Seeds of numerical semigroups

Maria Bras-Amorós, Julio Fernández-González

International Meeting on Numerical Semigroups with Applications

$$
\text { Levico Terme, July 4-8, } 2016
$$

Notation

$\Lambda=\left\{\lambda_{0}=0, \lambda_{1}, \lambda_{2}, \ldots\right\}$, with $\lambda_{i}<\lambda_{i+1}$ for all $i \in \mathbb{N}_{0}$, is a numerical semigroup.

Notation

$\Lambda=\left\{\lambda_{0}=0, \lambda_{1}, \lambda_{2}, \ldots\right\}$, with $\lambda_{i}<\lambda_{i+1}$ for all $i \in \mathbb{N}_{0}$, is a numerical semigroup. $g=g(\Lambda)=\left|\mathbb{N}_{0} \backslash \Lambda\right|$ is the genus of Λ.

Notation

$\Lambda=\left\{\lambda_{0}=0, \lambda_{1}, \lambda_{2}, \ldots\right\}$, with $\lambda_{i}<\lambda_{i+1}$ for all $i \in \mathbb{N}_{0}$, is a numerical semigroup.
$g=g(\Lambda)=\left|\mathbb{N}_{0} \backslash \Lambda\right|$ is the genus of Λ.
$c=c(\Lambda)=\lambda_{k}$ is the conductor of Λ.

Notation

$\Lambda=\left\{\lambda_{0}=0, \lambda_{1}, \lambda_{2}, \ldots\right\}$, with $\lambda_{i}<\lambda_{i+1}$ for all $i \in \mathbb{N}_{0}$, is a numerical semigroup.
$g=g(\Lambda)=\left|\mathbb{N}_{0} \backslash \Lambda\right|$ is the genus of Λ.
$c=c(\Lambda)=\lambda_{k}$ is the conductor of Λ.

Example (A). $\Lambda=\{\overbrace{0}^{\lambda_{0}}, \overbrace{8}^{\lambda_{1}}, \overbrace{10}^{\lambda_{2}}, \overbrace{11}^{\lambda_{3}}, \overbrace{\underbrace{\lambda_{4}}_{14}}^{\overbrace{15}^{\lambda_{5}}}, \overbrace{16}^{\lambda_{6}}, \overbrace{17}^{\lambda_{7}}, \overbrace{18}^{\lambda_{8}}, \ldots\}$

Notation

$\Lambda=\left\{\lambda_{0}=0, \lambda_{1}, \lambda_{2}, \ldots\right\}$, with $\lambda_{i}<\lambda_{i+1}$ for all $i \in \mathbb{N}_{0}$, is a numerical semigroup.
$g=g(\Lambda)=\left|\mathbb{N}_{0} \backslash \Lambda\right|$ is the genus of Λ.
$c=c(\Lambda)=\lambda_{k}$ is the conductor of Λ.

Example (A). $\Lambda=\{\overbrace{0}^{\lambda_{0}}, \overbrace{8}^{\lambda_{1}}, \overbrace{10}^{\lambda_{2}}, \overbrace{11}^{\lambda_{3}}, \overbrace{\underbrace{\lambda_{4}}_{c}}^{\lambda_{15}}, \overbrace{16}^{\lambda_{6}}, \overbrace{17}^{\lambda_{7}}, \overbrace{18}^{\lambda_{8}}, \ldots\}$

$$
g=10
$$

Notation

$\Lambda=\left\{\lambda_{0}=0, \lambda_{1}, \lambda_{2}, \ldots\right\}$, with $\lambda_{i}<\lambda_{i+1}$ for all $i \in \mathbb{N}_{0}$, is a numerical semigroup.
$g=g(\Lambda)=\left|\mathbb{N}_{0} \backslash \Lambda\right|$ is the genus of Λ.
$c=c(\Lambda)=\lambda_{k}$ is the conductor of Λ.

Example (A). $\Lambda=\{\overbrace{0}^{\lambda_{0}}, \overbrace{8}^{\lambda_{1}}, \overbrace{10}^{\lambda_{2}}, \overbrace{11}^{\lambda_{3}}, \overbrace{\underbrace{\lambda_{4}}_{c}}^{\lambda_{15}}, \overbrace{16}^{\lambda_{6}}, \overbrace{17}^{\lambda_{7}}, \overbrace{18}^{\lambda_{8}}, \ldots\}$

$$
g=10 \quad k=4
$$

Notation

$\Lambda=\left\{\lambda_{0}=0, \lambda_{1}, \lambda_{2}, \ldots\right\}$, with $\lambda_{i}<\lambda_{i+1}$ for all $i \in \mathbb{N}_{0}$, is a numerical semigroup.
$g=g(\Lambda)=\left|\mathbb{N}_{0} \backslash \Lambda\right|$ is the genus of Λ.
$c=c(\Lambda)=\lambda_{k}$ is the conductor of Λ.

