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Fréchet differentiability

H is a real Hilbert space

F is Fréchet differentiable at u ∈ H

if ∃T ∈ B(H,H) such that

lim‖w‖→0
F (u+w)−F (u)−Tw

‖w‖ = 0
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Fréchet differentiability

H is a real Hilbert space

F is Fréchet differentiable at u ∈ H

if ∃T ∈ B(H,H) such that

lim‖w‖→0
F (u+w)−F (u)−Tw

‖w‖ = 0

⇐⇒
∃T ∈ B(H,H) such that

limt→0
F (u+tv)−F (u)

t
= Tv, uniformly for v in bounded subsets of

H
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Hadamard differentiability

F is Hadamard differentiable at u ∈ H
if ∃T ∈ B(H,H) such that

limn→∞
F (u+tnvn)−F (u)

tn
= Tv for all v ∈ H

for all {tn} ⊂ R\{0} with tn → 0
and for all {vn} ⊂ H with vn → v
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Hadamard differentiability

F is Hadamard differentiable at u ∈ H
if ∃T ∈ B(H,H) such that

limn→∞
F (u+tnvn)−F (u)

tn
= Tv for all v ∈ H

for all {tn} ⊂ R\{0} with tn → 0
and for all {vn} ⊂ H with vn → v

⇐⇒
∃T ∈ B(H,H) such that

limt→0
F (u+tv)−F (u)

t
= Tv,

uniformly for v in compact subsets of H
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w-Hadamard differentiability

F is w-Hadamard differentiable at u ∈ H
if ∃T ∈ B(H,H) such that for all ϕ ∈ H

limn→∞

〈

F (u+tnvn)−F (u)
tn

, ϕ
〉

= 〈Tv, ϕ〉 for all v ∈ H

and for all {tn} ⊂ R\{0} with tn → 0
and for all {vn} ⊂ H with vn ⇀ v weakly in H
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w-Hadamard differentiability

F is w-Hadamard differentiable at u ∈ H
if ∃T ∈ B(H,H) such that for all ϕ ∈ H

limn→∞

〈

F (u+tnvn)−F (u)
tn

, ϕ
〉

= 〈Tv, ϕ〉 for all v ∈ H

and for all {tn} ⊂ R\{0} with tn → 0
and for all {vn} ⊂ H with vn ⇀ v weakly in H

⇐⇒
∃T ∈ B(H,H) such that,for all ϕ ∈ H

limt→0

〈

F (u+tv)−F (u)
t

, ϕ
〉

= 〈Tv, ϕ〉 ,

uniformly for v in bounded subsets of H.
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Abstract bifurcation theory

H a real Banach space, F : H → H with F (0) = 0.

F (u) = λu for (λ, u) ∈ R ×H
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Abstract bifurcation theory

H a real Banach space, F : H → H with F (0) = 0.

F (u) = λu for (λ, u) ∈ R ×H

λ ∈ R is called a bifurcation point if
there exists {(λn, un)} ⊂ R ×H such that

F (un) = λnun and un 6= 0 for all n ∈ N,

λn → λ and ‖un‖H → 0 as n→ ∞.
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Abstract bifurcation theory

H a real Banach space, F : H → H with F (0) = 0.

F (u) = λu for (λ, u) ∈ R ×H

λ ∈ R is called a bifurcation point if
there exists {(λn, un)} ⊂ R ×H such that

F (un) = λnun and un 6= 0 for all n ∈ N,

λn → λ and ‖un‖H → 0 as n→ ∞.

Let BF ⊂ R denote the set of all bifurcation points.
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Necessary conditions for bifurcation

Theorem Let F : H → H be a function such that F (0) = 0
and F is w-Hadamard differentiable at u = 0 with F ′(0) = F ′(0)∗.
If µ ∈ (Λe,∞)\σ(F ′(0)) where Λe = supσe(F

′(0)) and

lim sup
‖u‖→0

〈F (u) − F ′(0)u, u〉

‖u‖2 < d(µ, σ(F ′(0)),

then µ /∈ BF .
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Necessary conditions for bifurcation

Theorem Let F : H → H be a function such that F (0) = 0
and F is w-Hadamard differentiable at u = 0 with F ′(0) = F ′(0)∗.
If µ ∈ (Λe,∞)\σ(F ′(0)) where Λe = supσe(F

′(0)) and

lim sup
‖u‖→0

〈F (u) − F ′(0)u, u〉

‖u‖2 < d(µ, σ(F ′(0)),

then µ /∈ BF .

