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Abstract. This paper presents a method for image motion estimation
for event-based sensors. Accurate and fast image flow estimation still
challenges Computer Vision. A new paradigm based on asynchronous
event-based data provides an interesting alternative and has shown to
provide good estimation at high contrast contours by estimating motion
based on very accurate timing. However, these techniques still fail in
regions of high-frequency texture. This work presents a simple method
for locating those regions, and a novel phase-based method for event
sensors that estimates more accurately these regions. Finally, we evaluate
and compare our results with other state-of-the-art techniques.
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1 Introduction

Biological strategies refined by evolution, have been emulated in various fields
and been applied to a wide range of application [18]. We are interested in the
adaption of biological vision neural systems to computational principles for the
estimation of visual features. Current cameras are operating synchronously, ac-
quiring image frames at a fixed sampling frequency, but capture visual informa-
tion in a continuous world that works asynchronously. This quantization limits
applications requiring high-speed maneuvering in autonomous navigation and
robotics. When there are no changes, the same visual information is recorded in
different frames. This translates into a demand for plenty resources and memory
in order to process redundant data.

In the last few years frame-free sensors have become increasingly popular
due their accurate time triggering, low-latency, real-time performance, and low-
resource requirements. Emulating the human neural vision system, these sensors
are driven by events. There are two main retina-brain pathways in the human
early vision system: the sustained pathway, that is believed to conduct informa-
tion such as color, texture, or intensity patterns, and the transient pathway, that
only responds to changes. Sensors have focused on the first one while frame-free
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sensors emulate the second. In our case, the DVS (Dynamic Vision Sensor [15])
triggers new events when the reflectance for a specific location changes. In case
of no change, no information is generated. Instead of an external clock that de-
fines the sampling frequency, the control is transferred to the individual pixels
that handles it independently.

From the Computer Vision point of view, the efforts in motion estimation
have been devoted to improving accuracy. The main challenges are due to the
difficulty in estimating at object boundaries, where there are discontinuities in
the flow field. Here is where event-based computation represents an alternative,
since motion estimation is very accurate at boundaries even when the contours
of the objects are not provided in advance. This is because of the high working
frequency of these sensors that allow to obtain image motion by observing events
between neighboring pixels. Thus one can obtain image motion only from edges
without crossing different moving regions.

Current motion estimation techniques for event sensors provide accurate re-
sults, even allowing us to track pixels between neighboring positions (especially
in [6, 3]). Their underlying assumption is that events that are fired during a short
period of time at close-by positions are due to changes in the same edge. Con-
sequently, these methods work accurately for strong contrast edges. However,
high-frequency textures violate the assumption. At such locations, frequency-
based approaches can increase the accuracy. This paper presents an event-driven
method based on local phase (in the frequency domain). Moreover, we also de-
scribe a method to localize the contours of textured objects. Our evaluation
shows that the method achieves more accurate estimates for highly textured
areas than previous approaches.

The paper is structured as follows: section §2 describes the sensor and Section
§3 motivates the motion estimation. Section §4 describes the contour localization
and Section §5 the new phase-based technique for frame-free sensors. Finally,
Section §6 presents results and Section §7 gives the conclusions.

2 Asynchronous frame-free sensors

For a conventional camera, a sequence of M x N frames, are taken at a given
sampling rate fs, such that the value of each pixel (x,y) with z € [0, M — 1]
and y € [0, N — 1] accounts for the intensity recorded during a time Aty =
fs1. The Dynamic Visual Sensor (DVS [15]) fires asynchronous address-events
that signal reflectance changes at the time they occur. Its spatial resolution is
128 x 128 and its maximum temporal resolution is 15 pus. The DVS does not
use a fixed sampling rate. Instead, its samples the input every time the variation
with respect to the last measured value at the same position (z,y) exceeds a fixed
amount. In other words, for an image point (z,y), at time ¢t an event ev(z, y, t,p)
is fired, where p is the polarity +1 or —1, if the log of the intensity I increases or
decreases by a global threshold Al (see Eq. 1). For example, if as in our case,
the threshold is 0.1, it means that the intensity has to change by 10% to fire
an event. The logarithmic input helps dealing with high dynamic ranges. Fig. 1
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Fig. 1. Left: Top part shows the log Intensity and bottom the events fired when the
input changes by AI;. Events are + or - according to the sign of the change. Right:
Image to visualize the events accumulated during 50 ms: warm colors represents positive
counts, cold colors are negative counts and green, the lack of events.

