Maria Bras-Amorós, Julio Fernández-González

International Meeting on Numerical Semigroups with Applications

Levico Terme, July 4-8, 2016

 $\Lambda = \{\lambda_0 = 0, \lambda_1, \lambda_2, \dots\}, \text{ with } \lambda_i < \lambda_{i+1} \text{ for all } i \in \mathbb{N}_0, \text{ is a numerical semigroup.}$

 $\Lambda = \{\lambda_0 = 0, \lambda_1, \lambda_2, \dots\}$, with $\lambda_i < \lambda_{i+1}$ for all $i \in \mathbb{N}_0$, is a numerical semigroup. $g = g(\Lambda) = |\mathbb{N}_0 \setminus \Lambda|$ is the genus of Λ .

 $\Lambda = \{\lambda_0 = 0, \lambda_1, \lambda_2, \dots\}, \text{ with } \lambda_i < \lambda_{i+1} \text{ for all } i \in \mathbb{N}_0, \text{ is a numerical semigroup.} \}$

 $g = g(\Lambda) = |\mathbb{N}_0 \setminus \Lambda|$ is the genus of Λ .

 $\Lambda = \{\lambda_0 = 0, \lambda_1, \lambda_2, \dots\}$, with $\lambda_i < \lambda_{i+1}$ for all $i \in \mathbb{N}_0$, is a numerical semigroup. $g = g(\Lambda) = |\mathbb{N}_0 \setminus \Lambda|$ is the genus of Λ .

Example (A).
$$\Lambda = \{ \overbrace{0}^{\lambda_0}, \overbrace{8}^{\lambda_1}, \overbrace{10}^{\lambda_2}, \overbrace{11}^{\lambda_3}, \overbrace{14}^{\lambda_4}, \overbrace{15}^{\lambda_5}, \overbrace{16}^{\lambda_6}, \overbrace{17}^{\lambda_8}, \ldots \}$$

 $\Lambda = \{\lambda_0 = 0, \lambda_1, \lambda_2, \dots\}$, with $\lambda_i < \lambda_{i+1}$ for all $i \in \mathbb{N}_0$, is a numerical semigroup. $g = g(\Lambda) = |\mathbb{N}_0 \setminus \Lambda|$ is the genus of Λ .

Example (A).
$$\Lambda = \{ \overbrace{0}^{\lambda_0}, \overbrace{8}^{\lambda_1}, \overbrace{10}^{\lambda_2}, \overbrace{11}^{\lambda_3}, \overbrace{14}^{\lambda_4}, \overbrace{15}^{\lambda_5}, \overbrace{16}^{\lambda_6}, \overbrace{17}^{\lambda_8}, \ldots \}$$

 $g = 10$

 $\Lambda = \{\lambda_0 = 0, \lambda_1, \lambda_2, \dots\}$, with $\lambda_i < \lambda_{i+1}$ for all $i \in \mathbb{N}_0$, is a numerical semigroup. $g = g(\Lambda) = |\mathbb{N}_0 \setminus \Lambda|$ is the genus of Λ .

Example (A).
$$\Lambda = \{ \overbrace{0}^{\lambda_0}, \overbrace{8}^{\lambda_1}, \overbrace{10}^{\lambda_2}, \overbrace{11}^{\lambda_3}, \overbrace{14}^{\lambda_4}, \overbrace{15}^{\lambda_5}, \overbrace{16}^{\lambda_6}, \overbrace{17}^{\lambda_7}, \overbrace{18}^{\lambda_8}, \ldots \}$$

 $g = 10$ $k = 4$

 $\Lambda = \{\lambda_0 = 0, \lambda_1, \lambda_2, \dots\}$, with $\lambda_i < \lambda_{i+1}$ for all $i \in \mathbb{N}_0$, is a numerical semigroup. $g = g(\Lambda) = |\mathbb{N}_0 \setminus \Lambda|$ is the genus of Λ .

