Bifurcation and concentration for a degenerate elliptic boundary value problem

G. Evéquoz and C.A. Stuart

EPFL

Summary

- 1. Differentiability and bifurcation
- 2. A degenerate elliptic boundary value problem
- 3. Bifurcation and concentration
- 4. Weaker degeneracy

Fréchet differentiability

H is a real Hilbert space *F* is *Fréchet* differentiable at $u \in H$ if $\exists T \in B(H, H)$ such that $\lim_{\|w\| \to 0} \frac{F(u+w) - F(u) - Tw}{\|w\|} = 0$

Fréchet differentiability

H is a real Hilbert space

F is *Fréchet* differentiable at $u \in H$

if $\exists T \in B(H, H)$ such that $\lim_{\|w\| \to 0} \frac{F(u+w) - F(u) - Tw}{\|w\|} = 0$

 $\iff \exists T \in B(H, H) \text{ such that} \\ \lim_{t \to 0} \frac{F(u+tv) - F(u)}{t} = Tv, \text{ uniformly for } v \text{ in bounded subsets of} \\ H$

Hadamard differentiability

F is *Hadamard* differentiable at $u \in H$ if $\exists T \in B(H, H)$ such that $\lim_{n\to\infty} \frac{F(u+t_nv_n)-F(u)}{t_n} = Tv$ for all $v \in H$ for all $\{t_n\} \subset \mathbb{R} \setminus \{0\}$ with $t_n \to 0$ and for all $\{v_n\} \subset H$ with $v_n \to v$

Hadamard differentiability

F is *Hadamard* differentiable at $u \in H$ if $\exists T \in B(H, H)$ such that $\lim_{n\to\infty} \frac{F(u+t_nv_n)-F(u)}{t_n} = Tv$ for all $v \in H$ for all $\{t_n\} \subset \mathbb{R} \setminus \{0\}$ with $t_n \to 0$ and for all $\{v_n\} \subset H$ with $v_n \to v$

 $\iff \exists T \in B(H, H) \text{ such that} \\ \lim_{t \to 0} \frac{F(u+tv) - F(u)}{t} = Tv, \\ \text{uniformly for } v \text{ in compact subsets of } H \end{cases}$

w-Hadamard differentiability

F is *w*-Hadamard differentiable at $u \in H$ if $\exists T \in B(H, H)$ such that for all $\varphi \in H$ $\lim_{n\to\infty} \left\langle \frac{F(u+t_nv_n)-F(u)}{t_n}, \varphi \right\rangle = \langle Tv, \varphi \rangle$ for all $v \in H$ and for all $\{t_n\} \subset \mathbb{R} \setminus \{0\}$ with $t_n \to 0$ and for all $\{v_n\} \subset H$ with $v_n \to v$ weakly in *H*

w-Hadamard differentiability

F is *w*-Hadamard differentiable at $u \in H$ if $\exists T \in B(H, H)$ such that for all $\varphi \in H$ $\lim_{n\to\infty} \left\langle \frac{F(u+t_nv_n)-F(u)}{t_n}, \varphi \right\rangle = \langle Tv, \varphi \rangle$ for all $v \in H$ and for all $\{t_n\} \subset \mathbb{R} \setminus \{0\}$ with $t_n \to 0$ and for all $\{v_n\} \subset H$ with $v_n \rightharpoonup v$ weakly in *H*

$$\begin{array}{l} \Longleftrightarrow \\ \exists T \in B(H,H) \text{ such that,for all } \varphi \in H \\ \lim_{t \to 0} \left\langle \frac{F(u+tv) - F(u)}{t}, \varphi \right\rangle = \left\langle Tv, \varphi \right\rangle, \\ \text{uniformly for } v \text{ in bounded subsets of } H \end{array}$$

Abstract bifurcation theory

H a real Banach space, $F : H \to H$ with F(0) = 0.

