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Notation

Λ = {λ0 = 0, λ1, λ2, . . . }, with λi < λi+1 for all i ∈ N0, is a numerical semigroup.

g = g(Λ) = |N0 \ Λ| is the genus of Λ.

c = c(Λ) = λk is the conductor of Λ.

Example (A). Λ =
{ λ0︷︸︸︷

0 ,

λ1︷︸︸︷
8 ,

λ2︷︸︸︷
10 ,

λ3︷︸︸︷
11 ,

λ4︷︸︸︷
14︸︷︷︸

c

,

λ5︷︸︸︷
15 ,

λ6︷︸︸︷
16 ,

λ7︷︸︸︷
17 ,

λ8︷︸︸︷
18 , . . .

}
g = 10 k = 4

A generator of Λ is a non-gap λt 6= 0 such that, equivalently,

Λ \ {λt} is a numerical semigroup,

λt 6= λj + λj′ for all 0 < j , j ′ < t .
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The tree of numerical semigroups

{1} {2}

{2,4} {2,4,6} {2,4,6,8} {2,4,6,8,10}

{3}

{3,4,6}

{3,5}
{3,5,6,8}

{3,6}
{3,6,7,9}

{3,6,8}

{4}

{4,5,6,8}

{4,5,7} {4,5,8}

{4,6}

{4,6,7,8,10}

{4,6,8}

{4,7}

{5}

{5,6,7,8,10}

{5,6,7,9}

{5,6,8}

{5,7}

{6}

Semigroups are represented by the non-zero non-gaps up to the conductor
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Seeds of a numerical semigroup

For any index i > 0, define

Λi := Λ \ {λ1, . . . , λi} .

It is a semigroup of genus g + i .

Definition. Given 0 6 i < k , a non-gap λt with λt > c is an order-i seed
of Λ if, equivalently,

λt + λi is a generator of Λi ,

Λi \ {λt + λi} is a numerical semigroup,

λt + λi 6= λj + λj′ for all i < j , j ′ < t .
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Seeds of a numerical semigroup

What makes λt > c(Λ) an oder-zero seed?

λt + 0 = λt should be a generator of Λ0 = Λ.

That is, the order-zero seeds of Λ are its generators > c(Λ).

They are in bijection with its immediate descendants in the semigroup tree.
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Seeds of a numerical semigroup

{1} {2}

{2,4} {2,4,6} {2,4,6,8} {2,4,6,8,10}

{3}

{3,4,6}

{3,5}
{3,5,6,8}

{3,6}
{3,6,7,9}

{3,6,8}

{4}

{4,5,6,8}

{4,5,7} {4,5,8}

{4,6}

{4,6,7,8,10}

{4,6,8}

{4,7}

{5}

{5,6,7,8,10}

{5,6,7,9}

{5,6,8}

{5,7}

{6}
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Seeds of a numerical semigroup

Example (A).

Λ =
{ λ0︷︸︸︷

0 ,

λ1︷︸︸︷
8 ,

λ2︷︸︸︷
10 ,

λ3︷︸︸︷
11 ,

λ4︷︸︸︷
14︸︷︷︸

c

,

λ5︷︸︸︷
15 ,

λ6︷︸︸︷
16 ,

λ7︷︸︸︷
17 ,

λ8︷︸︸︷
18 , . . .

}

λ4 = 14 is not an order-one seed because

λ4 + λ1 = 22 = 11 + 11 = λ3 + λ3

λ5 = 15 is an order-one seed because

λ5 + λ1 = 23 6∈ {λ2, λ3, λ4}+ {λ2, λ3, λ4} = {20, 21, 22, 24, 25, 28}
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The table of seeds of a semigroup

Lemma. Any order-i seed of Λ is at most c + λi+1 − λi − 1.

Example (B). Table of seeds of
{

0, 5, 8︸︷︷︸
c=λ2

, 9, 10, . . .
}

← λi+1 − λi →

k
{

1 1 0 1 1
1 1 1

Its rows are indexed by the possible seed orders, 0 6 i 6 k − 1.

