On intersections of complete intersection ideals

Mircea Cimpoeaș

I.M.A.R.
mircea.cimpoeas@imar.ro

joint work with Dumitru Stamate

July 7, 2016, I.M.N.S.,
Levico Terme, Italy

Overview

(1) Introduction
(2) Main results
(3) Examples
(4) Further developments

Introduction

Let K be a field and $S=K\left[x_{1}, \ldots x_{r}\right]$ be the polynomial ring in the variables x_{1}, \ldots, x_{r}.

An ideal $I \subset S$ is called a complete intersection (Cl for short) if it is minimally generated by height (I) elements.

This is a strong condition which is rarely preserved by taking intersections of such ideals.

In this article we exhibit several infinite families of Cl toric ideals in S such that any intersection of ideals in the same family is again a Cl .

Introduction

Let K be a field and $S=K\left[x_{1}, \ldots x_{r}\right]$ be the polynomial ring in the variables x_{1}, \ldots, x_{r}.

An ideal $I \subset S$ is called a complete intersection (Cl for short) if it is minimally generated by height (I) elements.

This is a strong condition which is rarely preserved by taking intersections of such ideals.

In this article we exhibit several infinite families of Cl toric ideals in S such that any intersection of ideals in the same family is again a Cl .

For an affine semigroup $H \subset \mathbb{N}$ the semigroup ring $K[H]$ is the subalgebra in $K[t]$ generated by the monomials $t^{h}, h \in H$. If a_{1}, \ldots, a_{r} generate H minimally, we define the toric ideal I_{H} as the kernel of the K-algebra map $\varphi: S \rightarrow K[H]$ letting $\varphi\left(x_{i}\right)=t^{a_{i}}$.

Introduction

Consider the list of integers

$$
\mathbf{a}=a_{1}<a_{2}<\cdots<a_{r}
$$

We denote $I(\mathbf{a})$ the kernel of the K-algebra map $\phi: S \rightarrow K[\langle\mathbf{a}\rangle]$ letting $\phi\left(x_{i}\right)=t^{a_{i}}$, where we let $\langle\mathbf{a}\rangle$ be the semigroup generated by a_{1}, \ldots, a_{r}. If they generate $\langle\mathbf{a}\rangle$ minimally, we call $I(\mathbf{a})$ the toric ideal of $\langle\mathbf{a}\rangle$.

If k is any integer we let $\mathbf{a}+k=\left(a_{1}+k, \ldots, a_{r}+k\right)$ and we denote $I(\mathbf{a}+k)$ the toric ideal of $\langle\mathbf{a}+k\rangle$.

Introduction

Consider the list of integers

$$
\mathbf{a}=a_{1}<a_{2}<\cdots<a_{r}
$$

We denote $I(\mathbf{a})$ the kernel of the K-algebra map $\phi: S \rightarrow K[\langle\mathbf{a}\rangle]$ letting $\phi\left(x_{i}\right)=t^{a_{i}}$, where we let $\langle\mathbf{a}\rangle$ be the semigroup generated by a_{1}, \ldots, a_{r}. If they generate $\langle\mathbf{a}\rangle$ minimally, we call $I(\mathbf{a})$ the toric ideal of $\langle\mathbf{a}\rangle$.

If k is any integer we let $\mathbf{a}+k=\left(a_{1}+k, \ldots, a_{r}+k\right)$ and we denote $I(\mathbf{a}+k)$ the toric ideal of $\langle\mathbf{a}+k\rangle$.

The study of properties of the family of ideals $\{I(\mathbf{a}+k)\}_{k \geq 0}$ is a recent topic of interest. First notice that for $k \gg 0, a_{1}+k, \ldots, a_{r}+k$ generate the semigroup $\langle\mathbf{a}+k\rangle$ minimally.

Introduction

A result of Delorme [2] characterizes semigroups H such that I_{H} is Cl . This is an arithmetic property of the semigroup, it does not depend on the field K. A semigroup H is called a complete intersection if $K[H]$ has this property.