 $F(u) = \lambda u \text{ for } (\lambda, u) \in \mathbb{R} \times H$

Abstract bifurcation theory

H a real Banach space, $F : H \to H$ with F(0) = 0.

 $F(u) = \lambda u$ for $(\lambda, u) \in \mathbb{R} \times H$

 $\lambda \in \mathbb{R}$ is called a *bifurcation point* if there exists $\{(\lambda_n, u_n)\} \subset \mathbb{R} \times H$ such that

$$F(u_n) = \lambda_n u_n \text{ and } u_n \neq 0 \text{ for all } n \in \mathbb{N},$$

 $\lambda_n \to \lambda \text{ and } \|u_n\|_H \to 0 \text{ as } n \to \infty.$

Abstract bifurcation theory

H a real Banach space, $F : H \to H$ with F(0) = 0.

 $F(u) = \lambda u$ for $(\lambda, u) \in \mathbb{R} \times H$

 $\lambda \in \mathbb{R}$ is called a *bifurcation point* if there exists $\{(\lambda_n, u_n)\} \subset \mathbb{R} \times H$ such that

$$F(u_n) = \lambda_n u_n \text{ and } u_n \neq 0 \text{ for all } n \in \mathbb{N},$$

 $\lambda_n \to \lambda \text{ and } \|u_n\|_H \to 0 \text{ as } n \to \infty.$

Let $B_F \subset \mathbb{R}$ denote the set of all bifurcation points.

Necessary conditions for bifurcation

Theorem Let $F : H \to H$ be a function such that F(0) = 0and F is w-Hadamard differentiable at u = 0 with $F'(0) = F'(0)^*$. If $\mu \in (\Lambda^e, \infty) \setminus \sigma(F'(0))$ where $\Lambda^e = \sup \sigma_e(F'(0))$ and

$$\lim \sup_{\|u\| \to 0} \frac{\langle F(u) - F'(0)u, u \rangle}{\|u\|^2} < d(\mu, \sigma(F'(0)),$$

then $\mu \notin B_F$.

Necessary conditions for bifurcation

Theorem Let $F : H \to H$ be a function such that F(0) = 0and F is w-Hadamard differentiable at u = 0 with $F'(0) = F'(0)^*$. If $\mu \in (\Lambda^e, \infty) \setminus \sigma(F'(0))$ where $\Lambda^e = \sup \sigma_e(F'(0))$ and

$$\lim \sup_{\|u\| \to 0} \frac{\langle F(u) - F'(0)u, u \rangle}{\|u\|^2} < d(\mu, \sigma(F'(0)),$$

then $\mu \notin B_F$.

We have an example where $F : L^2(\Omega) \to L^2(\Omega)$ is both Hadamard and w-Hadamard differentiable with F'(0) = I but B = [a, b] where a < 1 < b.

(H1) $\psi \in C^1(H,\mathbb{R})$ with $\psi(u) = \psi(-u)$ and $\psi(0) = 0$ such that

$$\lim_{\|u\| \to \infty} \frac{\psi(u)}{\|u\|^2} = 0$$

and

 $\psi'(u)u < 2\psi(u)$ for all $u \in H \setminus \{0\}$.

(H1) $\psi \in C^1(H,\mathbb{R})$ with $\psi(u) = \psi(-u)$ and $\psi(0) = 0$ such that

$$\lim_{\|u\| \to \infty} \frac{\psi(u)}{\|u\|^2} = 0$$

and

$$\psi'(u)u < 2\psi(u)$$
 for all $u \in H \setminus \{0\}$.

Define $F: H \to H$ by

 $\langle F(u), v \rangle = \psi'(u)v$ for all $u, v \in H$

(H1) $\psi \in C^1(H,\mathbb{R})$ with $\psi(u) = \psi(-u)$ and $\psi(0) = 0$ such that

$$\lim_{\|u\| \to \infty} \frac{\psi(u)}{\|u\|^2} = 0$$

and

$$\psi'(u)u < 2\psi(u)$$
 for all $u \in H \setminus \{0\}$.