We have an example where F : L2(Ω) → L2(Ω) is both
Hadamard and w-Hadamard differentiable with F ′(0) = I but
B = [a, b] where a < 1 < b.
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Sufficient conditions for bifurcation

(H1) ψ ∈ C1(H,R) with ψ(u) = ψ(−u) and ψ(0) = 0 such that

lim
‖u‖→∞

ψ(u)

‖u‖2 = 0

and
ψ′(u)u < 2ψ(u) for all u ∈ H\{0}.
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Sufficient conditions for bifurcation

(H1) ψ ∈ C1(H,R) with ψ(u) = ψ(−u) and ψ(0) = 0 such that

lim
‖u‖→∞

ψ(u)

‖u‖2 = 0

and
ψ′(u)u < 2ψ(u) for all u ∈ H\{0}.

Define F : H → H by

〈F (u), v〉 = ψ′(u)v for all u, v ∈ H
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Sufficient conditions for bifurcation

(H1) ψ ∈ C1(H,R) with ψ(u) = ψ(−u) and ψ(0) = 0 such that

lim
‖u‖→∞

ψ(u)

‖u‖2 = 0

and
ψ′(u)u < 2ψ(u) for all u ∈ H\{0}.

Define F : H → H by

〈F (u), v〉 = ψ′(u)v for all u, v ∈ H

(H2) F : H → H is compact.
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Sufficient conditions for bifurcation

(H1) ψ ∈ C1(H,R) with ψ(u) = ψ(−u) and ψ(0) = 0 such that

lim
‖u‖→∞

ψ(u)

‖u‖2 = 0

and
ψ′(u)u < 2ψ(u) for all u ∈ H\{0}.

Define F : H → H by

〈F (u), v〉 = ψ′(u)v for all u, v ∈ H

(H2) F : H → H is compact.

(H3) F : H → H is either Hadamard or w-Hadamard
differentiable at u = 0 with F ′(0) = F ′(0)∗.
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Theorem Suppose (H1), (H2) and (H3).
(A) If Λe > 0, then [0,Λe] ⊂ BF ,
and there is vertical bifurcation at every µ ∈ (0,Λe).
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Theorem Suppose (H1), (H2) and (H3).
(A) If Λe > 0, then [0,Λe] ⊂ BF ,
and there is vertical bifurcation at every µ ∈ (0,Λe).
and
(B) (Λe

+,∞) ∩ σ(F ′(0)) ⊂ BF

where Λe
+ = max{0,Λe}

and there is bifurcation to the left at every
µ ∈ (Λe

+,∞) ∩ σ(F ′(0)),
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Theorem Suppose (H1), (H2) and (H3).
(A) If Λe > 0, then [0,Λe] ⊂ BF ,
and there is vertical bifurcation at every µ ∈ (0,Λe).
and
(B) (Λe

+,∞) ∩ σ(F ′(0)) ⊂ BF

where Λe
+ = max{0,Λe}

and there is bifurcation to the left at every
µ ∈ (Λe

+,∞) ∩ σ(F ′(0)),

If F is w-Hadamard differentiable at u = 0,
then (Λe

+,∞) ∩ σ(F ′(0)) = (Λe
+,∞) ∩BF .

Bifurcation and concentration for a degenerate elliptic boundary value problem – p. 9/31



Remarks

If (H2) holds and F is Fréchet differentiable at u = 0,
then F ′(0) is compact and so σe(F

′(0)) = {0}.
Thus the situation (A) cannot occur in this case.
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Remarks

If (H2) holds and F is Fréchet differentiable at u = 0,
then F ′(0) is compact and so σe(F

′(0)) = {0}.
Thus the situation (A) cannot occur in this case.

In (A) we have that [0,Λe] ⊂ BF ,
without requiring that (0,Λe) ⊂ σ(F ′(0)).
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Remarks

If (H2) holds and F is Fréchet differentiable at u = 0,
then F ′(0) is compact and so σe(F

′(0)) = {0}.
Thus the situation (A) cannot occur in this case.

In (A) we have that [0,Λe] ⊂ BF ,
without requiring that (0,Λe) ⊂ σ(F ′(0)).

We have similar results for equations of the form

F (λ, u) = 0.
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Remarks

If (H2) holds and F is Fréchet differentiable at u = 0,
then F ′(0) is compact and so σe(F

′(0)) = {0}.
Thus the situation (A) cannot occur in this case.

In (A) we have that [0,Λe] ⊂ BF ,
without requiring that (0,Λe) ⊂ σ(F ′(0)).