Introduction

A result of Delorme [2] characterizes semigroups H such that I_{H} is Cl . This is an arithmetic property of the semigroup, it does not depend on the field K. A semigroup H is called a complete intersection if $K[H]$ has this property. Jayanthan and Srinivasan proved in [5] that

$$
\text { for all } k \gg 0 \quad I(\mathbf{a}+k) \text { is } \mathrm{Cl} \Longleftrightarrow I\left(\mathbf{a}+k+\left(a_{r}-a_{1}\right)\right) \text { is } \mathrm{Cl} .
$$

This was a particular case of a conjecture of Herzog and Srinivasan [4], proved in full generality by Vu in [8]:

$$
\text { for all } k \gg 0 \quad \beta_{i}^{S}(I(\mathbf{a}+k))=\beta_{i}^{S}\left(I\left(\mathbf{a}+k+\left(a_{r}-a_{1}\right)\right)\right), \text { for all } i \text {. }
$$

Introduction

A result of Delorme [2] characterizes semigroups H such that I_{H} is Cl . This is an arithmetic property of the semigroup, it does not depend on the field K. A semigroup H is called a complete intersection if $K[H]$ has this property. Jayanthan and Srinivasan proved in [5] that

$$
\text { for all } k \gg 0 \quad I(\mathbf{a}+k) \text { is } \mathrm{Cl} \Longleftrightarrow I\left(\mathbf{a}+k+\left(a_{r}-a_{1}\right)\right) \text { is } \mathrm{Cl} .
$$

This was a particular case of a conjecture of Herzog and Srinivasan [4], proved in full generality by Vu in [8]:

$$
\text { for all } k \gg 0 \quad \beta_{i}^{S}(I(\mathbf{a}+k))=\beta_{i}^{S}\left(I\left(\mathbf{a}+k+\left(a_{r}-a_{1}\right)\right)\right), \text { for all } i .
$$

We use Gröbner bases techniques to derive new information about intersections of such Cl ideals. As a main result we prove that for a fixed sequence \mathbf{a} and $k \gg 0$, intersections of Cl -ideals $I(\mathbf{a}+k)$ produce another Cl ideal.

Main results

Firstly, we fix some notations.
For $0 \neq f$ and I ideal in S we let
$\mathrm{in}_{<}(f):=$ leading term with respect to revlex
$f^{*}:=$ the (nonzero) homogeneous component of least degree
$I^{*}:=\left(f^{*}: f \in I, f \neq 0\right)$ the ideal of initial forms of I
$\bar{l}:=$ the homogenization of l w.r.t. a new variable x_{0}.
I^{*} appears naturally as the defining ideal of the associated graded ring of S / I with respect to $\mathfrak{m}=\left(x_{1}, \ldots, x_{r}\right)$, i.e.

$$
S / I^{*} \cong \operatorname{gr}_{\mathfrak{m}}(S / I)
$$

The polynomials f_{1}, \ldots, f_{s} are called a standard basis for I if $I^{*}=\left(f_{1}^{*}, \ldots, f_{s}^{*}\right)$.

Main results

Here is a first result, inspired by the work of Jayanthan and Srinivasan ([5]).

Theorem 1 (C., Stamate, 2016)

Consider the sequence $\mathbf{a}=a_{1}<\cdots<a_{r}$ and let $k \geq\left(a_{r}-a_{1}\right)^{2}-a_{1}$ such that $\mathbf{a}+k$ is Cl . Then $I(\mathbf{a}+k)$ is minimally generated by a reduced Gröbner basis computed with respect to revlex.

Main results

Here is a first result, inspired by the work of Jayanthan and Srinivasan ([5]).

Theorem 1 (C., Stamate, 2016)

Consider the sequence $\mathbf{a}=a_{1}<\cdots<a_{r}$ and let $k \geq\left(a_{r}-a_{1}\right)^{2}-a_{1}$ such that $\mathbf{a}+k$ is Cl . Then $I(\mathbf{a}+k)$ is minimally generated by a reduced Gröbner basis computed with respect to revlex.

As a direct consequence, we get the following Corollary.

Corollary 1

If $k \geq\left(a_{r}-a_{1}\right)^{2}-a_{1}$ and $I(\mathbf{a}+k)$ is Cl , then $\bar{I}(\mathbf{a}+k)$ and $I^{*}(\mathbf{a}+k)$ are Cl , too, and they are minimally generated by their respective reduced Gröbner basis with respect to revlex.

In the proof we also used the Cl-splits introduced by Delorme.