Define $F: H \to H$ by

$$\langle F(u),v\rangle=\psi'(u)v$$
 for all $u,v\in H$

(H2) $F: H \rightarrow H$ is compact.

(H1) $\psi \in C^1(H, \mathbb{R})$ with $\psi(u) = \psi(-u)$ and $\psi(0) = 0$ such that

$$\lim_{\|u\| \to \infty} \frac{\psi(u)}{\|u\|^2} = 0$$

and

$$\psi'(u)u < 2\psi(u)$$
 for all $u \in H \setminus \{0\}$.

Define $F: H \to H$ by

$$\langle F(u), v \rangle = \psi'(u)v$$
 for all $u, v \in H$

(H2) $F: H \to H$ is compact.

(H3) $F : H \to H$ is either Hadamard or w-Hadamard differentiable at u = 0 with $F'(0) = F'(0)^*$.

Theorem Suppose (H1), (H2) and (H3). (A) If $\Lambda^e > 0$, then $[0, \Lambda^e] \subset B_F$, and there is vertical bifurcation at every $\mu \in (0, \Lambda^e)$. Theorem Suppose (H1), (H2) and (H3). (A) If $\Lambda^e > 0$, then $[0, \Lambda^e] \subset B_F$, and there is vertical bifurcation at every $\mu \in (0, \Lambda^e)$. and (B) $(\Lambda^e_+, \infty) \cap \sigma(F'(0)) \subset B_F$ where $\Lambda^e_+ = \max\{0, \Lambda^e\}$ and there is bifurcation to the left at every $\mu \in (\Lambda^e_+, \infty) \cap \sigma(F'(0))$, Theorem Suppose (H1), (H2) and (H3). (A) If $\Lambda^e > 0$, then $[0, \Lambda^e] \subset B_F$, and there is vertical bifurcation at every $\mu \in (0, \Lambda^e)$. and (B) $(\Lambda^e_+, \infty) \cap \sigma(F'(0)) \subset B_F$ where $\Lambda^e_+ = \max\{0, \Lambda^e\}$ and there is bifurcation to the left at every $\mu \in (\Lambda^e_+, \infty) \cap \sigma(F'(0))$,

If *F* is w-Hadamard differentiable at u = 0, then $(\Lambda_+^e, \infty) \cap \sigma(F'(0)) = (\Lambda_+^e, \infty) \cap B_F$.

If (H2) holds and *F* is Fréchet differentiable at u = 0, then F'(0) is compact and so $\sigma_e(F'(0)) = \{0\}$. Thus the situation (A) cannot occur in this case.

If (H2) holds and F is Fréchet differentiable at u = 0, then F'(0) is compact and so $\sigma_e(F'(0)) = \{0\}$. Thus the situation (A) cannot occur in this case.

In (A) we have that $[0, \Lambda^e] \subset B_F$, without requiring that $(0, \Lambda^e) \subset \sigma(F'(0))$.

If (H2) holds and F is Fréchet differentiable at u = 0, then F'(0) is compact and so $\sigma_e(F'(0)) = \{0\}$. Thus the situation (A) cannot occur in this case.

In (A) we have that $[0, \Lambda^e] \subset B_F$, without requiring that $(0, \Lambda^e) \subset \sigma(F'(0))$.

We have similar results for equations of the form

 $F(\lambda, u) = 0.$

If (H2) holds and F is Fréchet differentiable at u = 0, then F'(0) is compact and so $\sigma_e(F'(0)) = \{0\}$. Thus the situation (A) cannot occur in this case.

In (A) we have that $[0, \Lambda^e] \subset B_F$, without requiring that $(0, \Lambda^e) \subset \sigma(F'(0))$.