Example (A). $\Lambda=\{\overbrace{0}^{\lambda_{0}}, \overbrace{8}^{\lambda_{1}}, \overbrace{10}^{\lambda_{2}}, \overbrace{11}^{\lambda_{3}}, \overbrace{\underbrace{\lambda_{4}}_{c}}^{\lambda_{15}}, \overbrace{16}^{\lambda_{6}}, \overbrace{17}^{\lambda_{7}}, \overbrace{18}^{\lambda_{8}}, \ldots\}$

$$
g=10 \quad k=4
$$

A generator of Λ is a non-gap $\lambda_{t} \neq 0$ such that, equivalently,

Notation

$\Lambda=\left\{\lambda_{0}=0, \lambda_{1}, \lambda_{2}, \ldots\right\}$, with $\lambda_{i}<\lambda_{i+1}$ for all $i \in \mathbb{N}_{0}$, is a numerical semigroup.
$g=g(\Lambda)=\left|\mathbb{N}_{0} \backslash \Lambda\right|$ is the genus of Λ.
$c=c(\Lambda)=\lambda_{k}$ is the conductor of Λ.

Example (A). $\Lambda=\{\overbrace{0}^{\lambda_{0}}, \overbrace{8}^{\lambda_{1}}, \overbrace{10}^{\lambda_{2}}, \overbrace{11}^{\lambda_{3}}$,
$g=10$

$k=4$

A generator of Λ is a non-gap $\lambda_{t} \neq 0$ such that, equivalently,

- $\Lambda \backslash\left\{\lambda_{t}\right\}$ is a numerical semigroup,

Notation

$\Lambda=\left\{\lambda_{0}=0, \lambda_{1}, \lambda_{2}, \ldots\right\}$, with $\lambda_{i}<\lambda_{i+1}$ for all $i \in \mathbb{N}_{0}$, is a numerical semigroup.
$g=g(\Lambda)=\left|\mathbb{N}_{0} \backslash \Lambda\right|$ is the genus of Λ.
$c=c(\Lambda)=\lambda_{k}$ is the conductor of Λ.

Example (A). $\Lambda=\{\overbrace{0}^{\lambda_{0}}, \overbrace{8}^{\lambda_{1}}, \overbrace{10}^{\lambda_{2}}, \overbrace{11}^{\lambda_{3}}$,
$g=10$

$k=4$

A generator of Λ is a non-gap $\lambda_{t} \neq 0$ such that, equivalently,

- $\Lambda \backslash\left\{\lambda_{t}\right\}$ is a numerical semigroup,
- $\lambda_{t} \neq \lambda_{j}+\lambda_{j^{\prime}}$ for all $0<j, j^{\prime}<t$.

The tree of numerical semigroups

Semigroups are represented by the non-zero non-gaps up to the conductor

Seeds of a numerical semigroup

For any index $i \geqslant 0$, define

$$
\Lambda_{i}:=\Lambda \backslash\left\{\lambda_{1}, \ldots, \lambda_{i}\right\}
$$

Seeds of a numerical semigroup

For any index $i \geqslant 0$, define

$$
\Lambda_{i}:=\Lambda \backslash\left\{\lambda_{1}, \ldots, \lambda_{i}\right\} .
$$

It is a semigroup of genus $g+i$.

Seeds of a numerical semigroup

For any index $i \geqslant 0$, define

$$
\Lambda_{i}:=\Lambda \backslash\left\{\lambda_{1}, \ldots, \lambda_{i}\right\} .
$$

It is a semigroup of genus $g+i$.

Definition. Given $0 \leqslant i<k$, a non-gap λ_{t} with $\lambda_{t} \geqslant c$ is an order- i seed of Λ if, equivalently,

Seeds of a numerical semigroup

For any index $i \geqslant 0$, define

$$
\Lambda_{i}:=\Lambda \backslash\left\{\lambda_{1}, \ldots, \lambda_{i}\right\} .
$$

It is a semigroup of genus $g+i$.

Definition. Given $0 \leqslant i<k$, a non-gap λ_{t} with $\lambda_{t} \geqslant c$ is an order- i seed of Λ if, equivalently,

- $\lambda_{t}+\lambda_{i}$ is a generator of Λ_{i},

Seeds of a numerical semigroup

For any index $i \geqslant 0$, define

$$
\Lambda_{i}:=\Lambda \backslash\left\{\lambda_{1}, \ldots, \lambda_{i}\right\} .
$$

It is a semigroup of genus $g+i$.