illustrates the workings of the sensor.
|AQlog(I(x, 1,1)))| > Al 1)

Asynchronous frame-free sensors help us address some of the challenges of mo-
tion processing arising in classical Computer Vision. First, since the DVS only
transmits data where and when changes happen, it helps saving a lot of resources.
Second, since the events are fired at a very high frequency, with a temporal res-
olution of a few microseconds, there is no blur due to fast motion. Moreover,
because the input is logarithmic, the sensor can deal with high dynamic range.

3 Motion estimation for asynchronous frame-free sensors

Conventional motion estimation techniques work well in smooth textured areas,
but they have problems at object contours [21]. The greatest challenge are fast
motions and particularly scenes with both: large and small motions. On the other
hand, data from frame-free sensors is spatially highly localized, and because of
the high temporal resolution, potentially allows to locate edges without crossing
different moving regions leading to very accurate boundary motion. Furthermore,
fast motions are not a problem for these sensors. Because of these advantages,
frame-based motion processing has great potential for computational motion
processing, either alone or combined with classic processing [3].

In event-based space, only normal flow can be estimated directly. Normal
flow is the projection of the flow in the direction of the spatial gradient, and it
is sufficient for computing 3D motion as shown in [11, 10].

Authors in [7] adapt the Lucas-Kanade method [16]. The Optical Flow Con-
straint is re-written assimilating the number of events accumulated during a time
interval At into intensity. Denoting as e(x, t) the event that happens at position
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x and time ¢, the derivatives of e are approximated as in Eq. 2, where t; < t.

Ve(x,t) ~ Z e(x,t) — Z e(x —(1,1),1), er(x,t) ~ M

t—At t—At

In [6], the authors define a function 7. (x) that assigns only the time of every new
event fired at position x. Then, the gradient vector of 7. provides the inverse of
the local velocity vector as in V7, = (1/v)T. The velocity is estimated as the
inverse of the horizontal and vertical derivative of this plane. Although accurate,
at broad edges different close-by pixels can fire events at almost the same time,
making the estimation not reliable.

Finally, [3] addresses the issue of broad edges, and presents an alternative
that reconstructs the contrast at object edges and tracks them. The method
first locates for a certain time interval all the events of the moving edge, the
so-called motion boundary. Then, the velocity is estimated as the ratio of all
events in the motion boundary over the events at a single point, normalized for
time. Accumulating events over multiple time intervals and averaging provides
robustness. This work is also the first that combines asynchronous events and
synchronous frames with the new DAVIS sensor [8].

However, all these methods have problems with textures. First, at object con-
tours moving on top of textured regions, the contrast between contour and back-
ground changes over a small time interval, causing different amount of events.
Second, highly-textured areas introduce too much variability for fitting a plane,
or for reconstructing the intensity. Frequency-based methods, adapted to asyn-
chronous event space, can help with this problem.

4 How texture affects event-based frameworks

As mentioned, current techniques assume that nearby events, which are fired
close-by in time, belong to the same structure. However, in highly textured areas
or at broader edges next to textured background, the assumption is violated.

First, let us distinguish between edges and contours: edges are all the strong
discontinuities in the intensity signal, while contours are only those edges that
correspond to the boundaries of objects (depth discontinuities).

Next, we examine the different cases imposed by movement and texture. Case
1: Objects moving on static non-textured background. If the object is textured,
events from contours and texture edges are similar. Event-based methods work
well at contours, but they may not work well in a textured region, if it has
high-frequency, and the method accumulates events over longer time intervals.
If the object is plain, only at the boundary of the object events are fired, where
classic event-based methods work well. Case 2: Moving objects on static textured
background. Since the background is textured, the patterns of events on the
contours over time are changing. Such situations pose a problem for event based
methods. Case 3: Both the object and the textured background are moving. In
this case, two different physical motions take place in regions next to object
boundaries. This is the most difficult case for image motion estimation.
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Fig. 2. Left: Contour localization using cross-correlation (left to right): original frame,
3D and 2D representation of the cross-correlation coefficient. Right: A sinusoid moving
to the left shown as dashed line at time t and as solid line at t+ At. The recorded events
over a small time interval make a sinusoid function of same frequency. Red arrows are
proportional in size to the amount of positive or negative events at the location.

