Canonical bases for one dimensional algebras and modules

Abdallah Assi

UNIVERSIT'E d'ANGERS
IMNS,Levico Terme, 2016

Joint work with A. Abbas and P.A. García-Sánchez

Main objectives

1. Study the singularities of plane curves parametrizeb by polynomials over $x=x(t), y=y(t)$ over \mathbb{C}.
2. Study the embedding of such curves in \mathbb{C}^{2}.
\mathbb{K} is a field
$\mathbf{A}=\mathbb{K}\left[x_{1}(t), \ldots, x_{n}(t)\right] \subset \mathbb{K}[t]$ with $I(\mathbb{K}[t] / \mathbf{A})<+\infty$.
$F\left(X_{1}, \ldots, X_{n}\right) \longmapsto d(F)=$ the degree in t of $F\left(x_{1}(t), \ldots, x_{n}(t)\right)$
The set $\Gamma(\mathbf{A})=\left\{d(F), F \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]\right\}$ is a numerical semigroup.

We say that $b_{1}(t), \ldots, b_{r}(t) \in \mathbf{A}$ is a canonical basis of \mathbf{A} if $\Gamma(\mathbf{A}$ is generated by $d\left(b_{1}\right), \ldots, d\left(b_{r}\right)$. We have the following:

Theorem (.., P.A. Garcia, V. Micale) Starting from $x_{1}(t), \ldots, x_{n}(t)$, we can compute a canonical basis of \mathbf{A} in an algorithmic way.

Main idea: Division Theorem

$f(t) \in \mathbb{K}[t]$, suppose that f, x_{1}, \ldots, x_{n} are monic. Write $x_{i}(t)=t^{d_{i}}+\ldots$ and $f=c_{d} t^{d}+\ldots$.

1. If $d \in\left\langle d_{1}, \ldots, d_{n}\right\rangle$ then $d=\sum_{i=1}^{n} a_{i} d_{i}$. We set

$$
f^{1}=f-x_{1}(t)^{a_{1}} \cdots x_{n}(t)^{a_{n}}
$$

in such a way that $d\left(f^{1}\right)<d$.
2. Otherwise, we set $f^{1}=f-t^{d}$ and $r^{1}=t^{d}$.

In both cases we restart with f^{1}.
In conclusion, $f=g+r$ and
$g \in \mathbf{A}, d(g) \leq d, d(r) \notin\left\langle d_{1}, \ldots, d_{n}\right\rangle$ and $d(r) \leq d$.

Algorithm

$\mathbf{A}=\mathbb{K}\left[x_{1}(t), \ldots, x_{n}(t)\right]$ with $x_{i}(t)=t^{d_{i}}+\ldots$

1. Compute a system of generators of the Kernel of

$$
\phi: \mathbb{K}\left[X_{1}, \ldots, X_{n}\right] \longmapsto \mathbb{K}[t], \phi\left(X_{i}\right)=t^{d_{i}}
$$

Let K_{1}, \ldots, K_{s} be such a system.
2. Compute $P_{i}=K_{i}\left(x_{1}(t), \ldots, x_{n}(t)\right.$.
3. Divide P_{1}, \ldots, P_{s} by $x_{i}(t), \ldots, x_{n}(t)$.
4. If all remainders are 0 then x_{1}, \ldots, x_{n} is a canonical basis of \mathbf{A}, otherwise we add all nonzero remainders and we restart with the new system.

Example $x_{1}(t)=t^{4}, x_{2}(t)=t^{6}+t, \mathbf{A}=\mathbb{K}\left[x_{1}(t), x_{2}(t)\right]$:

1. $\phi: \mathbb{K}\left[X_{1}, X_{2}\right] \longmapsto \mathbb{K}[t], \phi\left(X_{1}\right)=t^{4}, \phi\left(X_{2}\right)=t^{6}$
a) $\operatorname{Ker}(\phi)=\left(X_{2}^{2}-X_{1}^{3}\right)$
b) $x_{2}(t)^{2}-x_{1}(t)^{3}=2 t^{7}+t^{2}$
c) $7 \notin<4,6>$
we add $x_{3}(t)=t^{7}+\frac{1}{2} t^{2}: \mathbf{A}=\mathbb{K}\left[x_{1}(t), x_{2}(t), x_{3}(t)\right]$.
2. $\phi_{1}: \mathbb{K}\left[X_{1}, X_{2}, X_{3}\right] \longmapsto \mathbb{K}[t], \phi_{1}\left(X_{1}\right)=t^{4}, \phi\left(X_{2}\right)=t^{6}$,
$\phi\left(X_{3}\right)=t^{7}$
a) $\operatorname{Ker}\left(\phi_{1}\right)=\left(X_{2}^{2}-X_{1}^{3}, X_{3}^{2}-X_{1}^{2} X_{2}\right)$
b) $x_{3}(t)^{2}-x_{1}(t)^{2} x_{2}(t)=\frac{1}{4} t^{4}=\frac{1}{4} x_{1}(t)$.
3. In conclusion, $\left\{x_{1}(t), x_{2}(t), x_{3}(t)\right\}$ is a canonical basis of \mathbf{A} (hence $\Gamma(\mathbf{A})=\langle 4,6,7\rangle$).