We have similar results for equations of the form

 $F(\lambda, u) = 0.$

 $N\geq 3, \Omega\subset \mathbb{R}^N$ open bounded, $0\in \Omega$

 $N\geq 3, \Omega\subset \mathbb{R}^N$ open bounded, $0\in \Omega$

$$-\nabla \cdot \{A(x)\nabla u(x)\} = \lambda f(u(x)) \text{ for } x \in \Omega$$
$$u(x) = 0 \text{ for } x \in \partial\Omega,$$

 $N\geq 3, \Omega\subset \mathbb{R}^N$ open bounded, $0\in \Omega$

$$-\nabla \cdot \{A(x)\nabla u(x)\} = \lambda f(u(x)) \text{ for } x \in \Omega$$
$$u(x) = 0 \text{ for } x \in \partial\Omega,$$

(D1) $A \in C(\overline{\Omega})$ with A(x) > 0 for all $x \in \overline{\Omega} \setminus \{0\}$ and $\lim_{|x| \to 0} \frac{A(x)}{|x|^2} = 1$,

 $N \geq 3, \Omega \subset \mathbb{R}^N$ open bounded, $0 \in \Omega$

$$-\nabla \cdot \{A(x)\nabla u(x)\} = \lambda f(u(x)) \text{ for } x \in \Omega$$
$$u(x) = 0 \text{ for } x \in \partial\Omega,$$

(D1) $A \in C(\overline{\Omega})$ with A(x) > 0 for all $x \in \overline{\Omega} \setminus \{0\}$ and $\lim_{|x| \to 0} \frac{A(x)}{|x|^2} = 1$,

(D2) $f \in C^1(\mathbb{R})$ with f(0) = 0, f'(0) = 1, $\sup\{|f'(s)| : s \in \mathbb{R}\} = M < \infty$

$$E(u) = \frac{1}{2} \int_{\Omega} A |\nabla u|^2 dx - \lambda \int_{\Omega} F(u) dx < \infty$$

where $F(s) = \int_0^s f(t) dt$.

$$E(u) = \frac{1}{2} \int_{\Omega} A |\nabla u|^2 dx - \lambda \int_{\Omega} F(u) dx < \infty$$

where $F(s) = \int_0^s f(t) dt$.
Since $\int_{\Omega} A(x) |\nabla u(x)|^2 dx < \infty \iff \int_{\Omega} |x|^2 |\nabla u|^2 dx < \infty$

$$\begin{split} E(u) &= \frac{1}{2} \int_{\Omega} A \left| \nabla u \right|^2 dx - \lambda \int_{\Omega} F(u) dx < \infty \\ \text{where } F(s) &= \int_0^s f(t) dt. \\ \text{Since } \int_{\Omega} A(x) \left| \nabla u(x) \right|^2 dx < \infty \iff \int_{\Omega} |x|^2 \left| \nabla u \right|^2 dx < \infty \\ \text{and } |F(s)| &\leq \frac{M}{2} s^2, \end{split}$$

$$\begin{split} E(u) &= \frac{1}{2} \int_{\Omega} A \left| \nabla u \right|^2 dx - \lambda \int_{\Omega} F(u) dx < \infty \\ \text{where } F(s) &= \int_0^s f(t) dt. \\ \text{Since } \int_{\Omega} A(x) \left| \nabla u(x) \right|^2 dx < \infty \Longleftrightarrow \int_{\Omega} |x|^2 \left| \nabla u \right|^2 dx < \infty \\ \text{and } |F(s)| &\leq \frac{M}{2} s^2, \end{split}$$

We seek solutions in the space $H = \{ u \in L^2 : \int_{\Omega} |x|^2 |\nabla u|^2 dx < \infty, u = 0 \text{ on } \partial \Omega \}$

$$\begin{split} E(u) &= \frac{1}{2} \int_{\Omega} A \left| \nabla u \right|^2 dx - \lambda \int_{\Omega} F(u) dx < \infty \\ \text{where } F(s) &= \int_0^s f(t) dt. \\ \text{Since } \int_{\Omega} A(x) \left| \nabla u(x) \right|^2 dx < \infty \Longleftrightarrow \int_{\Omega} |x|^2 \left| \nabla u \right|^2 dx < \infty \\ \text{and } |F(s)| &\leq \frac{M}{2} s^2, \end{split}$$