4.1 Locating contours of textured objects

Contours can be separated from other edges if we consider the patterns of events
at single pixels. The event pattern at texture edges should be shifted (since there
is the same contrast between neighboring pixels over time.) But for contours the
pattern changes due to a background texture. Considering separately every pixel,
the timestamps of the events can be looked at as a 1D signal. Normalized cross-
correlation measures the similarity of 1D signals, and it is widely used in signal
processing [19]. Our idea is that if there is a texture, events from neighboring
positions would have very high cross-correlation coefficients while in the case of
broad edges or contours on top of textured backgrounds, the crosscorrelation is
low. Let us assume we have the 1 x N signal f(t) and 1 x M signal g(t), Eq. 3
defines the normalized cross-correlation

_ IS GO — PPt~ d) —9)?
1(7(0) = FPIllI(g(t = ) — 7)1l

Where d € [0, M — 1] is the lag or delay between the signals (in case they are
shifted), and the normalized cross-correlation is an M x N vector. The maximum
gives us the coefficient for measuring the similarity. As mentioned, due to the
high-temporal resolution of the sensor, changes are tracked pixel by pixel. Then,
the cross-correlation is performed for the 1D signals (composed by the series
of timestamps of the events fired) of the neighboring pixels in a region of only
3 x 3. Next, to increase the robustness, more events are required since noise and
distortions may limit the accuracy. For signal correlation, low-pass filters reduce
signal noise. However, asynchronous frame-free sensors fire discrete events. Thus,
instead of low-pass filters we use activity filters to reduce outliers and noise.

nee(d)

3)
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Events do not occur isolated in time and/or space, so events that are not very
close spatio-temporally to other groups of events are discarded (we use 5 ms
intervals and 3 x 3 windows). Moreover, robustness increases with the number
of samples. Assuming longer time intervals increases the latency and reduces
performance. In our work, we propose using larger spatial windows (3 x 3) and
compact all their events into a single 1D signal.

The left part of Fig. 2 shows the cross-correlation coefficient. The first row
shows a synthetic sequence with a texture moving on top of a textured back-
ground (case 1). The first image shows the original frame, the last two images
illustrate the cross-correlation coefficient with 3D and 2D views. The minimum
correlation values show the object boundaries (in yellow/green). Row 2 shows an
example for case 2. There is negative correlation, since for real-world sequences,
the background generates a lot of activity at the contour of the object due to
the texture and noise. Finally, row 3 shows an example for case 3, in which the
negative cross-correlation coefficient values separate two different textures.

5 Phase-based motion estimation

This work presents for the first time the use of frequency-based concepts for mo-
tion estimation with event-based sensors. Frequency-based methods or energy-
based methods on classical image frames use the responses from a bank of filters
tuned to different spatio-temporal frequencies. Different methods consider the
energy of these responses [1, 25, 13]. These techniques usually estimate at a point
the local spatial and temporal angular frequencies by computing responses to
a bank of filters tuned to different frequencies. In our case, instead of directly
using the frequency, we use the local phase [12]. Since the Gabor responses from
the filter bank are complex valued, they can be expressed as in Eq. 4

g(x,t) = Gabor(x,t) * I(x,t) = p(x,t)e’?) (4)

where p is the amplitude and ¢ the phase. Therefore, the filter responses can
be used to extract the local phase ¢(x,t) (the angle of the odd and even parts).
Now, an adapted Optical Flow Constraint that assumes the constancy of the
spatio-temporal contours using the phase is formulated. Due to the aperture
problem, only the velocity in the direction of the spatial phase gradient Vx¢
can be computed. In this case, the normal flow v,, can be estimated as v, =
—¢¢/||Vx@||2 with ¢, the temporal derivative of the phase.