 $c = c(\Lambda) = \lambda_k$ is the conductor of Λ .

Example (A).
$$\Lambda = \{ \overbrace{0}^{\lambda_0}, \overbrace{8}^{\lambda_1}, \overbrace{10}^{\lambda_2}, \overbrace{11}^{\lambda_3}, \overbrace{14}^{\lambda_4}, \overbrace{15}^{\lambda_5}, \overbrace{16}^{\lambda_6}, \overbrace{17}^{\lambda_7}, \overbrace{18}^{\lambda_8}, \ldots \}$$

 $g = 10$ $k = 4$

A generator of Λ is a non-gap $\lambda_t \neq 0$ such that, equivalently,

 $\Lambda = \{\lambda_0 = 0, \lambda_1, \lambda_2, \dots\}$, with $\lambda_i < \lambda_{i+1}$ for all $i \in \mathbb{N}_0$, is a numerical semigroup. $g = g(\Lambda) = |\mathbb{N}_0 \setminus \Lambda|$ is the genus of Λ .

 $c = c(\Lambda) = \lambda_k$ is the conductor of Λ .

Example (A).
$$\Lambda = \{ \overbrace{0}^{\lambda_0}, \overbrace{8}^{\lambda_1}, \overbrace{10}^{\lambda_2}, \overbrace{11}^{\lambda_3}, \overbrace{14}^{\lambda_4}, \overbrace{15}^{\lambda_5}, \overbrace{16}^{\lambda_6}, \overbrace{17}^{\lambda_7}, \overbrace{18}^{\lambda_8}, \ldots \}$$

 $g = 10$ $k = 4$

A generator of Λ is a non-gap $\lambda_t \neq 0$ such that, equivalently,

• $\Lambda \setminus \{\lambda_t\}$ is a numerical semigroup,

 $\Lambda = \{\lambda_0 = 0, \lambda_1, \lambda_2, \dots\}$, with $\lambda_i < \lambda_{i+1}$ for all $i \in \mathbb{N}_0$, is a numerical semigroup. $g = g(\Lambda) = |\mathbb{N}_0 \setminus \Lambda|$ is the genus of Λ .

 $c = c(\Lambda) = \lambda_k$ is the conductor of Λ .

Example (A).
$$\Lambda = \{ \overbrace{0}^{\lambda_0}, \overbrace{8}^{\lambda_1}, \overbrace{10}^{\lambda_2}, \overbrace{11}^{\lambda_3}, \overbrace{14}^{\lambda_4}, \overbrace{15}^{\lambda_5}, \overbrace{16}^{\lambda_6}, \overbrace{17}^{\lambda_7}, \overbrace{18}^{\lambda_8}, \ldots \}$$

 $g = 10$ $k = 4$

A generator of Λ is a non-gap $\lambda_t \neq 0$ such that, equivalently,

•
$$\lambda_t \neq \lambda_j + \lambda_{j'}$$
 for all $0 < j, j' < t$.

Semigroups are represented by the non-zero non-gaps up to the conductor

For any index $i \ge 0$, define

 $\Lambda_i := \Lambda \setminus \{\lambda_1, \ldots, \lambda_i\}.$

For any index $i \ge 0$, define

$$\Lambda_i := \Lambda \setminus \{\lambda_1, \ldots, \lambda_i\}.$$

It is a semigroup of genus g + i.

For any index $i \ge 0$, define

$$\Lambda_i := \Lambda \setminus \{\lambda_1, \ldots, \lambda_i\}.$$

It is a semigroup of genus g + i.

Definition. Given $0 \le i < k$, a non-gap λ_t with $\lambda_t \ge c$ is an order-*i* seed of Λ if, equivalently,

For any index $i \ge 0$, define

$$\Lambda_i := \Lambda \setminus \{\lambda_1, \ldots, \lambda_i\}.$$

It is a semigroup of genus g + i.