We seek solutions in the space $H = \{ u \in L^2 : \int_{\Omega} |x|^2 |\nabla u|^2 dx < \infty, u = 0 \text{ on } \partial \Omega \}$

But $\int_{\Omega} u^2 dx \leq \frac{4}{N^2} \int_{\Omega} |x|^2 |\nabla u|^2 dx$ for $u \in H$, (Hardy for v(x) = |x| u(x))

$$\begin{split} E(u) &= \frac{1}{2} \int_{\Omega} A \left| \nabla u \right|^2 dx - \lambda \int_{\Omega} F(u) dx < \infty \\ \text{where } F(s) &= \int_0^s f(t) dt. \\ \text{Since } \int_{\Omega} A(x) \left| \nabla u(x) \right|^2 dx < \infty \iff \int_{\Omega} |x|^2 \left| \nabla u \right|^2 dx < \infty \\ \text{and } |F(s)| &\leq \frac{M}{2} s^2, \end{split}$$

We seek solutions in the space $H = \{ u \in L^2 : \int_{\Omega} |x|^2 |\nabla u|^2 dx < \infty, u = 0 \text{ on } \partial \Omega \}$

But $\int_{\Omega} u^2 dx \leq \frac{4}{N^2} \int_{\Omega} |x|^2 |\nabla u|^2 dx$ for $u \in H$, (Hardy for v(x) = |x| u(x))

so *H* is a Hilbert space with $\langle u, v \rangle_A = \int_{\Omega} A(x) \nabla u \cdot \nabla v dx$.

For Ireneo Peral

Consider $A(x) = |x|^2$ and f(s) = s - g(s) where g'(0) = 0Set v(x) = |x| u(x)

For Ireneo Peral

Consider $A(x) = |x|^2$ and f(s) = s - g(s) where g'(0) = 0Set v(x) = |x| u(x)

 $u \in H \Longleftrightarrow v \in H^1_0(\Omega)$
For Ireneo Peral

Consider $A(x) = |x|^2$ and f(s) = s - g(s) where g'(0) = 0Set v(x) = |x| u(x) $u \in H \iff v \in H_0^1(\Omega)$ $-\nabla \cdot \{|x|^2 \nabla u\} = \lambda f(u)$ \iff $-\Delta v - \frac{\mu}{r^2}v + \frac{\lambda}{r}g(\frac{v}{r}) = 0$ where $\mu = \lambda + 1 - N$

For Ireneo Peral

Consider
$$A(x) = |x|^2$$
 and $f(s) = s - g(s)$ where $g'(0) = 0$
Set $v(x) = |x| u(x)$
 $u \in H \iff v \in H_0^1(\Omega)$
 $-\nabla \cdot \{|x|^2 \nabla u\} = \lambda f(u)$
 \iff
 $-\Delta v - \frac{\mu}{r^2} v + \frac{\lambda}{r} g(\frac{v}{r}) = 0$
where $\mu = \lambda + 1 - N$
Note that $\lambda = \frac{N^2}{4} \iff \mu = \frac{(N-2)^2}{4}$

For Ireneo Peral

Consider
$$A(x) = |x|^2$$
 and $f(s) = s - g(s)$ where $g'(0) = 0$
Set $v(x) = |x| u(x)$
 $u \in H \iff v \in H_0^1(\Omega)$
 $-\nabla \cdot \{|x|^2 \nabla u\} = \lambda f(u)$
 \iff
 $-\Delta v - \frac{\mu}{r^2}v + \frac{\lambda}{r}g(\frac{v}{r}) = 0$
where $\mu = \lambda + 1 - N$
Note that $\lambda = \frac{N^2}{4} \iff \mu = \frac{(N-2)^2}{4}$
If $g(s) = |s|^{\sigma} s$, the problem is
 $-\Delta v - \frac{\mu}{r^2}v + \frac{\lambda}{r^{\sigma+2}} |v|^{\sigma} v = 0$
 $v \in H_0^1(\Omega)$