5.1 Frame-free estimation

Let us consider for example, a 1D sinusoid that is moving to the left. The events
collected over a small time interval At are due to the difference of the sinusoid
and its phase-shifted copy, as shown in the right part of Fig. 2 by the solid and
dashed lines respectively. The signal of accumulated events shown in the same
axis is another sinusoid of the same frequency. For the sake of clarity, this figure
ignores that the input is logarithmic for our DVS.
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Let us consider that the first sinusoid equation is acos(wz(t)), with a denoting
the amplitude. Then the accumulated events can be expressed as a sinusoid of
with a different amplitude but the same frequency than the original, and shifted.

S(x(t),t) = acos(wx(t))—acos(wz(t)+At) = 2asin(%>cos (wx(t)—i—%(At—i—C))

(5)
The signal of accumulated events (see Eq. 5) is shifted, but this shift is always
the same and only depends on At. Therefore, an alternative estimation based
on the accumulations of events is possible. Moreover, we assume that the local
phase of the signal of accumulated events remains constant over a short time
interval. The first step consists in defining the function of accumulated events
for a small time interval as S: N2, R — N, that assigns to every position x the
number of events that occur during that time interval at that position (Eq. 6).

S(x,t) =k Z e(x,t), keR (6)
t—At

Instead of image intensity we use this signal in the event-based framework, and

the assumption of constant local image phase in [12] is rephrased as assuming the

constancy of spatio-temporal contours of the signal of accumulated events. This

way, the solution for the new Optical Flow Constraint is based on the estimation

of the phase gradient of accumulated events and computed as in Eq. 7
Imlg*(x,t)Vg(x, t)]

VOO ) = Relge, O + Tnlg(x, OF "

where V¢ is the phase gradient, with g(x,t) the complex response of the Gabor
filter bank for the signal S(x,t), Im and Re are the imaginary and real parts,
and ¢g* stands for the complex conjugate.

6 Results

This section compares our method to other event-based algorithms as well as
conventional frame-based methods. We have created three benchmark datasets:
in §6.1 using conventional benchmarks and creating synthetic events, in §6.2
using 3D scene model and motion ground-truth and creating synthetic events,
and in §6.3 collecting events with the DV'S mounted on a robotic mobile platform
that provides its egomotion.

6.1 Classic synthetic scenes for event-based data

Due to the lack of event-based benchmark datasets, we created simulated data to
compare our method to state-of-the-art Computer Vision algorithms. We select
the central frames of sequences from the Middlebury dataset [2]. Using the pro-
vided ground-truth, the ground truth motion is derived for very small time inter-
vals: e.g., we simulate about 50000 frames for every two frames. This means that
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t. . i b Gl < k) vy
‘Method ‘Translatlon Tree Dlvergmg Tree‘ Yosemlte‘Rubberwhale‘Dlmetrodon‘ GroveZ‘ UrbanQ‘

[Event phase 16.6 (9.6%)| 29.8 (5.5%)|21.6 (12.4%)[ 30.7 (5.2%)] 42.5 (1.6%)[23.1 (5.3%)|21.7 (2.2%)|
Fleet & Jepson [12] 98.4 04.7 97.3 95.4 NA 98.8 99.6
Otte-Nagel [20] 17.6 46.7 39.7 24.9 NA 38.9 86.0
Uras [24] 37.5 47.0 45.1 53.1 54.2 487 85.5
Horn-Schuck [14] 47.9 48.7 61.8 34.7 72.0 84.9 94.9
Lucas & Kanade [16] 51.8 55.3 61.3 44.6 61.6 79.2 88.3
Sun [22] 1.6 46.6 27.0 11.6 4.7 3.4 23.0
[Events [3] 9 (5.4%)] 33.6 (0.4%)[ 18.6 (0.5%)[ 27.3 (1.2%)[23.6 (1.4%)] NA] NA|

Fig. 3. Phase-based motion estimation for “Translation tree”, “Yosemite”, “Rubber-
whale”, “Grove2” (from Middlebury [2]), and “029_Brickbox2t2” (from UCL dataset
[17]). The table reports the relative AEPE (in %) and the density of valid values
(in % and in parenthesis) for standard optic flow methods and event-based methods.
Highlighted values correspond to the lowest errors but, when comparing event-based
methods we highlight multiple methods, if the error is similar but the density is signif-
icantly different.