Modules and ideals

$\mathbf{A}=\mathbb{K}\left[x_{1}(t), \ldots, x_{n}(t)\right], x_{i}$ is monic $\forall i, \Gamma(\mathbf{A})=\left\langle d\left(x_{1}\right), \ldots, d\left(x_{n}\right)\right\rangle$.
$F_{1}(t), \ldots, F_{s}(t) \in \mathbb{K}[t]$
$\mathbf{M}=F_{1} \mathbf{A}+\ldots+F_{s} \mathbf{A}$
$\mathbf{I}=\cup_{F \in \mathbf{M}} d(F)+\Gamma(\mathbf{A})$ is an ideal of $\Gamma(\mathbf{A})$
Problem How to compute a system of generators of I? In order to answer the problem:
I. We need to generalize the notion of relations.
II. We need a division theorem.

Relations

$F_{i}=t^{a_{i}}+\ldots$ for all $i, S=\Gamma(\mathbf{A})$
$\psi: \mathbf{A}^{s} \longmapsto \mathbf{M}=t^{a_{1}} \mathbf{A}+\ldots+t^{a_{s}} \mathbf{A}$
$\psi\left(g_{1}, \ldots, g_{s}\right)=g_{1} t^{a_{1}}+\ldots+g_{s} t^{a_{s}}$. What is $\operatorname{Ker}(\psi) ?$
Given $a, b \in \mathbb{N}$, we set $a \leq_{s} b$ if $b-a \in S$.
$c \in \min _{\leq s}(a+S) \cap(b+S)$
$a+s_{1}=b+s_{2}=c, t^{s_{1}} t^{a}-t^{s_{2}} t^{b}=0$
$R(a, b)=\left\{\left(s_{1}, s_{2}\right), \ldots\right\}$
$s=2:\left\{\left(t^{s_{1}},-t^{s_{2}}\right),\left(s_{1}, s_{2}\right) \in R\left(a_{1}, a_{2}\right)\right\}$ generates $\operatorname{Ker}(\psi)$. More generally:

Theorem $\left\{\left(0, \ldots, t^{s_{i}}, \ldots,-t^{s_{j}}, 0, \ldots, 0\right),\left(a_{i}, a_{j}\right) \in R\left(a_{i}, a_{j}\right)\right\}$ generates $\operatorname{Ker}(\psi)$.

Example

$$
\begin{aligned}
& \mathbf{A}=\mathbb{K}\left[t^{4}, t^{6}+t\right]=\mathbb{K}\left[t^{4}, t^{6}+t, t^{7}+\frac{1}{2} t^{2}\right] \\
& S=\Gamma(\mathbf{A})=\langle 4,6,7\rangle \\
& \mathbf{M}=F_{1} \mathbf{A}+F_{2} \mathbf{A} \text { with } F_{1}=t^{3} \text { and } F_{4}=t^{4} . \\
& 3+S=\{3,7,9,10,11,13, \longmapsto\} \text { and } \\
& 4+S=\{4,8,10,11,12,14, \longmapsto\} \\
& (3+S) \cap(4+S)=\{10,11,14, \longmapsto\}, \min _{(3+S) \cap(4+S)}=\{10,11\} \\
& R(3,4)=\{(7,6),(8,7)\} \text { with } 3+7=4+6=10 \text { and } \\
& 3+8=4+7=11 . \text { Hence } \\
& \operatorname{Ker}(\psi)=\left(\left(t^{7},-t^{6}\right),\left(t^{8},-t^{7}\right)\right)
\end{aligned}
$$