Definition. Given $0 \le i < k$, a non-gap λ_t with $\lambda_t \ge c$ is an order-*i* seed of Λ if, equivalently,

• $\lambda_t + \lambda_i$ is a generator of Λ_i ,

For any index $i \ge 0$, define

$$\Lambda_i := \Lambda \setminus \{\lambda_1, \ldots, \lambda_i\}.$$

It is a semigroup of genus g + i.

Definition. Given $0 \le i < k$, a non-gap λ_t with $\lambda_t \ge c$ is an order-*i* seed of Λ if, equivalently,

- $\lambda_t + \lambda_i$ is a generator of Λ_i ,
- $\Lambda_i \setminus \{\lambda_t + \lambda_i\}$ is a numerical semigroup,

For any index $i \ge 0$, define

$$\Lambda_i := \Lambda \setminus \{\lambda_1, \ldots, \lambda_i\}.$$

It is a semigroup of genus g + i.

Definition. Given $0 \le i < k$, a non-gap λ_t with $\lambda_t \ge c$ is an order-*i* seed of Λ if, equivalently,

- $\lambda_t + \lambda_i$ is a generator of Λ_i ,
- $\Lambda_i \setminus \{\lambda_t + \lambda_i\}$ is a numerical semigroup,

•
$$\lambda_t + \lambda_i \neq \lambda_j + \lambda_{j'}$$
 for all $i < j, j' < t$.

What makes $\lambda_t \ge c(\Lambda)$ an oder-zero seed?

What makes $\lambda_t \ge c(\Lambda)$ an oder-zero seed?

 $\lambda_t + \mathbf{0} = \lambda_t$ should be a generator of $\Lambda_0 = \Lambda$.

What makes $\lambda_t \ge c(\Lambda)$ an oder-zero seed?

 $\lambda_t + 0 = \lambda_t$ should be a generator of $\Lambda_0 = \Lambda$.

That is, the order-zero seeds of Λ are its generators $\geq c(\Lambda)$.

What makes $\lambda_t \ge c(\Lambda)$ an oder-zero seed?

 $\lambda_t + 0 = \lambda_t$ should be a generator of $\Lambda_0 = \Lambda$.

That is, the order-zero seeds of Λ are its generators $\geq c(\Lambda)$.

They are in bijection with its immediate descendants in the semigroup tree.

Example (A).

Example (A).

$$\Lambda = \{ \overbrace{0}^{\lambda_0}, \overbrace{8}^{\lambda_1}, \overbrace{10}^{\lambda_2}, \overbrace{11}^{\lambda_3}, \overbrace{4}^{\lambda_4}, \overbrace{15}^{\lambda_5}, \overbrace{16}^{\lambda_6}, \overbrace{17}^{\lambda_8}, \ldots \}$$

• $\lambda_4 = 14$ is not an order-one seed because

 $\lambda_4+\lambda_1=22=11+11=\lambda_3+\lambda_3$

Example (A).

$$\Lambda = \{ \overbrace{0}^{\lambda_0}, \overbrace{8}^{\lambda_1}, \overbrace{10}^{\lambda_2}, \overbrace{11}^{\lambda_3}, \overbrace{4}^{\lambda_4}, \overbrace{15}^{\lambda_5}, \overbrace{16}^{\lambda_6}, \overbrace{17}^{\lambda_8}, \ldots \}$$

• $\lambda_4 = 14$ is not an order-one seed because

 $\lambda_4 + \lambda_1 = 22 = 11 + 11 = \lambda_3 + \lambda_3$

• $\lambda_5 = 15$ is an order-one seed because $\lambda_5 + \lambda_1 = 23 \notin \{\lambda_2, \lambda_3, \lambda_4\} + \{\lambda_2, \lambda_3, \lambda_4\} = \{20, 21, 22, 24, 25, 28\}$

Lemma. Any order-*i* seed of Λ is at most $c + \lambda_{i+1} - \lambda_i - 1$.