Definition. Given $0 \leqslant i<k$, a non-gap λ_{t} with $\lambda_{t} \geqslant c$ is an order- i seed of Λ if, equivalently,

- $\lambda_{t}+\lambda_{i}$ is a generator of Λ_{i},
- $\Lambda_{i} \backslash\left\{\lambda_{t}+\lambda_{i}\right\}$ is a numerical semigroup,

Seeds of a numerical semigroup

For any index $i \geqslant 0$, define

$$
\Lambda_{i}:=\Lambda \backslash\left\{\lambda_{1}, \ldots, \lambda_{i}\right\} .
$$

It is a semigroup of genus $g+i$.

Definition. Given $0 \leqslant i<k$, a non-gap λ_{t} with $\lambda_{t} \geqslant c$ is an order- i seed of Λ if, equivalently,

- $\lambda_{t}+\lambda_{i}$ is a generator of Λ_{i},
- $\Lambda_{i} \backslash\left\{\lambda_{t}+\lambda_{i}\right\}$ is a numerical semigroup,
- $\lambda_{t}+\lambda_{i} \neq \lambda_{j}+\lambda_{j^{\prime}}$ for all $i<j, j^{\prime}<t$.

Seeds of a numerical semigroup

What makes $\lambda_{t} \geqslant c(\Lambda)$ an oder-zero seed?

Seeds of a numerical semigroup

What makes $\lambda_{t} \geqslant c(\Lambda)$ an oder-zero seed?
$\lambda_{t}+0=\lambda_{t}$ should be a generator of $\Lambda_{0}=\Lambda$.

Seeds of a numerical semigroup

What makes $\lambda_{t} \geqslant c(\Lambda)$ an oder-zero seed?
$\lambda_{t}+0=\lambda_{t}$ should be a generator of $\Lambda_{0}=\Lambda$.

That is, the order-zero seeds of Λ are its generators $\geqslant c(\Lambda)$.

Seeds of a numerical semigroup

What makes $\lambda_{t} \geqslant c(\Lambda)$ an oder-zero seed?
$\lambda_{t}+0=\lambda_{t}$ should be a generator of $\Lambda_{0}=\Lambda$.

That is, the order-zero seeds of Λ are its generators $\geqslant c(\Lambda)$.
They are in bijection with its immediate descendants in the semigroup tree.

Seeds of a numerical semigroup

Seeds of a numerical semigroup

Example (A).

$$
\Lambda=\{\overbrace{0}^{\lambda_{0}}, \overbrace{8}^{\lambda_{1}}, \overbrace{10}^{\lambda_{2}}, \overbrace{11}^{\lambda_{3}}, \overbrace{c}^{\lambda_{4}}, \overbrace{15}^{\lambda_{5}}, \overbrace{16}^{\lambda_{6}}, \overbrace{17}^{\lambda_{7}}, \overbrace{18}^{\lambda_{8}}, \ldots\}
$$

Seeds of a numerical semigroup

Example (A).

$$
\Lambda=\{\overbrace{0}^{\lambda_{0}}, \overbrace{8}^{\lambda_{1}}, \overbrace{10}^{\lambda_{2}}, \overbrace{11}^{\lambda_{3}}, \overbrace{c}^{\lambda_{4}}, \overbrace{15}^{\lambda_{5}}, \overbrace{16}^{\lambda_{6}}, \overbrace{17}^{\lambda_{7}}, \overbrace{18}^{\lambda_{8}}, \ldots\}
$$

- $\lambda_{4}=14$ is not an order-one seed because

$$
\lambda_{4}+\lambda_{1}=22=11+11=\lambda_{3}+\lambda_{3}
$$

Seeds of a numerical semigroup

Example (A).

$$
\Lambda=\{\overbrace{0}^{\lambda_{0}}, \overbrace{8}^{\lambda_{1}}, \overbrace{10}^{\lambda_{2}}, \overbrace{11}^{\lambda_{3}}, \overbrace{c}^{\lambda_{4}}, \overbrace{15}^{\lambda_{5}}, \overbrace{16}^{\lambda_{6}}, \overbrace{17}^{\lambda_{7}}, \overbrace{18}^{\lambda_{8}}, \ldots\}
$$

- $\lambda_{4}=14$ is not an order-one seed because
$\lambda_{4}+\lambda_{1}=22=11+11=\lambda_{3}+\lambda_{3}$
- $\lambda_{5}=15$ is an order-one seed because

$$
\lambda_{5}+\lambda_{1}=23 \notin\left\{\lambda_{2}, \lambda_{3}, \lambda_{4}\right\}+\left\{\lambda_{2}, \lambda_{3}, \lambda_{4}\right\}=\{20,21,22,24,25,28\}
$$

The table of seeds of a semigroup

Lemma. Any order- i seed of Λ is at most $c+\lambda_{i+1}-\lambda_{i}-1$.