Sequence Sun [22]| Phase events| Barranco [3]|Benosman [6]|Benosman [7]
Brickbox1[68.6 (15.5%)|59.8 (15.5%)| 73.8 (10.6%)| 88.5 (10.0%)| 88.8(17.9%)
Brickbox2|41.2 (32.7%)|38.8 (32.7%)| 68.5 (5.9%)| 86.0 (31.7%)| 71.7 (42.1%)
robot#1 NA| 44.2 (9.9%)] 62 (10.3%)] 88.7 (14.3%)| 63.5 (2.6%)
robot#2 NA| 45.8 (8.9%)[66.2 (10.71%)| 83 (3.4%)|  60.5 (3%)
robot#3 NA[42.3 (10.8%)| 48.3 (8.75%)| 80 (11.8%)| 71 (9.4%)
robot#4 NA|44.3 (7.11%)] 51.2 (11.2%)] 85.8 (12.2%)| 77.1 (6.1%)

Table 1. Relative AEPE (in %) and density of valid values (in % and in parenthesis)
for event-based motion estimation methods.

if conventional frames are obtained at 20 fps, our simulation provides 1000000
fps. Using the image motion for the short time intervals, interpolation gives us
frame-by-frame the changes in intensity, from which we then derive the events
and their timestamps at 1us temporal resolution. Occluded and disoccluded re-
gions are handled separately, since most of the conventional benchmarks do not
provide the image motion for occluded regions. If the scene in the region and
the camera are static, we fill in the intensity values with the ones extracted from
the previous frame (for disoccluded regions), or the next frame (for occluded re-
gions). If there is motion, for a texture-less region we also assume the background
motion of the neighboring region, otherwise, we discard it.

The relative Average End Point Error is used as a measure of the accuracy
of the estimation. We simulated the events for the following scenes: “Diverg-
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ing Tree”, “Translation Tree”, and “Yosemite”. These are synthetic sequences
simulating a moving camera approaching a tree image, moving to the right in
front of the same tree, and a fly-through over the Yosemite Valley. We also used
the the real sequences “Dimetrodon” and “Rubberwhale”, which were taken by
static camera with different moving objects and the two scenes “Urban2” and
“Grove2’ with stronger textures and global motion.

Fig. 3 compares the proposed method, our contour-based event method [3]
and top frame-based algorithms, among them the method of Sun [22], which
ranked the first in 2014 in [2]. Since we are estimating normal flow, to compare
with the ground-truth, we project the actual flow onto the gradient direction
computed by our event-based method. In the figure, the ’density’ denotes the
percentage of points with normal flow data for a method, out the total number
of points (as in [5, 4,9, 23]), except the points for which there is no ground-truth
available. Note that the error is reported for the exact same locations when com-
paring with the conventional frame-based techniques. Bold fonts highlight the
lowest error in the comparison of the phase-based method to classical methods.
Regarding to the contour-based method [3], it is included separately only for
the sake of clarity. The error reported for this last method does correspond to
different locations and thus, the densities are not the same.

Our phase-based method performs significantly better than many conven-
tional algorithms, specifically [12, 20, 24, 14, 16]. The frame-based estimation pro-
vides dense estimates, but is bad at contours, where most of the events are com-
ing from. The top method of Sun [22] used in the comparison, employs a number
of sophisticated Computer Vision techniques, such as a hierarchical matching
scheme for large motions, median filtering to reduce outliers, occlusions, etc.
Even though it outperforms our method for four scenes, we are still doing better
for the others. Conventional image-based algorithms perform better with global
motion, since the flow changes smoothly along the scene, and this is precisely
what many methods such as the one in Sun assume. Analyzing the sequences, our
method outperforms Sun for the sequences with a strong texture component and
with no global motion. The phase based method is better than the event-based
method [3] for three scenes. But the methods should not be compared generally,
as address different regions, which is reflected in the different densities.

Standard datasets are not well suited for evaluating event-driven methods
since often they have carefully chosen small inter-frame distances, there is no
data at occlusions, and there is no 3D information. Nevertheless, the average
error for our phase-based method is 26.5 with 5.9% density, while the method
in [3] achieves 22.4 but with only 1.78% valid values (3 times less).