Lemma. Any order-*i* seed of Λ is at most $c + \lambda_{i+1} - \lambda_i - 1$.

Example (B). Table of seeds of $\{0, 5, \underbrace{8}_{c=\lambda_2}, 9, 10, \dots\}$

1	1	0	1	1
1	1	1		

Lemma. Any order-*i* seed of Λ is at most $c + \lambda_{i+1} - \lambda_i - 1$.

Example (B). Table of seeds of $\{0, 5, \underbrace{8}_{c=\lambda_2}, 9, 10, \dots\}$

<u>,</u>	1	1	0	1	1
^	1	1	1		

Its rows are indexed by the possible seed orders, $0 \le i \le k - 1$.

Lemma. Any order-*i* seed of Λ is at most $c + \lambda_{i+1} - \lambda_i - 1$.

Example (B). Table of seeds of $\{0, 5, \underbrace{8}_{c=\lambda_2}, 9, 10, \dots\}$

$\leftarrow \lambda_{i+1} - \lambda_i \rightarrow$					
1	1	0	1	1	
1	1	1			

Its rows are indexed by the possible seed orders, $0 \le i \le k - 1$.

The *i*-th row has $\lambda_{i+1} - \lambda_i$ entries.

Lemma. Any order-*i* seed of Λ is at most $c + \lambda_{i+1} - \lambda_i - 1$.

Example (B). Table of seeds of $\{0, 5, \underbrace{8}_{c=\lambda_0}, 9, 10, \dots\}$

1	1	0	1	1
1	1	1		

Its rows are indexed by the possible seed orders, $0 \le i \le k - 1$.

The *i*-th row has $\lambda_{i+1} - \lambda_i$ entries.

The *j*-th entry in the *i*-th row is $\begin{cases} 1 & \text{if } c+j \text{ is an order-}i \text{ seed,} \\ 0 & \text{otherwise.} \end{cases}$

Lemma. Any order-*i* seed of Λ is at most $c + \lambda_{i+1} - \lambda_i - 1$.

Example (B). Table of seeds of $\{0, 5, \underbrace{8}_{c=\lambda_0}, 9, 10, \dots\}$

1	1	0	1	1
1	1	1		

Its rows are indexed by the possible seed orders, $0 \le i \le k - 1$.

The *i*-th row has $\lambda_{i+1} - \lambda_i$ entries.

The *j*-th entry in the *i*-th row is $\begin{cases} 1 & \text{if } c+j \text{ is an order-}i \text{ seed,} \\ 0 & \text{otherwise.} \end{cases}$

The total number of entries in the table is *c*.

Example (A).

Example (A).

Example (A).

 $\lambda_4 = c + 0$ is not an order-one seed

Example (A).

 $\lambda_4 = c + 0$ is not an order-one seed

 $\lambda_5 = c + 1$ is an order-one seed

Behavior of seeds along the semigroup tree

Suppose λ_s is an order-zero seed of Λ ($s \ge k$).
Suppose λ_s is an order-zero seed of Λ ($s \ge k$).

 $\tilde{\Lambda} := \Lambda \setminus \{\lambda_s\}$ is a semigroup of genus g + 1.

Suppose λ_s is an order-zero seed of Λ ($s \ge k$).

 $\tilde{\Lambda} := \Lambda \setminus \{\lambda_s\}$ is a semigroup of genus g + 1.

$$\Lambda = \{0, 5, \underbrace{\overset{\lambda_2}{\textcircled{8}}}_{c}, \underbrace{\overset{\lambda_3}{\textcircled{9}}}, 10, \underbrace{\overset{\lambda_5}{\textcircled{11}}}, \underbrace{\overset{\lambda_6}{\textcircled{12}}}, 13, \dots \}$$

Suppose λ_s is an order-zero seed of Λ ($s \ge k$).