The table of seeds of a semigroup

Lemma. Any order- i seed of Λ is at most $c+\lambda_{i+1}-\lambda_{i}-1$.
Example (B). Table of seeds of $\{0,5, \underbrace{8}_{c=\lambda_{2}}, 9,10, \ldots\}$

1	1	0	1	1
1	1	1		

The table of seeds of a semigroup

Lemma. Any order- i seed of Λ is at most $c+\lambda_{i+1}-\lambda_{i}-1$.
Example (B). Table of seeds of $\{0,5, \underbrace{8}_{c=\lambda_{2}}, 9,10, \ldots\}$
$k\left\{\begin{array}{|l|l|l|l|l|}\hline 1 & 1 & 0 & 1 & 1 \\ \hline 1 & 1 & 1 & & \\ \hline\end{array}\right.$

Its rows are indexed by the possible seed orders, $0 \leqslant i \leqslant k-1$.

The table of seeds of a semigroup

Lemma. Any order- i seed of Λ is at most $c+\lambda_{i+1}-\lambda_{i}-1$.
Example (B). Table of seeds of $\{0,5, \underbrace{8}_{c=\lambda_{2}}, 9,10, \ldots\}$

$\leftarrow \lambda_{i+1}-\lambda_{i} \rightarrow$				
1	1	0	1	1
1	1	1		

Its rows are indexed by the possible seed orders, $0 \leqslant i \leqslant k-1$.
The i-th row has $\lambda_{i+1}-\lambda_{i}$ entries.

The table of seeds of a semigroup

Lemma. Any order- i seed of Λ is at most $c+\lambda_{i+1}-\lambda_{i}-1$.
Example (B). Table of seeds of $\{0,5, \underbrace{8}_{c=\lambda_{2}}, 9,10, \ldots\}$

1	1	0	1	1
1	1	1		

Its rows are indexed by the possible seed orders, $0 \leqslant i \leqslant k-1$.
The i-th row has $\lambda_{i+1}-\lambda_{i}$ entries.
The j-th entry in the i-th row is $\begin{cases}1 & \text { if } c+j \text { is an order }-i \text { seed, } \\ 0 & \text { otherwise. }\end{cases}$

The table of seeds of a semigroup

Lemma. Any order- i seed of Λ is at most $c+\lambda_{i+1}-\lambda_{i}-1$.
Example (B). Table of seeds of $\{0,5, \underbrace{8}_{c=\lambda_{2}}, 9,10, \ldots\}$

1	1	0	1	1
1	1	1		

Its rows are indexed by the possible seed orders, $0 \leqslant i \leqslant k-1$.
The i-th row has $\lambda_{i+1}-\lambda_{i}$ entries.
The j-th entry in the i-th row is $\begin{cases}1 & \text { if } c+j \text { is an order- } i \text { seed, } \\ 0 & \text { otherwise. }\end{cases}$
The total number of entries in the table is c.

The table of seeds of a semigroup

Example (A).

$$
\Lambda=\{\overbrace{0}^{\lambda_{0}}, \overbrace{8}^{\lambda_{1}}, \overbrace{10}^{\lambda_{2}}, \overbrace{11}^{\lambda_{3}}, \overbrace{c}^{\lambda_{4}}, \overbrace{15}^{\lambda_{5}}, \overbrace{16}^{\lambda_{6}}, \overbrace{17}^{\lambda_{7}}, \overbrace{18}^{\lambda_{8}}, \ldots\}
$$

The table of seeds of a semigroup

Example (A).

order 0	1	1	0	1	0	0	0	0	$\begin{aligned} & \lambda_{1}-\lambda_{0}=8 \\ & \lambda_{2}-\lambda_{1}=2 \\ & \lambda_{3}-\lambda_{2}=1 \end{aligned}$	
order 1	0	1								
order 2	1									
order 3	1	1	1							

The table of seeds of a semigroup

Example (A).

order 0	1	1	0	1	0	0	0	0	$\begin{aligned} & \lambda_{1}-\lambda_{0}=8 \\ & \lambda_{2}-\lambda_{1}=2 \\ & \lambda_{3}-\lambda_{2}=1 \\ & \lambda_{4}-\lambda_{3}=3 \end{aligned}$		
order 1	0	1									
order 2	1										
order 3	1	1	1								

$\lambda_{4}=c+0$ is not an order-one seed

The table of seeds of a semigroup

Example (A).

$\lambda_{4}=c+0$ is not an order-one seed
$\lambda_{5}=c+1$ is an order-one seed

Behavior of seeds along the semigroup tree

Suppose λ_{s} is an order-zero seed of $\Lambda(s \geqslant k)$.

Behavior of seeds along the semigroup tree

Suppose λ_{s} is an order-zero seed of $\Lambda(s \geqslant k)$.
$\tilde{\Lambda}:=\Lambda \backslash\left\{\lambda_{s}\right\}$ is a semigroup of genus $g+1$.