The i-th row has λi+1 − λi entries.

The j-th entry in the i-th row is

{
1 if c + j is an order-i seed,

0 otherwise.

The total number of entries in the table is c.
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The table of seeds of a semigroup
Example (A).

Λ =
{ λ0︷︸︸︷

0 ,

λ1︷︸︸︷
8 ,

λ2︷︸︸︷
10 ,

λ3︷︸︸︷
11 ,

λ4︷︸︸︷
14︸︷︷︸

c

,

λ5︷︸︸︷
15 ,

λ6︷︸︸︷
16 ,

λ7︷︸︸︷
17 ,

λ8︷︸︸︷
18 , . . .

}

order 0
order 1
order 2
order 3

1 1 0 1 0 0 0 0
0 1
1
1 1 1

λ1 − λ0 = 8
λ2 − λ1 = 2
λ3 − λ2 = 1
λ4 − λ3 = 3
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,
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λ7︷︸︸︷
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18 , . . .

}

order 0
order 1
order 2
order 3

1 1 0 1 0 0 0 0
0 1
1
1 1 1
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λ3 − λ2 = 1
λ4 − λ3 = 3
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The table of seeds of a semigroup
Example (A).

Λ =
{ λ0︷︸︸︷

0 ,

λ1︷︸︸︷
8 ,

λ2︷︸︸︷
10 ,

λ3︷︸︸︷
11 ,

λ4︷︸︸︷
14︸︷︷︸

c

,

λ5︷︸︸︷
15 ,

λ6︷︸︸︷
16 ,

λ7︷︸︸︷
17 ,
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18 , . . .

}
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order 2
order 3
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0 1
1
1 1 1

λ1 − λ0 = 8
λ2 − λ1 = 2
λ3 − λ2 = 1
λ4 − λ3 = 3

λ4 = c + 0 is not an order-one seed

λ5 = c + 1 is an order-one seed
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Behavior of seeds along the semigroup tree

Suppose λs is an order-zero seed of Λ (s > k ).

Λ̃ := Λ \ {λs} is a semigroup of genus g + 1.

Example (B). Descendants of

Λ =
{

0, 5,

λ2︷︸︸︷
8︸︷︷︸
c

,

λ3︷︸︸︷
9 , 10,

λ5︷︸︸︷
11 ,

λ6︷︸︸︷
12 , 13, . . .

}

s = 2 s = 3 s = 5 s = 6

Λ̃ = {0, 5, 9, 10, . . . } Λ̃ = {0, 5, 8, 10, . . . } Λ̃ = {0, 5, 8, 9, 10, 12, . . . } Λ̃ = {0, 5, 8, 9, 10, 11, 13, . . . }

Goal. Obtain the seeds of Λ̃ from those of Λ.
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Old-order recycled seeds

Suppose i < k .

Any order-i seed λt of Λ with t > s is also an order-i seed of Λ̃.

Example (B). Descendants of

Λ =
{

0, 5,

λ2︷︸︸︷
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c

,

λ3︷︸︸︷
9 , 10,

λ5︷︸︸︷
11 ,

λ6︷︸︸︷
12 , 13, . . .

}

s = 2 s = 3 s = 5 s = 6

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1y y y y

1 0 1 1
1 1

0 1 1
1

1
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Old-order new seeds
Suppose i < k .

Theorem 1. λt > λs is an order-i seed of Λ̃ if and only if either

(1) λt is an order-i seed of Λ

(2) i < k − 1, λt = λs + λi+1 − λi and λs is an order-(i + 1) seed of Λ

(3) i = k − 1, λs = c, and either
{
λt = λs + λk − λk−1

λt = λs + λk − λk−1 + 1

(4) i = k − 1, λs = c + 1, and λt = λs + λk − λk−1

s = 2 s = 3 s = 5 s = 6

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1y y y y

1 0 1 1
1 1

0 1 1
1

1

y y y y
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0 0 0 0 0
0 0 0

13 / 21



Old-order new seeds
Suppose i < k .
Theorem 1. λt > λs is an order-i seed of Λ̃ if and only if either