 $\tilde{\Lambda} := \Lambda \setminus \{\lambda_s\}$ is a semigroup of genus g + 1.

Example (B). Descendants of

$$\Lambda = \{0, 5, \underbrace{\overset{\lambda_2}{\underset{c}{\mathbf{8}}}}_{c}, \underbrace{\overset{\lambda_3}{\mathbf{9}}}_{,}, 10, \underbrace{\overset{\lambda_5}{\mathbf{11}}}_{,}, \underbrace{\overset{\lambda_6}{\mathbf{12}}}_{,}, 13, \dots \}$$

Suppose λ_s is an order-zero seed of Λ ($s \ge k$).

 $\tilde{\Lambda} := \Lambda \setminus \{\lambda_s\}$ is a semigroup of genus g + 1.

Example (B). Descendants of

$$\Lambda = \left\{0, 5, \underbrace{\overset{\lambda_2}{\underset{c}{\mathbf{8}}}}_{c}, \underbrace{\overset{\lambda_3}{\mathbf{9}}}_{,10}, 10, \underbrace{\overset{\lambda_5}{\mathbf{11}}}_{,12}, \underbrace{\overset{\lambda_6}{\mathbf{12}}}_{,13, \dots}\right\}$$

Goal. Obtain the seeds of $\tilde{\Lambda}$ from those of Λ .

Suppose i < k.

Suppose i < k.

Any order-*i* seed λ_t of Λ with t > s is also an order-*i* seed of $\tilde{\Lambda}$.

Suppose i < k.

Any order-*i* seed λ_t of Λ with t > s is also an order-*i* seed of $\tilde{\Lambda}$.

$$\Lambda = \{0, 5, \underbrace{\overset{\lambda_2}{\underset{c}{\mathbf{8}}}}_{c}, \underbrace{\overset{\lambda_3}{\mathbf{9}}}_{,}, 10, \underbrace{\overset{\lambda_5}{\mathbf{11}}}_{,}, \underbrace{\overset{\lambda_6}{\mathbf{12}}}_{,}, 13, \dots \}$$

Suppose i < k.

Any order-*i* seed λ_t of Λ with t > s is also an order-*i* seed of $\tilde{\Lambda}$.

Suppose i < k.

Any order-*i* seed λ_t of Λ with t > s is also an order-*i* seed of $\tilde{\Lambda}$.

Suppose i < k.

Suppose i < k. **Theorem 1.** $\lambda_t > \lambda_s$ is an order-*i* seed of $\tilde{\Lambda}$ if and only if either

(1) λ_t is an order-*i* seed of Λ

Suppose i < k. **Theorem 1.** $\lambda_t > \lambda_s$ is an order-*i* seed of $\tilde{\Lambda}$ if and only if either

(1) λ_t is an order-*i* seed of Λ

(2) i < k - 1, $\lambda_t = \lambda_s + \lambda_{i+1} - \lambda_i$ and λ_s is an order-(i + 1) seed of Λ

Suppose i < k. **Theorem 1.** $\lambda_t > \lambda_s$ is an order-*i* seed of $\tilde{\Lambda}$ if and only if either

(1) λ_t is an order-*i* seed of Λ

(2) i < k - 1, $\lambda_t = \lambda_s + \lambda_{i+1} - \lambda_i$ and λ_s is an order-(i + 1) seed of Λ

(3)
$$i = k - 1, \lambda_s = c$$
, and either
$$\begin{cases} \lambda_t = \lambda_s + \lambda_k - \lambda_{k-1} \\ \lambda_t = \lambda_s + \lambda_k - \lambda_{k-1} + 1 \end{cases}$$

Suppose i < k. **Theorem 1.** $\lambda_t > \lambda_s$ is an order-*i* seed of $\tilde{\Lambda}$ if and only if either

