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A generator of Ais a non-gap A: # 0 such that, equivalently,

@ A\ {\t} is a numerical semigroup,

@ M#AN+ N forall 0<j,j/ <t
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The tree of numerical semigroups

{6}
{5,7}
{5,6,8}
{5,6,7,9}
{5.6,7,8,10}
{47}
{4.6} {4,6,8}
{4,6,7,8,10}
{457} — {458}
{4,5,6,8}
{3,6} {3.6,8}
A, 5} {3,6,7,9}
{1} {2} (3,5,6.8}
{3,4,6}
{24} {246} {2,468} {2,4,6,8,10}

Semigroups are represented by the non-zero non-gaps up to the conductor
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/\,‘ ZZ/\\{)\1,...,A,‘}.

It is a semigroup of genus g + i.

Definition. Given 0 </ < k, anon-gap A: with A\; > c is an order-i seed
of A if, equivalently,

@ )\:+ )\ is a generator of A,
@ A\ {\t + \i} is a numerical semigroup,

@ M+ N#N+ N forall i<, j <t
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Seeds of a numerical semigroup

What makes )\; > ¢(A) an oder-zero seed?

At + 0 = X should be a generator of Ag = A.

That is, the order-zero seeds of A are its generators > c(A).

They are in bijection with its immediate descendants in the semigroup tree.
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Seeds of a numerical semigroup
{6}
{5,7}
{5} {5.6,8}
{5,6,7,9}
{5,6,7,8,10}
{4.7}

{4} (46} {4.6.8)
{4,6,7,8,10}
(457} — {458}
@ {4,568}
3.6) {3,6,8}
(35) < {36.7.9}
{2} (3,5,6,8)
(3,4,6)
{24}

{2,4,6} {2,4,6,8} {2,4,6,8,10}

{1}
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Seeds of a numerical semigroup

Example (A).
Ao A Ao A3 A4 A5 Ag A7 Ag
AN AN AN AN AN AN AN S S
A:{0,8,10,11,14,15,16,17,18, }

@ )\, = 14 is not an order-one seed because
M+AM=22=11+11= X3+ A3

@ )5 = 15 is an order-one seed because
As + A =23 & {2, Az, A} + {2, A3, Aa} = {20,21,22,24,25,28}
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The table of seeds of a semigroup

Lemma. Any order-i seed of Ais at most ¢+ Aiy1 — A — 1.
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c=\p
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Its rows are indexed by the possible seed orders, 0 < i< k — 1.
The i-th row has A\;;1 — \; entries.

1 if c+j isanorder-i seed,
The j-th entry in the i-th row is )
0 otherwise.

The total number of entries in the table is c.
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The table of seeds of a semigroup

Example (A).
P VIR VA VA VD VD YD SR
AN AN AN AN AN AN S S S
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~
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The table of seeds of a semigroup

Example (A).
D VS VD VD VI VU VA W W
AN AN AN AN AN AN S S S
/\:{0,8,10,11,14,15,16,17,18, }
~
c
order 0 111 O[1[O[O[O[O[ AM—X =8
order 1 0 A—X =2
order 2 1 A3 — X =1
order 3 T[1]1] M—X3 =3

A4 = ¢+ 0 is not an order-one seed

X5 = ¢+ 1 is an order-one seed
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Behavior of seeds along the semigroup tree
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Behavior of seeds along the semigroup tree

Suppose Xs is an order-zero seed of A (s > k).
A=A\ {\s} is a semigroup of genus g + 1.

Example (B). Descendants of

Ao Ag Xs A
N AN ~ N~
A={0,58,"9 10,1112 13,
~—
c
s=2 s=3 s=5

A ={0,5,9,10,...} A={0,58,10,...} A={0,58,9,10,12,...}

Goal. Obtain the seeds of A from those of A.

s=6

A ={0,5,8,9,10,11,13,...}
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@) i=k—1,As=c+1,and Ar = s + A — M1

B) i=k-1,X =c, andeither{

!

I 0 O
T 1

& @°QW@E@I@

13/21

-



New-order seeds

Suppose i > k.

14/21



New-order seeds

Suppose i > k.

Theorem 2.

@ If i < s—2,then A has no order-i seeds.

14/21



New-order seeds

Suppose i > k.

Theorem 2.

@ If i < s—2,then A has no order-i seeds.
@ If i = s — 2, then the only order-i seed of Ais As+ 1.

14/21



New-order seeds

Suppose i > k.

Theorem 2.

@ If i < s—2,then A has no order-i seeds.
@ If i = s — 2, then the only order-i seed of Ais As+ 1.
@ If i = s — 1, then the only order-i seeds of Aare A\s +1 and Xs + 2.

14/21



New-order seeds
Suppose i > k.

Theorem 2.

@ If i < s—2,then A has no order-i seeds.
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New-order seeds

Suppose i > k.
Theorem 2.
@ If i < s—2,then A has no order-i seeds.
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Strings G, S

The string G = G(A) stores the gaps of A.

The string S = S(A) stores all the rows of the table of seeds of A merged in a
single string.

E le (A). For A = 10,11, 14 ,15,16,...
xample (A). For {0,8,10, 11, ,15,16,... },

Cc=A4

with table of seeds

‘_L‘_lo_k
—_

the strings G, S are
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G, S in the tree of semigroups
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Descending algorithm for G, S

Let A = A\ {\s}.
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Descending algorithm for G, S

Let A = A\{)\s}. Set A =s— k.
Update of G:
G(A) is obtained from G(A) by replacing the 0 bit G¢ a1 with 1.

Update of S:

Let§:éoé1~~~8z~--With
. 0 if £=X+4j with 1<i<k, 0<j<A,
o S otherwise.

Then, ) ; ) ) ,_%L
S(N\) = Sa41Sa42 - Se=10---0111.
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Descending algorithm for G, S

It is useful to manipulate G(A) and S(A) as integers in binary form.

Bitwise operations on binary strings:

@ & and,
@ | inclusive or,
@ > right shift by a non-negative integer x (i.e., multiplying by 2%),
@ < left shift by a non-negative integer x.
Then,
GA) = G|(1>¢-2)

0
>t
Il

(S<A+1)|(111>c+A-2)
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Descending algorithm for G, S

Input: c:=c(A), G:=G(A), S:=S(A), A
Output: c(A), G(A), S(A)

Q S=s

O rake:=G

© from 1 to A do

(4] rake := rake > 1

(5) §:=8& rake

(6

return 2. =c+A+1, G|(1>8-2), (S<A+1)|(111>¢&-23)
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Comparing algorithms

Time in seconds to compute ng:

30 |31 |32|33| 34| 35 36 37| 38 39 40
Apéry - DFS 13 | 24 | 39 | 67 | 114 | 193 | 327 | 554 | 933 | 1577 | 2657
Apéry - recursive 10 | 16 | 28 | 47 81 | 136 | 232 | 393 | 634 | 1071 | 1805
decomposition - DFS 10 | 16 | 27 | 46 79 | 131 | 222 | 373 | 626 | 1050 | 1762
single check - DFS 8| 14|23 39 65 | 110 | 185 | 310 | 518 868 | 1448
decomposition - recursive 7112120 | 35 58 97 | 165 | 275 | 462 775 | 1297
single check - recursive 2 4 7|11 19 31 53 87 | 145 241 400
seeds - DFS 1 3 41 8 12 21 35 58 96 161 269
seeds - recursive 1 2 3 6 9 15 26 42 70 118 195
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