Behavior of seeds along the semigroup tree

Suppose λ_{s} is an order-zero seed of $\Lambda(s \geqslant k)$.
$\tilde{\Lambda}:=\Lambda \backslash\left\{\lambda_{s}\right\}$ is a semigroup of genus $g+1$.
Example (B). Descendants of

$$
\Lambda=\{0,5, \underbrace{\lambda_{8}^{\lambda_{2}}}_{c}, \overbrace{9}^{\lambda_{3}}, 10, \overbrace{11}^{\lambda_{5}}, \overbrace{12}^{\lambda_{6}}, 13, \ldots\}
$$

Behavior of seeds along the semigroup tree

Suppose λ_{s} is an order-zero seed of $\Lambda(s \geqslant k)$.
$\tilde{\Lambda}:=\Lambda \backslash\left\{\lambda_{s}\right\}$ is a semigroup of genus $g+1$.
Example (B). Descendants of

$$
\begin{array}{cccc}
s=2 & s=3 & s=5 & s=6 \\
\tilde{\Lambda}=\{0,5,9,10, \ldots\} & \tilde{\Lambda}=\{0,5,8,10, \ldots\} & \tilde{\Lambda}=\{0,5,8,9,10,12, \ldots\} & \tilde{\Lambda}=\{0,5,8,9,10,11,13, \ldots\}
\end{array}
$$

Behavior of seeds along the semigroup tree

Suppose λ_{s} is an order-zero seed of $\Lambda(s \geqslant k)$.
$\tilde{\Lambda}:=\Lambda \backslash\left\{\lambda_{s}\right\}$ is a semigroup of genus $g+1$.
Example (B). Descendants of

$$
\begin{gathered}
\Lambda=\{0,5, \overbrace{\underbrace{8}_{8}}^{\lambda_{2}}, \overbrace{9}^{\lambda_{3}}, 10, \overbrace{11}^{\lambda_{5}}, \overbrace{12}^{\lambda_{6}}, 13, \ldots\} \\
s=2 \\
\tilde{\Lambda}=\{0,5,9,10, \ldots\} \quad \tilde{\Lambda}=\{0,5,8,10, \ldots\} \quad \tilde{\Lambda}=\{0,5,8,9,10,12, \ldots\} \quad \tilde{\Lambda}=\{0,5,8,9,10,11,13, \ldots\}
\end{gathered}
$$

Goal. Obtain the seeds of $\tilde{\Lambda}$ from those of Λ.

Old-order recycled seeds

Suppose $i<k$.

Old-order recycled seeds

Suppose $i<k$.
Any order- i seed λ_{t} of Λ with $t>s$ is also an order- i seed of $\tilde{\Lambda}$.

Old-order recycled seeds

Suppose $i<k$.
Any order- i seed λ_{t} of Λ with $t>s$ is also an order- i seed of $\tilde{\Lambda}$.
Example (B). Descendants of

$$
\Lambda=\{0,5, \underbrace{\overbrace{8}^{\lambda_{2}}}_{c}, \overbrace{9}^{\lambda_{3}}, 10, \overbrace{11}^{\lambda_{5}}, \overbrace{12}^{\lambda_{6}}, 13, \ldots\}
$$

Old-order recycled seeds

Suppose $i<k$.
Any order- i seed λ_{t} of Λ with $t>s$ is also an order- i seed of $\tilde{\Lambda}$.
Example (B). Descendants of

$$
\Lambda=\{0,5, \underbrace{\overbrace{8}}_{c}, \overbrace{9}^{\lambda_{3}}, 10, \overbrace{11}^{\lambda_{5}}, \overbrace{12}^{\lambda_{6}}, 13, \ldots\}
$$

$$
s=6
$$

1	1	0	1	1
1	1	1		

Old-order recycled seeds

Suppose $i<k$.
Any order- i seed λ_{t} of Λ with $t>s$ is also an order- i seed of $\tilde{\Lambda}$.
Example (B). Descendants of

$$
\Lambda=\{0,5, \underbrace{\overbrace{8}^{\lambda_{2}}}_{c}, \overbrace{9}^{\lambda_{3}}, 10, \overbrace{11}^{\lambda_{5}}, \overbrace{12}^{\lambda_{6}}, 13, \ldots\}
$$

Old-order new seeds

Suppose $i<k$.