(1) λ_t is an order-*i* seed of Λ (2) i < k - 1, $\lambda_t = \lambda_s + \lambda_{i+1} - \lambda_i$ and λ_s is an order-(i + 1) seed of Λ (3) i = k - 1, $\lambda_s = c$, and either $\begin{cases} \lambda_t = \lambda_s + \lambda_k - \lambda_{k-1} \\ \lambda_t = \lambda_s + \lambda_k - \lambda_{k-1} + 1 \end{cases}$ (4) i = k - 1, $\lambda_s = c + 1$, and $\lambda_t = \lambda_s + \lambda_k - \lambda_{k-1}$

Suppose i < k. **Theorem 1.** $\lambda_t > \lambda_s$ is an order-*i* seed of $\tilde{\Lambda}$ if and only if either

(1)
$$\lambda_t$$
 is an order-*i* seed of Λ
(2) $i < k - 1$, $\lambda_t = \lambda_s + \lambda_{i+1} - \lambda_i$ and λ_s is an order- $(i + 1)$ seed of Λ
(3) $i = k - 1$, $\lambda_s = c$, and either $\begin{cases} \lambda_t = \lambda_s + \lambda_k - \lambda_{k-1} \\ \lambda_t = \lambda_s + \lambda_k - \lambda_{k-1} + 1 \end{cases}$
(4) $i = k - 1$, $\lambda_s = c + 1$, and $\lambda_t = \lambda_s + \lambda_k - \lambda_{k-1}$

Suppose i < k. **Theorem 1.** $\lambda_t > \lambda_s$ is an order-*i* seed of $\tilde{\Lambda}$ if and only if either

(1)
$$\lambda_t$$
 is an order-*i* seed of Λ
(2) $i < k - 1$, $\lambda_t = \lambda_s + \lambda_{i+1} - \lambda_i$ and λ_s is an order- $(i + 1)$ seed of Λ
(3) $i = k - 1$, $\lambda_s = c$, and either $\begin{cases} \lambda_t = \lambda_s + \lambda_k - \lambda_{k-1} \\ \lambda_t = \lambda_s + \lambda_k - \lambda_{k-1} + 1 \end{cases}$
(4) $i = k - 1$, $\lambda_s = c + 1$, and $\lambda_t = \lambda_s + \lambda_k - \lambda_{k-1}$

Suppose $i \ge k$.

Suppose $i \ge k$.

Theorem 2.

• If i < s - 2, then $\tilde{\Lambda}$ has no order-*i* seeds.

Suppose $i \ge k$.

- If i < s 2, then $\tilde{\Lambda}$ has no order-*i* seeds.
- If i = s 2, then the only order-*i* seed of $\tilde{\Lambda}$ is $\lambda_s + 1$.

Suppose $i \ge k$.

- If i < s 2, then $\tilde{\Lambda}$ has no order-*i* seeds.
- If i = s 2, then the only order-*i* seed of $\tilde{\Lambda}$ is $\lambda_s + 1$.
- If i = s 1, then the only order-*i* seeds of $\tilde{\Lambda}$ are $\lambda_s + 1$ and $\lambda_s + 2$.

Suppose $i \ge k$.

- If i < s 2, then $\tilde{\Lambda}$ has no order-*i* seeds.
- If i = s 2, then the only order-*i* seed of $\tilde{\Lambda}$ is $\lambda_s + 1$.
- If i = s 1, then the only order-*i* seeds of $\tilde{\Lambda}$ are $\lambda_s + 1$ and $\lambda_s + 2$.

Suppose $i \ge k$.

- If i < s 2, then $\tilde{\Lambda}$ has no order-*i* seeds.
- If i = s 2, then the only order-*i* seed of $\tilde{\Lambda}$ is $\lambda_s + 1$.
- If i = s 1, then the only order-*i* seeds of $\tilde{\Lambda}$ are $\lambda_s + 1$ and $\lambda_s + 2$.