Main results

For a sequence of nonnegative integers $\mathbf{a}=a_{1}, \ldots, a_{r}$ we let

$$
J(\mathbf{a})=(f \in I(\mathbf{a}): f \text { is homogeneous }) \subseteq S
$$

It is easy to see that

$$
J(\mathbf{a})=J(\mathbf{a}+k) \text { for all } k \geq 0
$$

Also, $J(\mathbf{a})$ is the toric ideal of the semigroup $\left\langle\left(a_{1}, 1\right), \ldots,\left(a_{r}, 1\right)\right\rangle \subset \mathbb{Z}^{2}$, hence $J(\mathbf{a})$ is a prime ideal in S of height $r-2$.

Main results

For a sequence of nonnegative integers $\mathbf{a}=a_{1}, \ldots, a_{r}$ we let

$$
J(\mathbf{a})=(f \in I(\mathbf{a}): f \text { is homogeneous }) \subseteq S
$$

It is easy to see that

$$
J(\mathbf{a})=J(\mathbf{a}+k) \text { for all } k \geq 0
$$

Also, $J(\mathbf{a})$ is the toric ideal of the semigroup $\left\langle\left(a_{1}, 1\right), \ldots,\left(a_{r}, 1\right)\right\rangle \subset \mathbb{Z}^{2}$, hence $J(\mathbf{a})$ is a prime ideal in S of height $r-2$.

Corollary 2

With notation as above, if $\mathbf{a}+k$ is Cl for some $k \geq\left(a_{r}-a_{1}\right)^{2}-a_{1}$, then $J(\mathbf{a})$ is Cl . Moreover, $J(\mathbf{a})$ is minimally generated by a reduced Gröbner basis with respect to revlex.

Main results

Let $\mathbf{a}=a_{1}<\cdots<a_{r}$ be a sequence of nonnegative integers and $\mathcal{A} \subset \mathbb{N}$. We introduce:

$$
\begin{aligned}
\mathcal{I}_{\mathcal{A}}(\mathbf{a}) & =\bigcap_{k \in \mathcal{A}} I(\mathbf{a}+k) \\
\mathcal{J}_{\mathcal{A}}(\mathbf{a}) & =\bigcap_{k \in \mathcal{A}} I^{*}(\mathbf{a}+k), \\
\mathcal{H}_{\mathcal{A}}(\mathbf{a}) & =\bigcap_{k \in \mathcal{A}} \bar{I}(\mathbf{a}+k)
\end{aligned}
$$

Our aim is to understand these ideals.

Main results

The next result shows that when we intersect infinitely many toric ideals (or the ideals of their initial forms) in the same shifted family, the result does not the depend on the family \mathcal{A} of shifts.

Proposition 1

Assume \mathcal{A} is an infinite set of nonnegative integers. Then:

$$
\begin{aligned}
\mathcal{I}_{\mathcal{A}}(\mathbf{a}) & =\mathcal{J}_{\mathcal{A}}(\mathbf{a})=J(\mathbf{a}) \\
\mathcal{H}_{\mathcal{A}}(\mathbf{a}) & =J(\mathbf{a}) S\left[x_{0}\right]
\end{aligned}
$$

Main results

The next result shows that when we intersect infinitely many toric ideals (or the ideals of their initial forms) in the same shifted family, the result does not the depend on the family \mathcal{A} of shifts.

Proposition 1

Assume \mathcal{A} is an infinite set of nonnegative integers. Then:

$$
\begin{aligned}
\mathcal{I}_{\mathcal{A}}(\mathbf{a}) & =\mathcal{J}_{\mathcal{A}}(\mathbf{a})=J(\mathbf{a}) \\
\mathcal{H}_{\mathcal{A}}(\mathbf{a}) & =J(\mathbf{a}) S\left[x_{0}\right]
\end{aligned}
$$

We shall now state our main result.

Theorem 2 (C., Stamate, 2016)

Let $\mathcal{A} \subseteq \mathbb{N}$ such that $\min \mathcal{A} \geq\left(a_{r}-a_{1}\right)^{2}-a_{1}$. If $I(\mathbf{a}+k)$ is Cl for all $k \in \mathcal{A}$, then $\mathcal{I}_{\mathcal{A}}(\mathbf{a}), \mathcal{J}_{\mathcal{A}}(\mathbf{a}), \mathcal{H}_{\mathcal{A}}(\mathbf{a})$ and $\mathcal{I}_{\mathcal{A}}(\mathbf{a})^{*}$ are Cl , as well.