Old-order new seeds

Suppose $i<k$.
Theorem 1. $\lambda_{t}>\lambda_{s}$ is an order- i seed of $\tilde{\Lambda}$ if and only if either
(1) λ_{t} is an order- i seed of Λ

Old-order new seeds

Suppose $i<k$.
Theorem 1. $\lambda_{t}>\lambda_{s}$ is an order- i seed of $\tilde{\Lambda}$ if and only if either
(1) λ_{t} is an order- i seed of Λ
(2) $i<k-1, \lambda_{t}=\lambda_{s}+\lambda_{i+1}-\lambda_{i}$ and λ_{s} is an order- $(i+1)$ seed of Λ

Old-order new seeds

Suppose $i<k$.
Theorem 1. $\lambda_{t}>\lambda_{s}$ is an order- i seed of $\tilde{\Lambda}$ if and only if either
(1) λ_{t} is an order- i seed of Λ
(2) $i<k-1, \lambda_{t}=\lambda_{s}+\lambda_{i+1}-\lambda_{i}$ and λ_{s} is an order- $(i+1)$ seed of Λ
(3) $i=k-1, \lambda_{s}=c$, and either $\left\{\begin{array}{l}\lambda_{t}=\lambda_{s}+\lambda_{k}-\lambda_{k-1} \\ \lambda_{t}=\lambda_{s}+\lambda_{k}-\lambda_{k-1}+1\end{array}\right.$

Old-order new seeds

Suppose $i<k$.
Theorem 1. $\lambda_{t}>\lambda_{s}$ is an order- i seed of $\tilde{\Lambda}$ if and only if either
(1) λ_{t} is an order- i seed of Λ
(2) $i<k-1, \lambda_{t}=\lambda_{s}+\lambda_{i+1}-\lambda_{i}$ and λ_{s} is an order- $(i+1)$ seed of Λ
(3) $i=k-1, \lambda_{s}=c$, and either $\left\{\begin{array}{l}\lambda_{t}=\lambda_{s}+\lambda_{k}-\lambda_{k-1} \\ \lambda_{t}=\lambda_{s}+\lambda_{k}-\lambda_{k-1}+1\end{array}\right.$
(4) $i=k-1, \lambda_{s}=c+1$, and $\lambda_{t}=\lambda_{s}+\lambda_{k}-\lambda_{k-1}$

Old-order new seeds

Suppose $i<k$.
Theorem 1. $\lambda_{t}>\lambda_{s}$ is an order- i seed of $\tilde{\Lambda}$ if and only if either
(1) λ_{t} is an order- i seed of Λ
(2) $i<k-1, \lambda_{t}=\lambda_{s}+\lambda_{i+1}-\lambda_{i}$ and λ_{s} is an order- $(i+1)$ seed of Λ
(3) $i=k-1, \lambda_{s}=c$, and either $\left\{\begin{array}{l}\lambda_{t}=\lambda_{s}+\lambda_{k}-\lambda_{k-1} \\ \lambda_{t}=\lambda_{s}+\lambda_{k}-\lambda_{k-1}+1\end{array}\right.$
(4) $i=k-1, \lambda_{s}=c+1$, and $\lambda_{t}=\lambda_{s}+\lambda_{k}-\lambda_{k-1}$

$s=5$

Old-order new seeds

Suppose $i<k$.
Theorem 1. $\lambda_{t}>\lambda_{s}$ is an order- i seed of $\tilde{\Lambda}$ if and only if either
(1) λ_{t} is an order- i seed of Λ
(2) $i<k-1, \lambda_{t}=\lambda_{s}+\lambda_{i+1}-\lambda_{i}$ and λ_{s} is an order- $(i+1)$ seed of Λ
(3) $i=k-1, \lambda_{s}=c$, and either $\left\{\begin{array}{l}\lambda_{t}=\lambda_{s}+\lambda_{k}-\lambda_{k-1} \\ \lambda_{t}=\lambda_{s}+\lambda_{k}-\lambda_{k-1}+1\end{array}\right.$
(4) $i=k-1, \lambda_{s}=c+1$, and $\lambda_{t}=\lambda_{s}+\lambda_{k}-\lambda_{k-1}$

New-order seeds

Suppose $i \geqslant k$.

New-order seeds

Suppose $i \geqslant k$.
Theorem 2.

- If $i<s-2$, then $\tilde{\Lambda}$ has no order- i seeds.

New-order seeds

Suppose $i \geqslant k$.

Theorem 2.

- If $i<s-2$, then $\tilde{\Lambda}$ has no order- i seeds.
- If $i=s-2$, then the only order $-i$ seed of $\tilde{\Lambda}$ is $\lambda_{s}+1$.

New-order seeds

Suppose $i \geqslant k$.

Theorem 2.

- If $i<s-2$, then $\tilde{\Lambda}$ has no order- i seeds.
- If $i=s-2$, then the only order $-i$ seed of $\tilde{\Lambda}$ is $\lambda_{s}+1$.
- If $i=s-1$, then the only order- i seeds of $\tilde{\Lambda}$ are $\lambda_{s}+1$ and $\lambda_{s}+2$.