Example (A).
$$\Lambda = \{0, 8, 10, 11, \underbrace{\overset{\lambda_4}{14}}_{c}, \underbrace{\overset{\lambda_5}{15}}_{,16}, \underbrace{\overset{\lambda_7}{17}}_{,18, \dots} \}$$

Example (A). $\Lambda = \{0, 8, 10, 11, \underbrace{14}_{c}^{\lambda_{4}}, \underbrace{15}_{c}^{\lambda_{5}}, 16, \underbrace{17}_{17}^{\lambda_{7}}, 18, \dots \}$

Example (A). $\Lambda = \{0, 8, 10, 11, \underbrace{\overset{\lambda_4}{14}}_{c}, \underbrace{\overset{\lambda_5}{15}}_{,}, 16, \underbrace{\overset{\lambda_7}{17}}_{,}, 18, \dots \}$

Example (A). $\Lambda = \{0, 8, 10, 11, \underbrace{\overset{\lambda_4}{\underbrace{14}}_{c}, \underbrace{\overset{\lambda_5}{15}}_{c}, 16, \underbrace{\overset{\lambda_7}{17}}_{17}, 18, \dots \}$

Example (A). $\Lambda = \{0, 8, 10, 11, \underbrace{\overset{\lambda_4}{14}}_{c}, \underbrace{\overset{\lambda_5}{15}}_{,16}, 16, \underbrace{\overset{\lambda_7}{17}}_{,18, \dots}\}$

The string $G = G(\Lambda)$ stores the gaps of Λ .

The string $G = G(\Lambda)$ stores the gaps of Λ .

The string $S = S(\Lambda)$ stores all the rows of the table of seeds of Λ merged in a single string.

The string $G = G(\Lambda)$ stores the gaps of Λ .

The string $S = S(\Lambda)$ stores all the rows of the table of seeds of Λ merged in a single string.

Example (A). For $\Lambda = \{0, 8, 10, 11, \underbrace{14}_{c=\lambda_4}, 15, 16, \dots \}$,

The string $G = G(\Lambda)$ stores the gaps of Λ .

The string $S = S(\Lambda)$ stores all the rows of the table of seeds of Λ merged in a single string.

Example (A). For $\Lambda = \{0, 8, 10, 11, \underbrace{14}_{c=\lambda_4}, 15, 16, \dots \}$,

with table of seeds

The string $G = G(\Lambda)$ stores the gaps of Λ .

The string $S = S(\Lambda)$ stores all the rows of the table of seeds of Λ merged in a single string.

Example (A). For $\Lambda = \{0, 8, 10, 11, \underbrace{14}_{c=\lambda_4}, 15, 16, \dots \}$,

with table of seeds

the strings G, S are

G, S in the tree of semigroups

Descending algorithm for G, S

Let $\tilde{\Lambda} = \Lambda \setminus \{\lambda_s\}$.

Descending algorithm for G, S

Let $\tilde{\Lambda} = \Lambda \setminus \{\lambda_s\}$. Set $\Delta = s - k$.

Descending algorithm for G, S

Let $\tilde{\Lambda} = \Lambda \setminus \{\lambda_s\}$. Set $\Delta = s - k$.

Update of G:

 $G(\tilde{\Lambda})$ is obtained from $G(\Lambda)$ by replacing the 0 bit $G_{c+\Delta-1}$ with 1.
Let
$$\tilde{\Lambda} = \Lambda \setminus \{\lambda_s\}$$
. Set $\Delta = s - k$.

Update of G:

 $G(\tilde{\Lambda})$ is obtained from $G(\Lambda)$ by replacing the 0 bit $G_{c+\Delta-1}$ with 1.