(1) λt is an order-i seed of Λ

(2) i < k − 1, λt = λs + λi+1 − λi and λs is an order-(i + 1) seed of Λ

(3) i = k − 1, λs = c, and either
{
λt = λs + λk − λk−1

λt = λs + λk − λk−1 + 1

(4) i = k − 1, λs = c + 1, and λt = λs + λk − λk−1

s = 2 s = 3 s = 5 s = 6

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1y y y y

1 0 1 1
1 1

0 1 1
1

1

y y y y
1 0 1 1 1
1 1 1 1

0 1 1 0 1
1 0 1

1 0 0 0 0
0 0 0

0 0 0 0 0
0 0 0

13 / 21



Old-order new seeds
Suppose i < k .
Theorem 1. λt > λs is an order-i seed of Λ̃ if and only if either

(1) λt is an order-i seed of Λ

(2) i < k − 1, λt = λs + λi+1 − λi and λs is an order-(i + 1) seed of Λ

(3) i = k − 1, λs = c, and either
{
λt = λs + λk − λk−1

λt = λs + λk − λk−1 + 1

(4) i = k − 1, λs = c + 1, and λt = λs + λk − λk−1

s = 2 s = 3 s = 5 s = 6

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1y y y y

1 0 1 1
1 1

0 1 1
1

1

y y y y
1 0 1 1 1
1 1 1 1

0 1 1 0 1
1 0 1

1 0 0 0 0
0 0 0

0 0 0 0 0
0 0 0

13 / 21



Old-order new seeds
Suppose i < k .
Theorem 1. λt > λs is an order-i seed of Λ̃ if and only if either

(1) λt is an order-i seed of Λ

(2) i < k − 1, λt = λs + λi+1 − λi and λs is an order-(i + 1) seed of Λ

(3) i = k − 1, λs = c, and either
{
λt = λs + λk − λk−1

λt = λs + λk − λk−1 + 1

(4) i = k − 1, λs = c + 1, and λt = λs + λk − λk−1

s = 2 s = 3 s = 5 s = 6

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1y y y y

1 0 1 1
1 1

0 1 1
1

1

y y y y
1 0 1 1 1
1 1 1 1

0 1 1 0 1
1 0 1

1 0 0 0 0
0 0 0

0 0 0 0 0
0 0 0

13 / 21



Old-order new seeds
Suppose i < k .
Theorem 1. λt > λs is an order-i seed of Λ̃ if and only if either

(1) λt is an order-i seed of Λ

(2) i < k − 1, λt = λs + λi+1 − λi and λs is an order-(i + 1) seed of Λ

(3) i = k − 1, λs = c, and either
{
λt = λs + λk − λk−1

λt = λs + λk − λk−1 + 1

(4) i = k − 1, λs = c + 1, and λt = λs + λk − λk−1

s = 2 s = 3 s = 5 s = 6

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1y y y y

1 0 1 1
1 1

0 1 1
1

1

y y y y
1 0 1 1 1
1 1 1 1

0 1 1 0 1
1 0 1

1 0 0 0 0
0 0 0

0 0 0 0 0
0 0 0

13 / 21



Old-order new seeds
Suppose i < k .
Theorem 1. λt > λs is an order-i seed of Λ̃ if and only if either

(1) λt is an order-i seed of Λ

(2) i < k − 1, λt = λs + λi+1 − λi and λs is an order-(i + 1) seed of Λ

(3) i = k − 1, λs = c, and either
{
λt = λs + λk − λk−1

λt = λs + λk − λk−1 + 1

(4) i = k − 1, λs = c + 1, and λt = λs + λk − λk−1

s = 2 s = 3 s = 5 s = 6

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1y y y y

1 0 1 1
1 1

0 1 1
1

1

y y y y
1 0 1 1 1
1 1 1 1

0 1 1 0 1
1 0 1

1 0 0 0 0
0 0 0

0 0 0 0 0
0 0 0

13 / 21



Old-order new seeds
Suppose i < k .
Theorem 1. λt > λs is an order-i seed of Λ̃ if and only if either

