewriting the above as

$$\sum_{s\in S} x^s = (1-\epsilon_1 x^{\delta_1}+\cdots) \sum_{s\in S} d(s) x^s = \sum_{\substack{s\in S\\s<\delta_1}} d(s) x^s + (d(\delta_1)-\epsilon_1) x^{\delta_1}+\cdots,$$

it follows that δ_1 is the first $s \in S$ with $d(s) \ge 2$, hence the claim.

Example (Free semigroups)

Let $S = \langle n_1, \ldots, n_t \rangle$. We say that S is free if either $S = \mathbb{N}$ or it is the gluing of the free semigroup $\langle n_1, \ldots, n_{t-1} \rangle$ and $\langle n_t \rangle$ (the order is important).

Let $n \ge 2$ and (a_1, a_2, \ldots, a_n) be a sequence of coprime positive integers. For every $k = 1, \ldots, n$, let $d_k = \gcd(a_1, \ldots, a_k)$. For $k = 2, \ldots, n$, let $c_k = d_{k-1}/d_k$. Let S_k be the semigroup generated by $\{a_1, \ldots, a_k\}$. We say that the sequence (a_1, a_2, \ldots, a_n) is smooth if $c_k a_k \in S_{k-1}$ for every $k = 2, \ldots, n$.

S is free iff S is generated by a smooth sequence.

If $S = \langle a_1, a_2, \ldots, a_n \rangle$ then, according to Leher's Ph.D. Thesis (2007),

$$P_{S}(x) = (1-x) \prod_{i=2}^{n} (1-x^{c_{i}a_{i}}) \prod_{i=1}^{n} (1-x^{a_{i}})^{-1}.$$

Example (Binomial semigroups)

Consider $B_n(a, b) = \langle a^n, ba^{n-1}, \dots, ab^{n-1}, b^n \rangle$, where a, b > 1 are coprime. Putting $a_k = a^{n-k}b^k$ for $k = 0, \dots, n$, the sequence (a_0, \dots, a_n) is smooth. We have

$$P_{B_n(a,b)}(x) = (1-x) \prod_{k=1}^n (1-x^{a^{n+1-k}b^k}) \prod_{k=0}^n (1-x^{a^{n-k}b^k})^{-1}.$$

In particular, if p, q are distinct primes, we compute

$$P_{B_n(p,q)}(x) = \prod_{l=2}^{n+1} \prod_{\substack{i+j=l \\ 1 \le i, j \le l}} \Phi_{p^i q^j},$$

so that $B_n(p,q)$ is of depth $d = p^n q^n$ and height h = 1.

Theorem

Let p, q, r be distinct primes. If S is cyclotomic of depth d = pqr and height h = 1, then $S = \langle pq, r \rangle$ or a cyclic permutation.

Theorem

Let p, q, r be distinct primes. If S is cyclotomic of depth d = pqr and height h = 1, then $S = \langle pq, r \rangle$ or a cyclic permutation.

Theorem

Let p, q, r be distinct primes. If S is cyclotomic of depth d = pqr and height h = 2, then $S = \langle pq, qr, pr \rangle$.

Theorem

Let p, q, r be distinct primes. If S is cyclotomic of depth d = pqr and height h = 1, then $S = \langle pq, r \rangle$ or a cyclic permutation.

Theorem

Let p, q, r be distinct primes. If S is cyclotomic of depth d = pqr and height h = 2, then $S = \langle pq, qr, pr \rangle$.

Theorem

Let p, q be distinct primes. If S is cyclotomic of depth $d = p^n q$, with $n \ge 1$ and height h = 1, then $S = \langle p^n, q \rangle$.

Theorem

Let p, q, r be distinct primes. If S is cyclotomic of depth d = pqr and height h = 1, then $S = \langle pq, r \rangle$ or a cyclic permutation.

Theorem

Let p, q, r be distinct primes. If S is cyclotomic of depth d = pqr and height h = 2, then $S = \langle pq, qr, pr \rangle$.

Theorem

Let p, q be distinct primes. If S is cyclotomic of depth $d = p^n q$, with $n \ge 1$ and height h = 1, then $S = \langle p^n, q \rangle$.

For $d = p^n q^n$, $n \ge 2$ and h = 1 we obtain $S = \langle p^n, q^n \rangle$ and the binomial semigroup $B_n(p,q) = \langle p^n, p^{n-1}q, \dots, pq^{n-1}, q^n \rangle$.

Theorem

Let p, q, r be distinct primes. If S is cyclotomic of depth d = pqr and height h = 1, then $S = \langle pq, r \rangle$ or a cyclic permutation.

Theorem

Let p, q, r be distinct primes. If S is cyclotomic of depth d = pqr and height h = 2, then $S = \langle pq, qr, pr \rangle$.