Update of S:

Let
$$\tilde{S} = \tilde{S}_0 \tilde{S}_1 \cdots \tilde{S}_{\ell} \cdots$$
 with
 $\tilde{S}_{\ell} := \begin{cases} 0 & \text{if } \ell = \lambda_i + j & \text{with } 1 \leqslant i < k, \ 0 \leqslant j < \Delta, \\ S_{\ell} & \text{otherwise.} \end{cases}$

Then,

$$S(\tilde{\Lambda}) = \tilde{S}_{\Delta+1} \tilde{S}_{\Delta+2} \cdots \tilde{S}_{c-1} \underbrace{0 \cdots 0}_{l} 1 1.$$

21

It is useful to manipulate $G(\Lambda)$ and $S(\Lambda)$ as integers in binary form.

It is useful to manipulate $G(\Lambda)$ and $S(\Lambda)$ as integers in binary form.

It is useful to manipulate $G(\Lambda)$ and $S(\Lambda)$ as integers in binary form.

It is useful to manipulate $G(\Lambda)$ and $S(\Lambda)$ as integers in binary form.

- & and,
- | inclusive *or*,

It is useful to manipulate $G(\Lambda)$ and $S(\Lambda)$ as integers in binary form.

- & and,
- | inclusive *or*,
- \gg right shift by a non-negative integer x (i.e., multiplying by 2^x),

It is useful to manipulate $G(\Lambda)$ and $S(\Lambda)$ as integers in binary form.

- & and,
- | inclusive *or*,
- \gg right shift by a non-negative integer x (i.e., multiplying by 2^x),
- \ll *left shift* by a non-negative integer *x*.

It is useful to manipulate $G(\Lambda)$ and $S(\Lambda)$ as integers in binary form.

Bitwise operations on binary strings:

- & and,
- | inclusive *or*,
- \gg right shift by a non-negative integer x (i.e., multiplying by 2^x),
- \ll *left shift* by a non-negative integer *x*.

Then,

$$G(\tilde{\Lambda}) = G \mid (1 \gg \tilde{c} - 2)$$

It is useful to manipulate $G(\Lambda)$ and $S(\Lambda)$ as integers in binary form.

Bitwise operations on binary strings:

- & and,
- | inclusive *or*,
- \gg right shift by a non-negative integer x (i.e., multiplying by 2^x),
- \ll *left shift* by a non-negative integer *x*.

Then,

$$\begin{array}{lll} G(\tilde{\Lambda}) & = & G \mid (1 \gg \tilde{c} - 2) \\ \\ S(\tilde{\Lambda}) & = & (\tilde{S} \ll \Delta + 1) \mid (1 \ 1 \ 1 \gg c + \Delta - 2) \end{array}$$

```
Input: c := c(\Lambda), G := G(\Lambda), S := S(\Lambda), \Delta

Output: c(\tilde{\Lambda}), G(\tilde{\Lambda}), S(\tilde{\Lambda})

1 \tilde{S} := S

2 rake := G

3 from 1 to \Delta do

4 rake := rake \gg 1

5 \tilde{S} := \tilde{S} \& rake

6
```

return $\tilde{c} := c + \Delta + 1$, $G \mid (1 \gg \tilde{c} - 2)$, $(\tilde{S} \ll \Delta + 1) \mid (1 \ 1 \ 1 \gg \tilde{c} - 3)$

Comparing algorithms

Time in seconds to compute n_g :

	30	31	32	33	34	35	36	37	38	39	40
Apéry - DFS	13	24	39	67	114	193	327	554	933	1577	2657
Apéry - recursive	10	16	28	47	81	136	232	393	634	1071	1805
decomposition - DFS	10	16	27	46	79	131	222	373	626	1050	1762
single check - DFS	8	14	23	39	65	110	185	310	518	868	1448
decomposition - recursive	7	12	20	35	58	97	165	275	462	775	1297
single check - recursive	2	4	7	11	19	31	53	87	145	241	400
seeds - DFS	1	3	4	8	12	21	35	58	96	161	269
seeds - recursive	1	2	3	6	9	15	26	42	70	118	195