Main results

The idea of the proof. Since $k \geq\left(a_{r}-a_{1}\right)^{2}-a_{1}$, we are able to prove that:

$$
I(\mathbf{a}+k)=J(\mathbf{a})+\left(f_{r-1, k}\right)
$$

where $f_{r-1, k}=x_{r}^{\left(a_{1}+k\right) / d_{k}}-x_{1}^{\left(a_{r}+k\right) / d_{k}}$ and $d_{k}=\operatorname{gcd}\left(a_{1}+k, a_{r}+k\right)$.
Denote $f_{\mathcal{A}}=\operatorname{lcm}\left(f_{r-1, k}: k \in \mathcal{A}\right)$.
We show that

$$
\mathcal{I}_{\mathcal{A}}(\mathbf{a})=J(\mathbf{a})+\left(f_{\mathcal{A}}\right)
$$

The statement about $\mathcal{H}_{\mathcal{A}}(\mathbf{a})$ is proven similarly.

Main results

The idea of the proof. Since $k \geq\left(a_{r}-a_{1}\right)^{2}-a_{1}$, we are able to prove that:

$$
I(\mathbf{a}+k)=J(\mathbf{a})+\left(f_{r-1, k}\right)
$$

where $f_{r-1, k}=x_{r}^{\left(a_{1}+k\right) / d_{k}}-x_{1}^{\left(a_{r}+k\right) / d_{k}}$ and $d_{k}=\operatorname{gcd}\left(a_{1}+k, a_{r}+k\right)$.
Denote $f_{\mathcal{A}}=\operatorname{lcm}\left(f_{r-1, k}: k \in \mathcal{A}\right)$.
We show that

$$
\mathcal{I}_{\mathcal{A}}(\mathbf{a})=J(\mathbf{a})+\left(f_{\mathcal{A}}\right)
$$

The statement about $\mathcal{H}_{\mathcal{A}}(\mathbf{a})$ is proven similarly.
For k in our range, one obtains via Gröbner bases that $I(\mathbf{a}+k)$ is generated by a standard basis. Therefore $I^{*}(\mathbf{a}+k)=J(\mathbf{a})+\left(f_{r-1, k}^{*}\right)=J(\mathbf{a})+\left(x_{r}^{\beta_{k}}\right)$, hence $\mathcal{J}_{\mathcal{A}}(\mathbf{a})=I^{*}\left(\mathbf{a}+k_{0}\right)$ for some k_{0} in \mathcal{A}.

Examples

The statements of Theorem 2 hold for shifts $k \gg 0$. Even though $I(\mathbf{a}+k)$ may be Cl for infinitely many k, when we intersect two Cl ideals $I\left(\mathbf{a}+k_{1}\right)$ and $I\left(\mathbf{a}+k_{2}\right)$ for k_{1} or k_{2} not large enough, the result might not be again a Cl.

Examples

The statements of Theorem 2 hold for shifts $k \gg 0$. Even though $I(\mathbf{a}+k)$ may be Cl for infinitely many k, when we intersect two Cl ideals $I\left(\mathbf{a}+k_{1}\right)$ and $I\left(\mathbf{a}+k_{2}\right)$ for k_{1} or k_{2} not large enough, the result might not be again a Cl.

Let $\mathbf{a}=0,6,15$. As noted in the paper of Stamate [7], for $k \geq 25, I(\mathbf{a}+k)$ is Cl if and only if $k=5 \ell$. Still, the ideal $I(\mathbf{a}+k) \subset K[x, y, z]$ is a Cl for $k=8$ and $k=10$ and a SINGULAR computation shows that:

$$
\begin{aligned}
& I(8,14,24) \cap I(10,16,25)=\left(z^{2}-x^{4} y, x^{7}-y^{4}\right) \cap\left(y^{5}-x^{3} z^{2}, x^{5}-z^{2}\right) \\
& \quad=\left(y^{5}-x^{3} z^{2}, x^{9} y-x^{5} z^{2}-x^{4} y z^{2}+z^{4}, x^{12}-x^{5} y^{4}-x^{7} z^{2}+y^{4} z^{2}\right)
\end{aligned}
$$

is not a Cl .

Examples

It is natural to ask if the Cl property may be replaced by Gorenstein in Theorem 2. We give a negative answer, in the following Example:

Let $\mathbf{a}=0,1,2,3$. According to a result of Patil and Sengupta [6, Corollary $6.2]$, the ideal $I(\mathbf{a}+k) \subset S=K\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ is Gorenstein if and only if $k \equiv 2 \bmod 3$. Set $I_{k}=I(\mathbf{a}+k)$.