We have similar results for equations of the form

F (λ, u) = 0.
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Degenerate elliptic bvp

N ≥ 3,Ω ⊂ R
N open bounded, 0 ∈ Ω
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Degenerate elliptic bvp

N ≥ 3,Ω ⊂ R
N open bounded, 0 ∈ Ω

−∇ · {A(x)∇u(x)} = λf(u(x)) for x ∈ Ω

u(x) = 0 for x ∈ ∂Ω,
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Degenerate elliptic bvp

N ≥ 3,Ω ⊂ R
N open bounded, 0 ∈ Ω

−∇ · {A(x)∇u(x)} = λf(u(x)) for x ∈ Ω

u(x) = 0 for x ∈ ∂Ω,

(D1) A ∈ C(Ω) with A(x) > 0 for all x ∈ Ω\{0}

and lim|x|→0
A(x)

|x|2
= 1,
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Degenerate elliptic bvp

N ≥ 3,Ω ⊂ R
N open bounded, 0 ∈ Ω

−∇ · {A(x)∇u(x)} = λf(u(x)) for x ∈ Ω

u(x) = 0 for x ∈ ∂Ω,

(D1) A ∈ C(Ω) with A(x) > 0 for all x ∈ Ω\{0}

and lim|x|→0
A(x)

|x|2
= 1,

(D2) f ∈ C1(R) with f(0) = 0, f ′(0) = 1,
sup{|f ′(s)| : s ∈ R} = M <∞
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Finite energy solutions

E(u) = 1
2

∫

ΩA |∇u|2 dx− λ
∫

Ω F (u)dx <∞

where F (s) =
∫ s

0 f(t)dt.
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Finite energy solutions

E(u) = 1
2

∫

ΩA |∇u|2 dx− λ
∫

Ω F (u)dx <∞

where F (s) =
∫ s

0 f(t)dt.

Since
∫

ΩA(x) |∇u(x)|2 dx <∞ ⇐⇒
∫

Ω |x|2 |∇u|2 dx <∞
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Finite energy solutions

E(u) = 1
2

∫

ΩA |∇u|2 dx− λ
∫

Ω F (u)dx <∞

where F (s) =
∫ s

0 f(t)dt.

Since
∫

ΩA(x) |∇u(x)|2 dx <∞ ⇐⇒
∫

Ω |x|2 |∇u|2 dx <∞

and |F (s)| ≤ M
2 s

2,
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Finite energy solutions

E(u) = 1
2

∫

ΩA |∇u|2 dx− λ
∫

Ω F (u)dx <∞

where F (s) =
∫ s

0 f(t)dt.

Since
∫

ΩA(x) |∇u(x)|2 dx <∞ ⇐⇒
∫

Ω |x|2 |∇u|2 dx <∞

and |F (s)| ≤ M
2 s

2,

We seek solutions in the space
H = {u ∈ L2 :

∫

Ω |x|2 |∇u|2 dx <∞, u = 0 on ∂Ω}
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Finite energy solutions

E(u) = 1
2

∫

ΩA |∇u|2 dx− λ
∫

Ω F (u)dx <∞

where F (s) =
∫ s

0 f(t)dt.

Since
∫

ΩA(x) |∇u(x)|2 dx <∞ ⇐⇒
∫

Ω |x|2 |∇u|2 dx <∞

and |F (s)| ≤ M
2 s

2,

We seek solutions in the space
H = {u ∈ L2 :

∫

Ω |x|2 |∇u|2 dx <∞, u = 0 on ∂Ω}

But
∫

Ω u
2dx ≤ 4

N2

∫

Ω |x|2 |∇u|2 dx for u ∈ H,
(Hardy for v(x) = |x|u(x))
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Finite energy solutions

E(u) = 1
2

∫

ΩA |∇u|2 dx− λ
∫

Ω F (u)dx <∞

where F (s) =
∫ s

0 f(t)dt.

Since
∫

ΩA(x) |∇u(x)|2 dx <∞ ⇐⇒
∫

Ω |x|2 |∇u|2 dx <∞

and |F (s)| ≤ M
2 s

2,

We seek solutions in the space
H = {u ∈ L2 :

∫

Ω |x|2 |∇u|2 dx <∞, u = 0 on ∂Ω}

But
∫

Ω u
2dx ≤ 4

N2

∫

Ω |x|2 |∇u|2 dx for u ∈ H,
(Hardy for v(x) = |x|u(x))

so H is a Hilbert space with
〈u, v〉A =

∫

ΩA(x)∇u · ∇vdx.
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For Ireneo Peral

Consider A(x) = |x|2 and f(s) = s− g(s) where g′(0) = 0

Set v(x) = |x|u(x)
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For Ireneo Peral