(1) λt is an order-i seed of Λ

(2) i < k − 1, λt = λs + λi+1 − λi and λs is an order-(i + 1) seed of Λ

(3) i = k − 1, λs = c, and either
{
λt = λs + λk − λk−1

λt = λs + λk − λk−1 + 1

(4) i = k − 1, λs = c + 1, and λt = λs + λk − λk−1

s = 2 s = 3 s = 5 s = 6

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1

1 1 0 1 1
1 1 1y y y y

1 0 1 1
1 1

0 1 1
1

1

y y y y
1 0 1 1 1
1 1 1 1

0 1 1 0 1
1 0 1

1 0 0 0 0
0 0 0

0 0 0 0 0
0 0 0

13 / 21



New-order seeds
Suppose i > k .

Theorem 2.

If i < s − 2, then Λ̃ has no order-i seeds.
If i = s − 2, then the only order-i seed of Λ̃ is λs + 1.
If i = s − 1, then the only order-i seeds of Λ̃ are λs + 1 and λs + 2.

s = 2 s = 3 s = 5 s = 6
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Example (A). Λ =
{

0, 8, 10, 11,

λ4︷︸︸︷
14︸︷︷︸

c

,

λ5︷︸︸︷
15 , 16,
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17 , 18, . . .

}

s = 4 s = 5 s = 7
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Example (A). Λ =
{

0, 8, 10, 11,

λ4︷︸︸︷
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Strings G,S
The string G = G(Λ) stores the gaps of Λ.

The string S = S(Λ) stores all the rows of the table of seeds of Λ merged in a
single string.

Example (A). For Λ =
{

0, 8, 10, 11, 14︸︷︷︸
c=λ4

, 15, 16, . . .
}

,

with table of seeds

1 1 0 1 0 0 0 0
0 1
1
1 1 1

the strings G,S are

G→ 1 1 1 1 1 1 1 0 1 0 0 1 1 0
S → 1 1 0 1 0 0 0 0 0 1 1 1 1 1
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G,S in the tree of semigroups

0
1

1 0
1 1

1 0 1 0
0 1 1 1

1 0 1 0 1 0
0 1 0 1 1 1

1 0 1 0 1 0 1 0
0 1 0 1 0 1 1 1

1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 1 1

1 1 0
1 1 1

1 1 0 0 1 0
0 0 0 1 1 1

1 1 0 1 0
1 0 1 1 1

1 1 0 1 0 0 1 0
0 0 0 0 0 1 1 1

1 1 0 1 1 0
0 1 1 1 1 1 1 1 0 1 1 0 0 1 0

0 0 1 0 0 0 1 1 1

1 1 0 1 1 0 1 0
1 0 1 1 0 1 1 1

1 1 1 0
1 1 1 1

1 1 1 0 0 0 1 0
0 0 0 0 0 1 1 1

1 1 1 0 0 1 0
1 0 0 0 1 1 1

1 1 1 0 0 1 1 0
0 0 0 1 1 1 1 1

1 1 1 0 1 0
1 1 0 1 1 1

1 1 1 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 1 1

1 1 1 0 1 0 1 0
0 1 0 1 0 1 1 1

1 1 1 0 1 1 0
1 0 1 1 1 1 1

1 1 1 1 0
1 1 1 1 1

1 1 1 1 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 1

1 1 1 1 0 0 0 1 0
1 0 0 0 0 0 1 1 1

1 1 1 1 0 0 1 0
1 1 0 0 0 1 1 1

1 1 1 1 0 1 0
1 1 1 0 1 1 1

1 1 1 1 1 0
1 1 1 1 1 1
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Descending algorithm for G,S

Let Λ̃ = Λ\{λs}.

Set ∆ = s − k .

Update of G:

G(Λ̃) is obtained from G(Λ) by replacing the 0 bit Gc+∆−1 with 1.