Examples

It is natural to ask if the Cl property may be replaced by Gorenstein in Theorem 2. We give a negative answer, in the following Example:

Let $\mathbf{a}=0,1,2,3$. According to a result of Patil and Sengupta [6, Corollary 6.2], the ideal $I(\mathbf{a}+k) \subset S=K\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ is Gorenstein if and only if $k \equiv 2 \bmod 3$. Set $I_{k}=I(\mathbf{a}+k)$.

Assume $k=3 \ell+2$. Then, we have:

$$
I_{k}=\left(x_{2}^{2}-x_{1} x_{3}, x_{2} x_{3}-x_{1} x_{4}, x_{3}^{2}-x_{2} x_{4}, x_{1}^{\ell+1} x_{2}-x_{4}^{\ell+1}, x_{1}^{\ell+2}-x_{4}^{\ell} x_{3}\right) .
$$

We also get

$$
J(\mathbf{a})=\left(x_{2}^{2}-x_{1} x_{3}, x_{2} x_{3}-x_{1} x_{4}, x_{3}^{2}-x_{2} x_{4}\right) .
$$

Examples

Using any algorithm for computing the intersection we get:

$$
\begin{array}{rlrlr}
I_{k} \cap I_{k+3}=J(\mathbf{a})+\left(\begin{array}{rrrr}
x_{1}^{2 \ell+4} x_{3}- & x_{1}^{\ell+2} x_{2} x_{4}^{\ell+1}- & x_{1}^{\ell+1} x_{2} x_{4}^{\ell+2}+ & x_{4}^{2 \ell+3}, \\
x_{1}^{2 \ell+4} x_{2}- & x_{1}^{\ell+3} x_{4}^{\ell+1}- & x_{1}^{\ell+2} x_{4}^{\ell+2}+ & x_{3} x_{4}^{2 \ell+2}, \\
x_{1}^{2 \ell+5}- & x_{1}^{\ell+3} x_{3} x_{4}^{\ell}- & x_{1}^{\ell+2} x_{3} x_{4}^{\ell+1}+ & x_{2} x_{4}^{2 \ell+2}
\end{array}\right) .
\end{array}
$$

As x_{1} is regular on both S / I_{k} and S / I_{k+3}, it is regular on $S /\left(I_{k} \cap I_{k+3}\right)$, too. Using reduction modulo x_{1} it is enough to show that the $\left(x_{1}, I_{k} \cap I_{k+3}\right)$ is not a Gorenstein ideal.

Examples

Using any algorithm for computing the intersection we get:

$$
\begin{aligned}
I_{k} \cap I_{k+3}=J(\mathbf{a})+\left(\begin{array}{rlrr}
x_{1}^{2 \ell+4} x_{3}- & x_{1}^{\ell+2} x_{2} x_{4}^{\ell+1}- & x_{1}^{\ell+1} x_{2} x_{4}^{\ell+2}+ & x_{4}^{2 \ell+3}, \\
x_{1}^{2 \ell+4} x_{2}- & x_{1}^{\ell+3} x_{4}^{\ell+1}- & x_{1}^{\ell+2} x_{4}^{\ell+2}+ & x_{3} x_{4}^{2 \ell+2}, \\
& x_{1}^{2 \ell+5}- & x_{1}^{\ell+3} x_{3} x_{4}^{\ell}- & x_{1}^{\ell+2} x_{3} x_{4}^{\ell+1}+ \\
x_{2} x_{4}^{2 \ell+2}
\end{array}\right) .
\end{aligned}
$$

As x_{1} is regular on both S / I_{k} and S / I_{k+3}, it is regular on $S /\left(I_{k} \cap I_{k+3}\right)$, too. Using reduction modulo x_{1} it is enough to show that the $\left(x_{1}, I_{k} \cap I_{k+3}\right)$ is not a Gorenstein ideal.
Letting $R=S /\left(x_{1}, I_{k} \cap I_{k+3}\right)$ we notice that

$$
\left(x_{1}, I_{k} \cap I_{k+3}\right)=\left(x_{1}, x_{3}^{2}-x_{2} x_{4}, x_{2} x_{3}, x_{2}^{2}, x_{4}^{2 \ell+3}, x_{2} x_{4}^{2 \ell+2}, x_{3} x_{4}^{2 \ell+2}\right)
$$

and the residue classes $u=\widehat{x_{4}^{2 \ell+2}}$ and $v=\widehat{x_{2} x_{4}^{2 \ell+1}}$ are linear independent in $\operatorname{Soc}(R)$.