Consider A(x) = |x|2 and f(s) = s− g(s) where g′(0) = 0

Set v(x) = |x|u(x)

u ∈ H ⇐⇒ v ∈ H1
0 (Ω)
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For Ireneo Peral

Consider A(x) = |x|2 and f(s) = s− g(s) where g′(0) = 0

Set v(x) = |x|u(x)

u ∈ H ⇐⇒ v ∈ H1
0 (Ω)

−∇ · {|x|2 ∇u} = λf(u)
⇐⇒
−∆v − µ

r2 v + λ
r
g(v

r
) = 0

where µ = λ+ 1 −N
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For Ireneo Peral

Consider A(x) = |x|2 and f(s) = s− g(s) where g′(0) = 0

Set v(x) = |x|u(x)

u ∈ H ⇐⇒ v ∈ H1
0 (Ω)

−∇ · {|x|2 ∇u} = λf(u)
⇐⇒
−∆v − µ

r2 v + λ
r
g(v

r
) = 0

where µ = λ+ 1 −N

Note that λ = N2

4 ⇐⇒ µ = (N−2)2

4
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For Ireneo Peral

Consider A(x) = |x|2 and f(s) = s− g(s) where g′(0) = 0

Set v(x) = |x|u(x)

u ∈ H ⇐⇒ v ∈ H1
0 (Ω)

−∇ · {|x|2 ∇u} = λf(u)
⇐⇒
−∆v − µ

r2 v + λ
r
g(v

r
) = 0

where µ = λ+ 1 −N

Note that λ = N2

4 ⇐⇒ µ = (N−2)2

4

If g(s) = |s|σ s, the problem is
−∆v − µ

r2 v + λ
rσ+2 |v|

σ v = 0

v ∈ H1
0 (Ω)
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Solutions of bvp

A solution of bvp is a pair (λ, u) ∈ R ×H such that
∫

ΩA(x)∇u(x) · ∇ϕ(x)dx = λ
∫

Ω f(u(x))ϕ(x)dx

for all ϕ ∈ H
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Solutions of bvp

A solution of bvp is a pair (λ, u) ∈ R ×H such that
∫

ΩA(x)∇u(x) · ∇ϕ(x)dx = λ
∫

Ω f(u(x))ϕ(x)dx

for all ϕ ∈ H

A point Λ ∈ R is a bifurcation point for bvp
if there is a sequence {(λn, un)} ⊂ R ∈ [H\{0}]
of solutions such that
λn → Λ and |un|2 → 0,
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Solutions of bvp

A solution of bvp is a pair (λ, u) ∈ R ×H such that
∫

ΩA(x)∇u(x) · ∇ϕ(x)dx = λ
∫

Ω f(u(x))ϕ(x)dx

for all ϕ ∈ H

A point Λ ∈ R is a bifurcation point for bvp
if there is a sequence {(λn, un)} ⊂ R ∈ [H\{0}]
of solutions such that
λn → Λ and |un|2 → 0,

⇐⇒ ‖·‖A → 0.
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Equation in H

Define K(u) and G(u) ∈ H by

〈K(u), v〉A =

∫

Ω
uvdx and

〈G(u), v〉A =

∫

Ω
f(u)vdx for all u, v ∈ H
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Equation in H

Define K(u) and G(u) ∈ H by

〈K(u), v〉A =

∫

Ω
uvdx and

〈G(u), v〉A =

∫

Ω
f(u)vdx for all u, v ∈ H

(λ, u) ∈ R ×H satisfies bvp ⇐⇒ u = λG(u).
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Equation in H

Define K(u) and G(u) ∈ H by

〈K(u), v〉A =

∫

Ω
uvdx and

〈G(u), v〉A =

∫

Ω
f(u)vdx for all u, v ∈ H

(λ, u) ∈ R ×H satisfies bvp ⇐⇒ u = λG(u).

K ∈ B(H,H) and K = K∗ > 0
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Equation in H

Define K(u) and G(u) ∈ H by

〈K(u), v〉A =

∫

Ω
uvdx and

〈G(u), v〉A =

∫

Ω
f(u)vdx for all u, v ∈ H

(λ, u) ∈ R ×H satisfies bvp ⇐⇒ u = λG(u).

K ∈ B(H,H) and K = K∗ > 0

G : H → H is Hadamard and
w-Hadamard differentiable at u = 0 with G′(0) = K.