Update of S:

Let S̃ = S̃0 S̃1 · · · S̃` · · · with

S̃` :=

{
0 if ` = λi + j with 1 6 i < k , 0 6 j < ∆,

S` otherwise.

Then,
S(Λ̃) = S̃∆+1 S̃∆+2 · · · S̃c−1

2∆︷ ︸︸ ︷
0 · · · 0 1 1 1.

18 / 21



Descending algorithm for G,S

Let Λ̃ = Λ\{λs}. Set ∆ = s − k .

Update of G:

G(Λ̃) is obtained from G(Λ) by replacing the 0 bit Gc+∆−1 with 1.

Update of S:

Let S̃ = S̃0 S̃1 · · · S̃` · · · with

S̃` :=

{
0 if ` = λi + j with 1 6 i < k , 0 6 j < ∆,

S` otherwise.

Then,
S(Λ̃) = S̃∆+1 S̃∆+2 · · · S̃c−1

2∆︷ ︸︸ ︷
0 · · · 0 1 1 1.

18 / 21



Descending algorithm for G,S

Let Λ̃ = Λ\{λs}. Set ∆ = s − k .

Update of G:

G(Λ̃) is obtained from G(Λ) by replacing the 0 bit Gc+∆−1 with 1.

Update of S:

Let S̃ = S̃0 S̃1 · · · S̃` · · · with

S̃` :=

{
0 if ` = λi + j with 1 6 i < k , 0 6 j < ∆,

S` otherwise.

Then,
S(Λ̃) = S̃∆+1 S̃∆+2 · · · S̃c−1

2∆︷ ︸︸ ︷
0 · · · 0 1 1 1.

18 / 21



Descending algorithm for G,S

Let Λ̃ = Λ\{λs}. Set ∆ = s − k .

Update of G:

G(Λ̃) is obtained from G(Λ) by replacing the 0 bit Gc+∆−1 with 1.

Update of S:

Let S̃ = S̃0 S̃1 · · · S̃` · · · with

S̃` :=

{
0 if ` = λi + j with 1 6 i < k , 0 6 j < ∆,

S` otherwise.

Then,
S(Λ̃) = S̃∆+1 S̃∆+2 · · · S̃c−1

2∆︷ ︸︸ ︷
0 · · · 0 1 1 1.

18 / 21



Descending algorithm for G,S

It is useful to manipulate G(Λ) and S(Λ) as integers in binary form.

Bitwise operations on binary strings:

& and,

| inclusive or,

� right shift by a non-negative integer x (i.e., multiplying by 2x ),

� left shift by a non-negative integer x .

Then,

G(Λ̃) = G | (1� c̃ − 2)

S(Λ̃) = (S̃ � ∆ + 1) | (1 1 1� c + ∆− 2)

19 / 21
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Descending algorithm for G,S

Input: c := c(Λ), G := G(Λ), S := S(Λ), ∆

Output: c(Λ̃), G(Λ̃), S(Λ̃)

1 S̃ := S

2 rake := G

3 from 1 to ∆ do

4 rake := rake� 1

5 S̃ := S̃ & rake

6
return c̃ := c + ∆ + 1, G | (1� c̃ − 2), (S̃ � ∆ + 1) | (1 1 1� c̃ − 3)
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Comparing algorithms

Time in seconds to compute ng :

30 31 32 33 34 35 36 37 38 39 40
Apéry - DFS 13 24 39 67 114 193 327 554 933 1577 2657
Apéry - recursive 10 16 28 47 81 136 232 393 634 1071 1805
decomposition - DFS 10 16 27 46 79 131 222 373 626 1050 1762
single check - DFS 8 14 23 39 65 110 185 310 518 868 1448
decomposition - recursive 7 12 20 35 58 97 165 275 462 775 1297
single check - recursive 2 4 7 11 19 31 53 87 145 241 400
seeds - DFS 1 3 4 8 12 21 35 58 96 161 269
seeds - recursive 1 2 3 6 9 15 26 42 70 118 195
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