Theorem

Let p, q be distinct primes. If S is cyclotomic of depth $d = p^n q$, with $n \ge 1$ and height h = 1, then $S = \langle p^n, q \rangle$.

For $d = p^n q^n$, $n \ge 2$ and h = 1 we obtain $S = \langle p^n, q^n \rangle$ and the binomial semigroup $B_n(p,q) = \langle p^n, p^{n-1}q, \ldots, pq^{n-1}, q^n \rangle$. We do not know whether these are all...

Definition

We say that the numerical semigroup S is polynomially related to the numerical semigroup T, and denote this by $S \leq_P T$, if there exist $f(x) \in \mathbb{Z}[x]$ and an integer $w \geq 1$ such that

$$H_{\mathcal{S}}(x^{w})f(x)=H_{\mathcal{T}}(x),$$

or equivalently, $P_S(x^w)f(x) = P_T(x)(1 + x + \cdots + x^{w-1}).$

Definition

We say that the numerical semigroup S is polynomially related to the numerical semigroup T, and denote this by $S \leq_P T$, if there exist $f(x) \in \mathbb{Z}[x]$ and an integer $w \geq 1$ such that

$$H_{\mathcal{S}}(x^{w})f(x)=H_{\mathcal{T}}(x),$$

or equivalently, $P_S(x^w)f(x) = P_T(x)(1 + x + \cdots + x^{w-1}).$

Example

a)
$$\langle p^a, q^b \rangle \leq_P \langle p^m, q^n \rangle$$
 if $1 \leq a \leq m$ and $1 \leq b \leq n$.
b) $\langle p^a, q^b \rangle \leq_P B_n(p, q)$ if $a, b \geq 1$ and $2 \leq a + b \leq n + 1$

Definition

We say that the numerical semigroup S is polynomially related to the numerical semigroup T, and denote this by $S \leq_P T$, if there exist $f(x) \in \mathbb{Z}[x]$ and an integer $w \geq 1$ such that

 $H_{\mathcal{S}}(x^{w})f(x)=H_{\mathcal{T}}(x),$

or equivalently, $P_S(x^w)f(x) = P_T(x)(1 + x + \dots + x^{w-1}).$

Example

a)
$$\langle p^a, q^b \rangle \leq_P \langle p^m, q^n \rangle$$
 if $1 \leq a \leq m$ and $1 \leq b \leq n$.

b) $\langle p^a, q^b \rangle \leq_P B_n(p,q)$ if $a, b \geq 1$ and $2 \leq a+b \leq n+1$.

Problem

Find necessary and sufficient conditions such that $S \leq_P T$.

Alexandru Ciolan (Bonn)

Cyclotomic Numerical Semigroups I

Levico Terme, July 7, 2016 22 / 25

In proving the following, we make repeated use of the fact that $P_S(1) = 1$ and $P'_S(1) = g(S)$.

In proving the following, we make repeated use of the fact that $P_S(1) = 1$ and $P'_S(1) = g(S)$.

Lemma

Suppose that $H_S(x^w)f(x) = H_T(x)$ holds with S, T numerical semigroups. Then

- a) f(0) = 1.
- b) f(1) = w.

c)
$$f'(1) = w(g(T) - wg(S) + (w - 1)/2).$$

- d) $F(T) = wF(S) + \deg f$.
- e) If w is even, then f(-1) = 0.
- f) If w is odd, then $f(-1) = P_T(-1)/P_S(-1)$.
- g) If T is cyclotomic, then so is S.
- h) If S is cyclotomic, then T is cyclotomic iff f is Kronecker.

An Application
An Application

Theorem

Let $p \neq q$ be primes and m, n positive integers. The quotient

$$Q(x) = P_{\langle p^m, q^n \rangle}(x) / \Phi_{p^m q^n}(x)$$

is in $\mathbb{Z}[x]$, is monic and has constant coefficient 1. Its non-zero coefficients alternate between 1 and -1.

An Application

Theorem

Let $p \neq q$ be primes and m, n positive integers. The quotient

$$Q(x) = P_{\langle p^m, q^n \rangle}(x) / \Phi_{p^m q^n}(x)$$

is in $\mathbb{Z}[x]$, is monic and has constant coefficient 1. Its non-zero coefficients alternate between 1 and -1.

In fact, a more general result holds.

Theorem

Suppose that S and T are numerical semigroups with $H_S(x^w)f(x) = H_T(x)$ for some $w \ge 1$ and $f \in \mathbb{N}[x]$. Put $Q(x) = P_T(x)/P_S(x^w)$. Then Q(0) = 1 and Q(x) is a monic polynomial having non-zero coefficients that alternate between 1 and -1.

Thank you for attention! Stay tuned for part II ;)