G : H → H is compact if sups∈R |f(s)| <∞
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Equation in H
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Linearisation

σ(K) ⊂ [0,∞) and supσe(K) = 4
N2
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Linearisation

σ(K) ⊂ [0,∞) and supσe(K) = 4
N2

K = G′(0) : H → H is not compact
G : H → H is not Fréchet differentiable if sups∈R |f(s)| <∞
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Linearisation

σ(K) ⊂ [0,∞) and supσe(K) = 4
N2

K = G′(0) : H → H is not compact
G : H → H is not Fréchet differentiable if sups∈R |f(s)| <∞

µ ∈ σ(K) ∩ ( 4
N2 ,∞) ⇐⇒

the linear boundary value problem

−∇ · {A(x)∇u(x)} = λu(x) for x ∈ Ω

u = 0 for x ∈ ∂Ω

has a non-trivial solution u ∈ H for λ = 1
µ
.
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Linearisation

σ(K) ⊂ [0,∞) and supσe(K) = 4
N2

K = G′(0) : H → H is not compact
G : H → H is not Fréchet differentiable if sups∈R |f(s)| <∞

µ ∈ σ(K) ∩ ( 4
N2 ,∞) ⇐⇒

the linear boundary value problem

−∇ · {A(x)∇u(x)} = λu(x) for x ∈ Ω

u = 0 for x ∈ ∂Ω

has a non-trivial solution u ∈ H for λ = 1
µ
.

Σ = { 1
µ

: µ ∈ σ(K) ∩ ( 4
N2 ,∞)} is the set of all eigenvalues of this

linearisation of bvp.
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Bifurcation for bvp

Theorem Suppose (D1) and (D2) are satisfied.
Let B be the set of bifurcation points for the bvp.
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Bifurcation for bvp

Theorem Suppose (D1) and (D2) are satisfied.
Let B be the set of bifurcation points for the bvp.

(i) If 0 ≤ f(s)/s ≤ 1 for all s 6= 0,

then B ⊂ Σ ∪ [N
2

4 ,∞).
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Bifurcation for bvp

Theorem Suppose (D1) and (D2) are satisfied.
Let B be the set of bifurcation points for the bvp.

(i) If 0 ≤ f(s)/s ≤ 1 for all s 6= 0,

then B ⊂ Σ ∪ [N
2

4 ,∞).

(ii) If f is odd with sups∈R |f(s)| <∞ and
sf(s) < 2

∫ s

0 f(t)dts for all s > 0,

then Σ ∪ [N
2

4 ,∞) ⊂ B.
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Bifurcation for bvp

Theorem Suppose (D1) and (D2) are satisfied.
Let B be the set of bifurcation points for the bvp.

(i) If 0 ≤ f(s)/s ≤ 1 for all s 6= 0,

then B ⊂ Σ ∪ [N
2

4 ,∞).

(ii) If f is odd with sups∈R |f(s)| <∞ and
sf(s) < 2

∫ s

0 f(t)dts for all s > 0,

then Σ ∪ [N
2

4 ,∞) ⊂ B.

There is bifurcation to the right at every λ ∈ Σ,
vertical bifurcation at every λ ∈ (N2

4 ,∞)

and B ∩ (0,∞) = Σ ∪ [N
2

4 ,∞).
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Remarks

A and f were normalised so that

lim
x→0

A(x)

|x|2
= 1 and f ′(0) = 1.
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Remarks

A and f were normalised so that

lim
x→0

A(x)

|x|2
= 1 and f ′(0) = 1.

If instead

lim
x→0

A(x)

|x|2
= α > 0 and f ′(0) = β > 0

then [N
2α

4β
,∞) ⊂ B.
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Remarks

A and f were normalised so that

lim
x→0

A(x)

|x|2
= 1 and f ′(0) = 1.

If instead

lim
x→0

A(x)

|x|2
= α > 0 and f ′(0) = β > 0

then [N
2α

4β
,∞) ⊂ B.

This does not depend on Ω and other properties of A.
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Remarks

A and f were normalised so that

lim
x→0

A(x)

|x|2
= 1 and f ′(0) = 1.

If instead

lim
x→0

A(x)

|x|2
= α > 0 and f ′(0) = β > 0

then [N
2α

4β
,∞) ⊂ B.

This does not depend on Ω and other properties of A.

Σ does depend on Ω and global properties of A.
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Another type of nonlinearity

(F) For some T > 0, f ∈ C1([−T, T ]) is an odd function that is
strictly concave on [0, T ] with f(0) = f(T ) = 0 and f ′(0) = 1.
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Another type of nonlinearity

(F) For some T > 0, f ∈ C1([−T, T ]) is an odd function that is
strictly concave on [0, T ] with f(0) = f(T ) = 0 and f ′(0) = 1.