Further developments

Several periodic features have been noticed for the Betti numbers of the toric ideal and other ideals attached to large enough shifts of a numerical semigroup. We summarize the most important ones below.
Let $\mathbf{a}=a_{1}<\cdots<a_{r}$ be a sequence of integers. Then:

Theorem

For $k \gg 0$ and all i one has
(i) $\left(\mathrm{Vu},[8\right.$, Theorem 1.1] $) \beta_{i}(I(\mathbf{a}+k))=\beta_{i}\left(I\left(\mathbf{a}+k+\left(a_{r}-a_{1}\right)\right)\right)$,
(ii) $\left(\right.$ Herzog-Stamate, $\left[4\right.$, Theorem 1.4]) $\beta_{i}(I(\mathbf{a}+k))=\beta_{i}\left(I(\mathbf{a}+k)^{*}\right)$,
(iii) $\left(\mathrm{Vu},\left[8\right.\right.$, Theorem 5.7]) $\beta_{i}(I(\mathbf{a}+k))=\beta_{i}(\bar{I}(\mathbf{a}+k))$.

Further developments

Several periodic features have been noticed for the Betti numbers of the toric ideal and other ideals attached to large enough shifts of a numerical semigroup. We summarize the most important ones below.
Let $\mathbf{a}=a_{1}<\cdots<a_{r}$ be a sequence of integers. Then:

Theorem

For $k \gg 0$ and all i one has
(i) $\left(\mathrm{Vu},[8\right.$, Theorem 1.1] $) \beta_{i}(I(\mathbf{a}+k))=\beta_{i}\left(I\left(\mathbf{a}+k+\left(a_{r}-a_{1}\right)\right)\right)$,
(ii) $\left(\right.$ Herzog-Stamate, $\left[4\right.$, Theorem 1.4]) $\beta_{i}(I(\mathbf{a}+k))=\beta_{i}\left(I(\mathbf{a}+k)^{*}\right)$,
(iii) $\left(\mathrm{Vu},\left[8\right.\right.$, Theorem 5.7]) $\beta_{i}(I(\mathbf{a}+k))=\beta_{i}(\bar{I}(\mathbf{a}+k))$.

Numerical experiments with SINGULAR encourage us to believe that similar periodicities occur for the Betti numbers of intersections of these ideals, as well. If \mathcal{A} is any set of integers and k is any integer we denote $\mathcal{A}+k=$ $\{a+k: a \in \mathcal{A}\}$.

Further developments

We propose therefore the following Conjecture.

Conjecture 1

With notation as above, for $k \gg 0$ and all i one has
(i) $\beta_{i}\left(\mathcal{I}_{\mathcal{A}+k}(\mathbf{a})\right)=\beta_{i}\left(\mathcal{I}_{\mathcal{A}+k+\left(a_{r}-a_{1}\right)}(\mathbf{a})\right)$,
(ii) $\beta_{i}\left(\mathcal{J}_{\mathcal{A}+k}(\mathbf{a})\right)=\beta_{i}\left(\mathcal{J}_{\mathcal{A}+k+\left(a_{r}-a_{1}\right)}(\mathbf{a})\right)$,
(iii) $\beta_{i}\left(\mathcal{I}_{\mathcal{A}+k}(\mathbf{a})\right)=\beta_{i}\left(\mathcal{I}_{\mathcal{A}+k}(\mathbf{a})^{*}\right)=\beta_{i}\left(\mathcal{H}_{\mathcal{A}+k}(\mathbf{a})\right)$.

Further developments

We propose therefore the following Conjecture.

Conjecture 1

With notation as above, for $k \gg 0$ and all i one has
(i) $\beta_{i}\left(\mathcal{I}_{\mathcal{A}+k}(\mathbf{a})\right)=\beta_{i}\left(\mathcal{I}_{\mathcal{A}+k+\left(a_{r}-a_{1}\right)}(\mathbf{a})\right)$,
(ii) $\beta_{i}\left(\mathcal{J}_{\mathcal{A}+k}(\mathbf{a})\right)=\beta_{i}\left(\mathcal{J}_{\mathcal{A}+k+\left(a_{r}-a_{1}\right)}(\mathbf{a})\right)$,
(iii) $\beta_{i}\left(\mathcal{I}_{\mathcal{A}+k}(\mathbf{a})\right)=\beta_{i}\left(\mathcal{I}_{\mathcal{A}+k}(\mathbf{a})^{*}\right)=\beta_{i}\left(\mathcal{H}_{\mathcal{A}+k}(\mathbf{a})\right)$.