New-order seeds

Suppose $i \geqslant k$.

Theorem 2.

- If $i<s-2$, then $\tilde{\Lambda}$ has no order- i seeds.
- If $i=s-2$, then the only order $-i$ seed of $\tilde{\Lambda}$ is $\lambda_{s}+1$.
- If $i=s-1$, then the only order- i seeds of $\tilde{\Lambda}$ are $\lambda_{s}+1$ and $\lambda_{s}+2$.

New-order seeds

Suppose $i \geqslant k$.

Theorem 2.

- If $i<s-2$, then $\tilde{\Lambda}$ has no order- i seeds.
- If $i=s-2$, then the only order $-i$ seed of $\tilde{\Lambda}$ is $\lambda_{s}+1$.
- If $i=s-1$, then the only order- i seeds of $\tilde{\Lambda}$ are $\lambda_{s}+1$ and $\lambda_{s}+2$.

Example (A). $\Lambda=\{0,8,10,11, \overbrace{c}^{\lambda_{4}}, \overbrace{15}^{\lambda_{5}}, 16, \overbrace{17}^{\lambda_{7}}, 18, \ldots\}$

Example (A). $\Lambda=\{0,8,10,11, \overbrace{c}^{\lambda_{1}}, \overbrace{15}^{\lambda_{5}}, 16, \overbrace{17}^{\lambda_{7}}, 18, \ldots\}$

$s=4$								$s=5$								$s=7$								
1	1	0	1	0	0	0	0	1	1	0	1	0	0	0	0	1	1	0	1	0	0	0		0
0	1							0	1							0	1							
1								1								1								
1	1	1						1	1	1						1	1	1						

Example (A). $\Lambda=\{0,8,10,11, \overbrace{c}^{\lambda_{14}}, \overbrace{15}^{\lambda_{5}}, 16, \overbrace{17}^{\lambda_{7}}, 18, \ldots\}$

Example (A). $\Lambda=\{0,8,10,11, \overbrace{c_{c}}^{\lambda_{4}}, \overbrace{15}^{\lambda_{5}}, 16, \overbrace{17}^{\lambda_{7}}, 18, \ldots\}$

Example (A). $\Lambda=\{0,8,10,11, \overbrace{c}^{\lambda_{14}}, \overbrace{15}^{\lambda_{5}}, 16, \overbrace{17}^{\lambda_{7}}, 18, \ldots\}$

Strings G, S

The string $G=G(\Lambda)$ stores the gaps of Λ.

Strings G, S

The string $G=G(\Lambda)$ stores the gaps of Λ.
The string $S=S(\Lambda)$ stores all the rows of the table of seeds of \wedge merged in a single string.

Strings G, S

The string $G=G(\Lambda)$ stores the gaps of Λ.
The string $S=S(\Lambda)$ stores all the rows of the table of seeds of \wedge merged in a single string.

Example (A). For $\Lambda=\{0,8,10,11, \underbrace{14}_{c=\lambda_{4}}, 15,16, \ldots\}$,

Strings G, S

The string $G=G(\Lambda)$ stores the gaps of Λ.
The string $S=S(\Lambda)$ stores all the rows of the table of seeds of \wedge merged in a single string.

Example (A). For $\Lambda=\{0,8,10,11, \underbrace{14}_{c=\lambda_{4}}, 15,16, \ldots\}$,
with table of seeds

1	1	0	1	0	0		0
0	1						
1							
1	1	1					

Strings G, S

The string $G=G(\Lambda)$ stores the gaps of Λ.
The string $S=S(\Lambda)$ stores all the rows of the table of seeds of \wedge merged in a single string.

Example (A). For $\Lambda=\{0,8,10,11, \underbrace{14}_{c=\lambda_{4}}, 15,16, \ldots\}$,
with table of seeds

1	1	0	1	0				
0	1							
1								
1	1	1						

the strings G, S are

$G \rightarrow$	1	1	1	1	1	1	1	0	1	0	0	1	1	0
	1	1	0	1	0	0	0	0	0	1	1	1	1	1

G, S in the tree of semigroups

Descending algorithm for G, S

Let $\tilde{\Lambda}=\Lambda \backslash\left\{\lambda_{s}\right\}$.

Descending algorithm for G, S

Let $\tilde{\Lambda}=\Lambda \backslash\left\{\lambda_{s}\right\}$. Set $\Delta=s-k$.

Descending algorithm for G, S

Let $\tilde{\Lambda}=\Lambda \backslash\left\{\lambda_{s}\right\}$. Set $\Delta=s-k$.

Update of G:

$G(\tilde{\Lambda})$ is obtained from $G(\Lambda)$ by replacing the 0 bit $G_{c+\Delta-1}$ with 1 .