Examples: f(s) = s− |s|σ s for any σ > 0 (sublinear case)
or f(s) = sin s
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Another type of nonlinearity

(F) For some T > 0, f ∈ C1([−T, T ]) is an odd function that is
strictly concave on [0, T ] with f(0) = f(T ) = 0 and f ′(0) = 1.

Examples: f(s) = s− |s|σ s for any σ > 0 (sublinear case)
or f(s) = sin s

Set

F (s) =

∫ s

0
f(t)dt for s ∈ [−T, T ]

and extend F to R as an even function with

F ∈ C2(R), F ′(s) < 0 for all s > T,

lim
s→∞

F (s) = lim
s→∞

F ′(s) = lim
s→∞

F ′′(s) = 0.
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Another type of nonlinearity

(F) For some T > 0, f ∈ C1([−T, T ]) is an odd function that is
strictly concave on [0, T ] with f(0) = f(T ) = 0 and f ′(0) = 1.

Examples: f(s) = s− |s|σ s for any σ > 0 (sublinear case)
or f(s) = sin s

Set

F (s) =

∫ s

0
f(t)dt for s ∈ [−T, T ]

and extend F to R as an even function with

F ∈ C2(R), F ′(s) < 0 for all s > T,

lim
s→∞

F (s) = lim
s→∞

F ′(s) = lim
s→∞

F ′′(s) = 0.

Then f = F ′ satisfies the conditions of the previous theorems.

Bifurcation and concentration for a degenerate elliptic boundary value problem – p. 19/31



Condition (F)

(a) function f (b) function F
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Extension of f

(c) extension of F (d) extension of f = F ′
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Bounded solutions

Theorem Let (D1) and (F) hold. Then Σ ∪ [N
2

4 ,∞) ⊂ B.

For any λ ∈ Σ ∪ [N
2

4 ,∞), there exists a sequence of solutions
{(λn, un)} ⊂ (0,∞) × [H0\{0}] such that

for all n ∈ N, |un(x)| ≤ T a.e. on Ω,

λn → λ and |un|2 → 0 as n→ ∞.
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Bounded solutions

Theorem Let (D1) and (F) hold. Then Σ ∪ [N
2

4 ,∞) ⊂ B.

For any λ ∈ Σ ∪ [N
2

4 ,∞), there exists a sequence of solutions
{(λn, un)} ⊂ (0,∞) × [H0\{0}] such that

for all n ∈ N, |un(x)| ≤ T a.e. on Ω,

λn → λ and |un|2 → 0 as n→ ∞.

Since |u|1 ≤ |Ω|
1

2 |u|2 it follows that |un|p ≤ |Ω|
1

2p |un|
1

2

2 T
1− 1

p .
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Bounded solutions

Theorem Let (D1) and (F) hold. Then Σ ∪ [N
2

4 ,∞) ⊂ B.

For any λ ∈ Σ ∪ [N
2

4 ,∞), there exists a sequence of solutions
{(λn, un)} ⊂ (0,∞) × [H0\{0}] such that

for all n ∈ N, |un(x)| ≤ T a.e. on Ω,

λn → λ and |un|2 → 0 as n→ ∞.

Since |u|1 ≤ |Ω|
1

2 |u|2 it follows that |un|p ≤ |Ω|
1

2p |un|
1

2

2 T
1− 1

p .

Hence |un|p → 0 as n→ ∞ for all p ∈ [1,∞).

Bifurcation and concentration for a degenerate elliptic boundary value problem – p. 22/31



Radial case

Ω = B = {x ∈ R
N : |x| < 1} and A(x) = C(|x|) where

(R) C ∈ C1([0, 1]) with C(r) > 0 for all r ∈ (0, 1], C(0) = 0 and

limr→0
C′(r)

r
= 2.
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Radial case

Ω = B = {x ∈ R
N : |x| < 1} and A(x) = C(|x|) where

(R) C ∈ C1([0, 1]) with C(r) > 0 for all r ∈ (0, 1], C(0) = 0 and

limr→0
C′(r)

r
= 2.

Then A satisfies (D1).
Let f satisfy (F).
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Radial case

Ω = B = {x ∈ R
N : |x| < 1} and A(x) = C(|x|) where

(R) C ∈ C1([0, 1]) with C(r) > 0 for all r ∈ (0, 1], C(0) = 0 and

limr→0
C′(r)

r
= 2.

Then A satisfies (D1).
Let f satisfy (F).

Then (i) |un|∞ = T for all n
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Radial case

Ω = B = {x ∈ R
N : |x| < 1} and A(x) = C(|x|) where

(R) C ∈ C1([0, 1]) with C(r) > 0 for all r ∈ (0, 1], C(0) = 0 and

limr→0
C′(r)

r
= 2.