As a consequence of Theorem 2, we get:

Proposition 2

In any of the following situations, Conjecture 1 holds:
(i) \mathcal{A} is infinite,
(ii) $I(\mathbf{a}+k)$ is Cl for all $k \in \mathcal{A}$ and $\min \mathcal{A} \geq\left(a_{r}-a_{1}\right)^{2}-a_{1}$.

Further developments

Note that Conjecture 1 (iii) can not be improved by adding the equality $\beta_{i}\left(\mathcal{I}_{\mathcal{A}}(\mathbf{a})\right)=\beta_{i}\left(\mathcal{J}_{\mathcal{A}}(\mathbf{a})\right)$, which is nevertheless true when $|\mathcal{A}|=1$. Indeed, continuing the previous example with $\mathbf{a}=0,1,2,3$ and $k=3 \ell+2$ one has

$$
I_{k}^{*}=J(\mathbf{a})+\left(x_{4}^{\ell+1}, x_{4}^{\ell} x_{3}\right)
$$

Clearly $I_{k}^{*} \supset I_{k+3}^{*}$, and using [4, Proposition 2.5] both are Gorenstein ideals because I_{k} and I_{k+3} are so. Thus $I_{k}^{*} \cap I_{k+3}^{*}=I_{k+3}^{*}$ is a Gorenstein ideal, and this shows that in general

$$
\beta_{i}\left(I_{k} \cap I_{k+3}\right) \neq \beta_{i}\left(I_{k}^{*} \cap I_{k+3}^{*}\right)
$$

Further developments

In a new paper (work under progress; almost finished), we give a proof of the Conjecture 1(ii) and we make some steps in order to prove Conjecture $1(i)$. In order to prove Conjecture 1 (ii), we used the fact that the ideals $I^{*}(\mathbf{a}+k$)'s are generated by homogeneous binomials (which are those of $J(\mathbf{a}))$ and monomials. Thus we can manage their intersection and we can also compare $I^{*}(\mathbf{a}+k)$ with $I^{*}\left(\mathbf{a}+k+a_{r}-a_{1}\right)$.

Further developments

In a new paper (work under progress; almost finished), we give a proof of the Conjecture 1 (ii) and we make some steps in order to prove Conjecture $1(i)$. In order to prove Conjecture 1 (ii), we used the fact that the ideals $I^{*}(\mathbf{a}+k)$'s are generated by homogeneous binomials (which are those of $J(\mathbf{a}))$ and monomials. Thus we can manage their intersection and we can also compare $I^{*}(\mathbf{a}+k)$ with $I^{*}\left(\mathbf{a}+k+a_{r}-a_{1}\right)$.

On the other hand, Conjecture $1(i)$ is more difficult, since the intersection of ideals $I(\mathbf{a}+k)$'s is much harder to express. One possible way to advance in this problem, is to use reduction modulo x_{1}, and we have some partial results in this direction.

References

圊
M. Cimpoeaș, D. I. Stamate, On intersections of complete intersection ideals, Journal of Pure and Applied Algebra, vol 220, no. 11 (2016), 3702-3712.
C. Delorme, Sous-monoïdes d'intersection complète de N, Ann. Sci. Ecole Norm. Sup. (4) 9 (1976), no. 1, 145-154.

- J. Herzog, Generators and relations of Abelian semigroups and semigroup rings, Manuscripta Math. 3 (1970), 175-193.
J. Herzog, D. I. Stamate, On the defining equations of the tangent cone of a numerical semigroup ring, J. Algebra 418 (2014), 8-28.
A.V. Jayanthan, H. Srinivasan, Periodic occurence of complete intersection monomial curves, Proc. Amer. Math. Soc. 141 no 12 (2013), 4199-4208.
D.P. Patil, I. Sengupta, Minimal set of generators for the derivation module of certain monomial curves, Comm. Algebra 27 (1999), 5619-5631.
D. I. Stamate, Asymptotic properties in the shifted family of a numerical semigroup with few generators, Semigroup Forum, available online 2015.

囯 T. Vu, Periodicity of Betti numbers of monomial curves, J. Algebra 418 (2014), 66-90.

Thank you!