6.2 Virtual scenes for event-based data

We created a dataset of synthetic sequences for evaluation of event-based meth-
ods. We used the sequences “026_Brickbox1t1”, “029_Brickbox2t2” from the
dataset [17]. These are two sequences with differently textured objects and with
large inter-frame displacements. Using the know 3D models and 3D motion,
we simulated the events to obtain our the ground-truth. Using this data we
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Fig. 4. Example of the scenes collected with the sensor mounted on a mobile platform.
The image in the right shows a capture of the set up captured with a camera.

evaluated the accuracy of different different event-based algorithms [3,7,6] in
Table 1. To allow for comparison to conventional techniques, the table also
provides the results for the Sun method [22] . The motion estimation for the
“029_Brickbox2t2” sequence is shown in Fig. 3.

From Table 1 we can infer that our method achieves better results in the
relative AEPE for these high-frequency texture sequences. Our method performs
even better than Sun’s method, with an error reduction of 5 points (considering
same density). In comparison to previous works our method achieves an average
improvement of 30% with 4.1% more estimates. We use the same parameters
described in the paper for [3], for [6] we set th! = 1000us and th2 = 0.25, and
for [7] we use At = 500us and 5 x 5 windows for the least-squares estimation.
We assumed that the real sequences were recorded at 40 fps, and we simulated a
temporal resolution of 10us with 2500 samples between two consecutive frames.

6.3 Real scenes for event-based data

We also collected real data using the DVS camera on-board a mobile platform.
We collected four sequences: “robot#1” and “robot#2” are pure zoom-in mo-
tion(translations for Z = 0.2 m/s); “robot#3” is a pure rotation (roll = 0, pitch
= 0, yaw = 7w /4) and “robot#4” has both rotation (roll = 0, pitch = 0, yaw
= m/4) and translation (Y = -0.15 m/s, Z = 0.5 m/s). The estimated motion
is for 1s. The ground-truth data was derived from the odometry of the robot,
the sensor parameters (focal length and optic center), and depth measurement
of the objects, which were positioned fronto-parallel to the sensor.

The setup consisting of three textured boxes at different depths, and the
estimated motion for three sequences superimposed on the image of accumulated
events are show in Fig. 4. As seen in Table 1, the algorithm presented in this
paper achieves better results than any of the previous event-based methods in
the literature. The difference is most significant for “robot#3”, where due the
rotation, the vertical components of the textures cause more events and reduce
the accuracy of other methods. In these scenes the edges are not clean but appear
broader caused by the textures in the background. This causes previous methods
to fail while the method presented in the paper still achieves reasonable accuracy.
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The average error reduction in the worst case is about 13%, and in the best case
about 40%, considering a similar number of image points with estimates.

7 Conclusions

Current event-based image motion estimation techniques have good performance
at contours, where classical conventional methods fail. Using address events or
a combination of event data with the intensity signal they have been shown to
reduce computational complexity and perform at real time. However, existing
methods rely on the assumption that close-by pixels from the same edge fire
events also close in time, which is false for textured edges. In this paper we
introduced an approach, that deals with such textured edges. We first presented
a simple method for locating such textured edges. Second, we presented a method
that uses the local phase of the event signal to accurately estimate image motion.
Using the local phase instead of trying to reconstruct the intensity signals as in
previous works, allows us to avoid the problem with textured edges.

We presented experimental results comparing the method to classic Com-
puter Vision methods and other event-based approaches using synthetic se-
quences, and sequences collected with a sensor mounted on a mobile platform.
Our method reduces the error in synthetic sequences, but it is hard to evaluate
the significance the results. The results are more obvious for real scenes with
textured objects, where the method was shown to decrease the error up to 30%.

We suggest that an optimal strategy, would be to use different techniques
for image motion estimation, depending on the structure of data near a pixel.
In future work we plan to develop a systematic method to decide for a given
pixel, which method to use. Current event-based techniques are good for clean
contours, as there they are accurate and have real-time performance, while our
phase-based method requires extended time support for the filters, but has higher
accuracy for textured contours.
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