Then A satisfies (D1).
Let f satisfy (F).

Then (i) |un|∞ = T for all n

and we have concentration at the origin:
(ii) for any ε ∈ (0, 1), un → 0 uniformly on {x ∈ R

N : ε ≤ |x| ≤ 1}.
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Radial solutions

u(x) = v(r) s = rN and w(s) = v(r)

Bifurcation and concentration for a degenerate elliptic boundary value problem – p. 24/31



Radial solutions

u(x) = v(r) s = rN and w(s) = v(r)

BVP becomes

−{D(s)w′(s)}′ =
λ

N2
f(w(s)) for 0 < s < 1

where D(s) = s2(1− 1

N
)C(s

1

N ) and

w ∈ X = {w ∈ L2
loc(0, 1) :

∫ 1

0
s2w′(s)2ds <∞ and w(1) = 0}
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Nodal properties

If λ > 0 and w ∈ X\{0} satisfies

−{D(s)w′(s)}′ =
λ

N2
f(w(s)) for 0 < s < 1

then w has only a finite number of zeros in (0, 1)
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Nodal properties

If λ > 0 and w ∈ X\{0} satisfies

−{D(s)w′(s)}′ =
λ

N2
f(w(s)) for 0 < s < 1

then w has only a finite number of zeros in (0, 1)

If λ > N2

4 and w ∈ X satisfies

−{D(s)w′(s)}′ =
λ

N2
w(s) for 0 < s < 1

then w has infinitely many zeros in (0, 1)
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Weaker degeneracy

(D1)t A ∈ C(Ω) with A(x) > 0 for all x ∈ Ω\{0} and

lim|x|→0
A(x)
|x|t

= 1

for some t ∈ [0, 2].
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Weaker degeneracy

(D1)t A ∈ C(Ω) with A(x) > 0 for all x ∈ Ω\{0} and

lim|x|→0
A(x)
|x|t

= 1

for some t ∈ [0, 2].

We can still define a Hilbert space (HA, 〈·, ·〉A) by
HA = {u ∈ L2(Ω) :
∫

ΩA(x) |∇u(x)|2 dx <∞ and u = 0 on ∂Ω}

with 〈u, v〉A =
∫

ΩA(x)∇u(x) · ∇v(x)dx.
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Properties of HA

Let A satisfy (D1)t for some t ∈ [0, 2].

Bifurcation and concentration for a degenerate elliptic boundary value problem – p. 27/31



Properties of HA

Let A satisfy (D1)t for some t ∈ [0, 2].
Let H2 = H|·|2 .
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Properties of HA

Let A satisfy (D1)t for some t ∈ [0, 2].
Let H2 = H|·|2 .

(i) (HA, 〈·, ·〉A) is continuously embedded in the space (H2, (·, ·))

and hence also in L2(Ω).
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Properties of HA

Let A satisfy (D1)t for some t ∈ [0, 2].
Let H2 = H|·|2 .

(i) (HA, 〈·, ·〉A) is continuously embedded in the space (H2, (·, ·))

and hence also in L2(Ω).

(ii) (HA, 〈·, ·〉A) is continuously embedded in
W 1,p(Ω) for 1 ≤ p < 2N

N+t
.
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Properties of HA

Let A satisfy (D1)t for some t ∈ [0, 2].
Let H2 = H|·|2 .

(i) (HA, 〈·, ·〉A) is continuously embedded in the space (H2, (·, ·))

and hence also in L2(Ω).

(ii) (HA, 〈·, ·〉A) is continuously embedded in
W 1,p(Ω) for 1 ≤ p < 2N

N+t
.

(iii) (HA, 〈·, ·〉A) is compactly embedded in
Lq(Ω) for 1 ≤ q < t∗ = 2N

N+t−2 .
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Properties of HA

Let A satisfy (D1)t for some t ∈ [0, 2].
Let H2 = H|·|2 .

(i) (HA, 〈·, ·〉A) is continuously embedded in the space (H2, (·, ·))

and hence also in L2(Ω).

(ii) (HA, 〈·, ·〉A) is continuously embedded in
W 1,p(Ω) for 1 ≤ p < 2N

N+t
.

(iii) (HA, 〈·, ·〉A) is compactly embedded in
Lq(Ω) for 1 ≤ q < t∗ = 2N

N+t−2 .

(iv) If t = 2, HA is NOT compactly embedded in L2(Ω).
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The boundary-value problem

Let A satisfy (D1)t for some t ∈ [0, 2] and (D2).
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The boundary-value problem

Let A satisfy (D1)t for some t ∈ [0, 2] and (D2).