Descending algorithm for G, S

Let $\tilde{\Lambda}=\Lambda \backslash\left\{\lambda_{s}\right\}$. Set $\Delta=s-k$.

Update of G:

$G(\tilde{\Lambda})$ is obtained from $G(\Lambda)$ by replacing the 0 bit $G_{c+\Delta-1}$ with 1 .
Update of S:
Let $\tilde{S}=\tilde{S}_{0} \tilde{S}_{1} \ldots \tilde{S}_{\ell} \cdots$ with

$$
\tilde{S}_{\ell}:=\left\{\begin{array}{l}
0 \text { if } \ell=\lambda_{i}+j \text { with } 1 \leqslant i<k, 0 \leqslant j<\Delta, \\
S_{\ell} \text { otherwise. }
\end{array}\right.
$$

Then,

$$
S(\tilde{\Lambda})=\tilde{S}_{\Delta+1} \tilde{S}_{\Delta+2} \cdots \tilde{S}_{c-1} \overbrace{0 \cdots 01}^{2 \Delta} 11 .
$$

Descending algorithm for G, S

It is useful to manipulate $G(\Lambda)$ and $S(\Lambda)$ as integers in binary form.

Descending algorithm for G, S

It is useful to manipulate $G(\Lambda)$ and $S(\Lambda)$ as integers in binary form.
Bitwise operations on binary strings:

Descending algorithm for G, S

It is useful to manipulate $G(\Lambda)$ and $S(\Lambda)$ as integers in binary form.
Bitwise operations on binary strings:

- \& and,

Descending algorithm for G, S

It is useful to manipulate $G(\Lambda)$ and $S(\Lambda)$ as integers in binary form.
Bitwise operations on binary strings:

- \& and,
- | inclusive or,

Descending algorithm for G, S

It is useful to manipulate $G(\Lambda)$ and $S(\Lambda)$ as integers in binary form.
Bitwise operations on binary strings:

- \& and,
- | inclusive or,
- > right shift by a non-negative integer x (i.e., multiplying by 2^{x}),

Descending algorithm for G, S

It is useful to manipulate $G(\Lambda)$ and $S(\Lambda)$ as integers in binary form.
Bitwise operations on binary strings:

- \& and,
- | inclusive or,
- > right shift by a non-negative integer x (i.e., multiplying by 2^{x}),
- \ll left shift by a non-negative integer x.

Descending algorithm for G, S

It is useful to manipulate $G(\Lambda)$ and $S(\Lambda)$ as integers in binary form.
Bitwise operations on binary strings:

- \& and,
- | inclusive or,
- > right shift by a non-negative integer x (i.e., multiplying by 2^{x}),
- <<left shift by a non-negative integer x.

Then,

$$
G(\tilde{\Lambda})=G \mid(1 \gg \tilde{c}-2)
$$

Descending algorithm for G, S

It is useful to manipulate $G(\Lambda)$ and $S(\Lambda)$ as integers in binary form.
Bitwise operations on binary strings:

- \& and,
- | inclusive or,
- > right shift by a non-negative integer x (i.e., multiplying by 2^{x}),
- <<left shift by a non-negative integer x.

Then,

$$
\begin{aligned}
& G(\tilde{\Lambda})=G \mid(1 \gg \tilde{c}-2) \\
& S(\tilde{\Lambda})=(\tilde{S}<\Delta+1) \mid(111 \gg c+\Delta-2)
\end{aligned}
$$

Descending algorithm for G, S

Input: $c:=c(\Lambda), \quad G:=G(\Lambda), \quad S:=S(\Lambda), \Delta$
Output: $c(\tilde{\Lambda}), \quad G(\tilde{\Lambda}), \quad S(\tilde{\Lambda})$
(1) $\tilde{s}:=S$
(2) rake $:=G$
(3) from 1 to Δ do
(4) rake := rake $\gg 1$
(5) $\tilde{s}:=\tilde{S}$ \& rake
© return $\tilde{c}:=c+\Delta+1, G|(1 \gg \tilde{c}-2),(\tilde{S} \ll \Delta+1)|(111 \gg \tilde{c}-3)$

Comparing algorithms

Time in seconds to compute n_{g} :

	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$
Apéry - DFS	13	24	39	67	114	193	327	554	933	1577	2657
Apéry - recursive	10	16	28	47	81	136	232	393	634	1071	1805
decomposition - DFS	10	16	27	46	79	131	222	373	626	1050	1762
single check - DFS	8	14	23	39	65	110	185	310	518	868	1448
decomposition - recursive	7	12	20	35	58	97	165	275	462	775	1297
single check - recursive	2	4	7	11	19	31	53	87	145	241	400
seeds - DFS	1	3	4	8	12	21	35	58	96	161	269
seeds - recursive	1	2	3	6	9	15	26	42	70	118	195