Division Theorem

Same notations: $F_{1}, \ldots, F_{r} \in \mathbb{K}[t], \mathbf{M}=\sum_{i=1}^{r} F_{i} \mathbf{A}$.
Theorem Given $F \in \mathbb{K}[t], F \neq 0$, there exist $g_{1}, \ldots, g_{r}, r \in \mathbf{A}$ such that:
(1) $F=\sum_{i=1}^{r} g_{i} F_{i}+R$.
(2) For all $i \in\{1, \ldots, r\}$, if $g_{i} \neq 0$ then $d\left(g_{i}\right)+d\left(F_{i}\right) \leq d(F)$.
(3) If $R \neq 0$ then $d(R) \leq d(F)$ and
$d(R) \in \mathbb{N}-\cup_{i=1}^{r}\left(d\left(F_{i}\right)+d(\mathbf{A})\right)$.

Algorithm

$\mathbf{A}=\mathbb{K}\left[x_{1}(t), \ldots, x_{n}(t)\right]$, with $x_{i}(t)=t^{d_{i}}+\ldots$ and
$S=\Gamma(\mathbf{A})=\left\langle d_{1}, \ldots, d_{n}\right\rangle$
$\mathbf{M}=F_{1} \mathbf{A}+\ldots+F_{s} \mathbf{A}, F_{i}(t)=t^{a_{i}}+\ldots$
$E=S\left(F_{1}, \ldots, F_{s}\right)=\cup_{i, j} R\left(a_{i}, a_{j}\right)$

1. Choose $\left(s_{i}, s_{j}\right) \in R\left(a_{i}, a_{j}\right) \subseteq E: s=s_{i}+a_{i}=s_{j}+a_{j}$
2. Choose g_{i}, g_{j} monic in \mathbf{A} such that $g_{i}=t^{s_{i}}+\ldots, g_{j}=t^{s_{j}}+\ldots$
3. Divide $g_{i} F_{i}-g_{j} F_{j}$ (whose degree is $<s$) by F_{1}, \ldots, F_{s}.
4. Do this for all elements in E. If all the remainders are 0 then $\mathbf{I}=\cup_{i-1}^{s}\left(a_{i}+S\right)$. Otherwise we add the non zero remainders and we restart with the new system....

Example

$\mathbf{A}=\mathbb{K}\left[t^{6}+t, t^{4}\right]:\left\{f_{1}=t^{6}+t, f_{2}=t^{4}, f_{3}=t^{7}+\frac{1}{2} t^{2}\right\}$ is a canonical basis of \mathbf{A}.
$\mathbf{M}=F_{1} \mathbf{A}+F_{2} \mathbf{A}$ with $F_{1}=t^{3}$ and $F_{4}=t^{4}, I=d(\mathbf{M})$
$R(3,4)=\{(7,6),(8,7)\}: 3+7=4+6=10,3+8=4+7=11$.
$f_{3} F_{1}-f_{1} F_{2}=\frac{1}{2} t^{5}$ and $5 \notin(3+S) \cup(4+S)$
$f_{2}^{2} F_{1}-f_{3} F_{2}=\frac{1}{2} t^{6}$ and $6 \notin(3+S) \cup(4+S)$
We set $F_{3}=t^{5}, F_{4}=t^{6}$ and we restart with $\left\{F_{1}, F_{2}, F_{3}, F_{4}\right\}$. $\min _{\leq S}(3,5)=\{9,11\}, R(3,5)=\{(6,4),(7,6)\} \ldots$
We can verify that $\{3,4,5,6\}$ is a system of generators of I.

Ideal of differentials

$\mathbf{A}=\mathbb{K}\left[x_{1}(t), \ldots, x_{n}(t)\right], S=\Gamma(\mathbf{A})$
$\mathbf{M}=x_{1}^{\prime}(t) \mathbf{A}+\ldots+x_{n}^{\prime}(t) \mathbf{A}, I=\cup_{F \in \mathbf{M}}(d(F)+S)$
If $s \in S$ then $s-1 \in I$. The set $\{s-1, s \in S\}$ is called the set of exact elements. The other elements in I (if any) are called non exact elements (NE(I) for short). Their cardinality is denoted ne($I)$. Let $F(S)$ be the Frobinus number of S. We have

1. For all $s \geq F(S), s$ is exact.
2. If s is non exact then $s+1$ is a gap of S.
3. $n e(I) \leq g(S)$ where $g(S)$ denotes the genus of S

Polynomial plane curves

$\mathbf{A}=\mathbb{K}[x(t), y(t)]$ and \mathbb{K} is an algebraically closed field of characteristic 0 .
$x(t)=t^{n}+a_{1} t^{n-1}+\ldots, y(t)=t^{m}+b_{1} t^{m-1}+\ldots$ with $n>m$ and $m \nmid n$.
$f(X, Y)=Y^{n}+c_{1}(X) Y^{n-1}+\ldots+c_{n}(X)$ is the minimal polynomial of $(x(t), y(t))$. We say that $V(f) \in \mathbb{K}^{2}$ is a polynomial curve.