A solution is a pair (λ, u) ∈ R ×HA such that
∫

ΩA(x)∇u(x) · ∇ϕ(x)dx = λ
∫

Ω f(u(x))ϕ(x)dx for all ϕ ∈ HA.
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The boundary-value problem

Let A satisfy (D1)t for some t ∈ [0, 2] and (D2).

A solution is a pair (λ, u) ∈ R ×HA such that
∫

ΩA(x)∇u(x) · ∇ϕ(x)dx = λ
∫

Ω f(u(x))ϕ(x)dx for all ϕ ∈ HA.

Λ ∈ R is a bifurcation point if there is a sequence
{(λn, un)} ⊂ R × [HA\{0}] of solutions such that λn → Λ and
|un|2 → 0.
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Equation in HA

As before, define K(u) and G(u) ∈ HA by

〈K(u), v〉A =

∫

Ω
uvdx and

〈G(u), v〉A =

∫

Ω
f(u)vdx for all u, v ∈ HA
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Equation in HA

As before, define K(u) and G(u) ∈ HA by

〈K(u), v〉A =

∫

Ω
uvdx and

〈G(u), v〉A =

∫

Ω
f(u)vdx for all u, v ∈ HA

(λ, u) ∈ R ×HA satisfies bvp ⇐⇒ u = λG(u).
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Equation in HA

As before, define K(u) and G(u) ∈ HA by

〈K(u), v〉A =

∫

Ω
uvdx and

〈G(u), v〉A =

∫

Ω
f(u)vdx for all u, v ∈ HA

(λ, u) ∈ R ×HA satisfies bvp ⇐⇒ u = λG(u).

K ∈ B(HA, HA) and K = K∗ > 0
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Equation in HA

As before, define K(u) and G(u) ∈ HA by

〈K(u), v〉A =

∫

Ω
uvdx and

〈G(u), v〉A =

∫

Ω
f(u)vdx for all u, v ∈ HA

(λ, u) ∈ R ×HA satisfies bvp ⇐⇒ u = λG(u).

K ∈ B(HA, HA) and K = K∗ > 0

G ∈ C1(HA, HA) if t < 2
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Linearisation

If t < 2,K ∈ B(HA, HA) is compact.
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Linearisation

If t < 2,K ∈ B(HA, HA) is compact.

σ(K) = {µi : i ∈ N} ⊂ (0,∞)
where µi+1 < µi and limi→∞ µi = 0
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Linearisation

If t < 2,K ∈ B(HA, HA) is compact.

σ(K) = {µi : i ∈ N} ⊂ (0,∞)
where µi+1 < µi and limi→∞ µi = 0
supσe(K) = {0}
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Linearisation

If t < 2,K ∈ B(HA, HA) is compact.

σ(K) = {µi : i ∈ N} ⊂ (0,∞)
where µi+1 < µi and limi→∞ µi = 0
supσe(K) = {0}

The linear boundary value problem

−∇ · {A(x)∇u(x)} = λu(x) for x ∈ Ω

u = 0 for x ∈ ∂Ω

has a non-trivial solution u ∈ HA for λ = 1
µi
.
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Linearisation

If t < 2,K ∈ B(HA, HA) is compact.

σ(K) = {µi : i ∈ N} ⊂ (0,∞)
where µi+1 < µi and limi→∞ µi = 0
supσe(K) = {0}

The linear boundary value problem

−∇ · {A(x)∇u(x)} = λu(x) for x ∈ Ω

u = 0 for x ∈ ∂Ω

has a non-trivial solution u ∈ HA for λ = 1
µi
.

Σ = { 1
µi
} is the set of all eigenvalues.
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Regular bifurcation

Theorem Let (D1)t for some t ∈ [0, 2) and (D2) be satisfied.
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Regular bifurcation

Theorem Let (D1)t for some t ∈ [0, 2) and (D2) be satisfied.

Let B denote the set of all bifurcation points for the bvp.
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Regular bifurcation

Theorem Let (D1)t for some t ∈ [0, 2) and (D2) be satisfied.

Let B denote the set of all bifurcation points for the bvp.

Then B = {λi : i ∈ N}
where 0 < λi < λi+1 with limi→∞ λi = ∞.
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Regular bifurcation

Theorem Let (D1)t for some t ∈ [0, 2) and (D2) be satisfied.

Let B denote the set of all bifurcation points for the bvp.

Then B = {λi : i ∈ N}
where 0 < λi < λi+1 with limi→∞ λi = ∞.

Recall that for t = 2 and under some extra assumptions on f
B ∩ (0,∞) = Σ ∪ [N

2

4 ,∞).
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