Theorem 1. f has one place at infinity and $S=\Gamma(\mathbf{A})$ is a free numerical semigroup.
2. $F(S)+1=\mu(f)=\operatorname{rank}_{\mathbb{K}} \frac{\mathbb{K}[X, Y]}{\left(f_{x}, f_{y}\right)}$ (The Milnor number of f).
3. $g(S)$ is the geometric genus of a smooth curve $f+\lambda, \lambda \in \mathbb{K}$.

Polynomial plane curves

Let $\nu(f)=\operatorname{rank}_{\mathbb{K}} \frac{\mathbb{K}[X, Y]}{\left(f, f_{x}, f_{y}\right)}: \mu(f)$ is called the Turina number of f.
Proposition 1. $\nu(f) \leq \mu(f)$
2. $\nu(f) \geq \frac{\mu(f)}{2}$ (hence $g(S) \leq \nu(f) \leq F(S)+1=2 g(S)$).
3. $\mu(f)=\nu(f)+n e(I)$

Theorem $\mu(f)=\nu(f)$ if and only if $n e(I)=0$ if and only if $\operatorname{gcd} m, n)=1$ and $f \sim Z^{n}-W^{m}$ if and only if $V(f+\lambda)$ is a smooth curve for all $\lambda \neq 0$ (and $V(f)$ has only one singularity which is a cusp)

Polynomial plane curves

Theorem ne $(I)=\nu(f)=g(S)$ if and only if $V(f)$ has $g(S)$ singularities and all of them are nodes if and only if $I=\mathbb{N}$.

Remark $0<n e(I)<g(S)$ if and only if $g(S)<\nu(f)<2 g(S)=\mu(f)$

Proposition If $n e(I)=1$ then $\operatorname{gcd}(m, n)=1$ and $(m, n)=(2,2 k+1),(3,4),(3,5)$

Proposition If $n e(I)=2$ then the embedding dimension of S is eith two $(\operatorname{gcd}(m, n)=1)$ or three and \ldots.

Cases when ne $(I)=g(S)-1$
Remark 1. $0<n e(I)<g(S)$ implies that $V(f)$ has cusps and nodes
2. ne(I) $=0$ implies that $V(f)$ has only cusps (one)
3. ne(I) $=g(S)$ implies that $V(f)$ has only nodes.

Example

$$
\begin{aligned}
& \mathbf{A}=\mathbb{K}\left[x(t)=t^{3}, y(t)=t^{4}-2 t^{2}\right]: S=\Gamma(\mathbf{A})=\langle 3,4\rangle . \\
& \mathbf{M}=t^{2} \mathbf{A}+\left(t^{3}-t\right) \mathbf{A} \text {. We set } F_{1}(t)=t^{2}, F_{2}(t)=t^{3}-t . \\
& \min _{\leq s}(2+S) \cap(3+S)=\{6,11\} \\
& R(2,3)=\{(4,3),(9,8)\} \\
& x_{1} F_{2}-x_{2} F_{1}=-t^{4} \text { and }\left(x_{1}^{3} F_{1}-x_{2}^{2} F_{2}=5 t^{9}-8 t^{7}+4 t^{5}\right. \text {. The } \\
& \text { division of these elements gives } t^{4} \text { and } t \text { as remainders (up to } \\
& \text { constants). } \\
& \text { We set } F_{3}(t)=t^{4}, F_{4}(t)=t \text { and we restart with }\left\{F_{1}, F_{2}, F_{3}, F_{4}\right\} \text {. } \\
& \text { We verify that this system generates } I=d(\mathbf{M}) \text {. Hence } I=\mathbb{N}^{*} \text {. } \\
& \mathrm{Ne}(I)=\{1,4\} \text { hence ne }(I)=2 \text { and } \mu(f)=6=4+\text { ne }(I) \text {, hence } \\
& \nu(f)=4 \text {. }
\end{aligned}
$$

All the algorithms are implemented in GAP.

THANK YOU