Solutions of bvp

A solution of bvp is a pair $(\lambda, u) \in \mathbb{R} \times H$ such that $\int_{\Omega} A(x) \nabla u(x) \cdot \nabla \varphi(x) dx = \lambda \int_{\Omega} f(u(x)) \varphi(x) dx$ for all $\varphi \in H$

Solutions of bvp

A solution of bvp is a pair $(\lambda, u) \in \mathbb{R} \times H$ such that $\int_{\Omega} A(x) \nabla u(x) \cdot \nabla \varphi(x) dx = \lambda \int_{\Omega} f(u(x)) \varphi(x) dx$ for all $\varphi \in H$

A point $\Lambda \in \mathbb{R}$ is a bifurcation point for bvp if there is a sequence $\{(\lambda_n, u_n)\} \subset \mathbb{R} \in [H \setminus \{0\}]$ of solutions such that $\lambda_n \to \Lambda$ and $|u_n|_2 \to 0$,

Solutions of bvp

A solution of bvp is a pair $(\lambda, u) \in \mathbb{R} \times H$ such that $\int_{\Omega} A(x) \nabla u(x) \cdot \nabla \varphi(x) dx = \lambda \int_{\Omega} f(u(x)) \varphi(x) dx$ for all $\varphi \in H$

A point $\Lambda \in \mathbb{R}$ is a bifurcation point for bvp if there is a sequence $\{(\lambda_n, u_n)\} \subset \mathbb{R} \in [H \setminus \{0\}]$ of solutions such that $\lambda_n \to \Lambda$ and $|u_n|_2 \to 0$,

$$\iff \|\cdot\|_A \to 0.$$

Define K(u) and $G(u) \in H$ by

$$\langle K(u), v \rangle_A = \int_{\Omega} uv dx$$
 and
 $\langle G(u), v \rangle_A = \int_{\Omega} f(u)v dx$ for all $u, v \in H$

Define K(u) and $G(u) \in H$ by

$$\langle K(u), v \rangle_A = \int_{\Omega} uv dx$$
 and
 $\langle G(u), v \rangle_A = \int_{\Omega} f(u)v dx$ for all $u, v \in H$

 $(\lambda, u) \in \mathbb{R} \times H$ satisfies by $\Leftrightarrow u = \lambda G(u)$.

Define K(u) and $G(u) \in H$ by

$$\langle K(u), v \rangle_A = \int_{\Omega} uv dx$$
 and
 $\langle G(u), v \rangle_A = \int_{\Omega} f(u)v dx$ for all $u, v \in H$

 $(\lambda, u) \in \mathbb{R} \times H$ satisfies by $\iff u = \lambda G(u)$. $K \in B(H, H)$ and $K = K^* > 0$

Define K(u) and $G(u) \in H$ by

$$\langle K(u), v \rangle_A = \int_{\Omega} uv dx$$
 and
 $\langle G(u), v \rangle_A = \int_{\Omega} f(u)v dx$ for all $u, v \in H$

 $(\lambda, u) \in \mathbb{R} \times H$ satisfies bvp $\iff u = \lambda G(u)$. $K \in B(H, H)$ and $K = K^* > 0$ $G: H \to H$ is Hadamard and w-Hadamard differentiable at u = 0 with G'(0) = K. $G: H \to H$ is compact if $\sup_{s \in \mathbb{R}} |f(s)| < \infty$

Define K(u) and $G(u) \in H$ by

$$\langle K(u), v \rangle_A = \int_{\Omega} uv dx$$
 and
 $\langle G(u), v \rangle_A = \int_{\Omega} f(u)v dx$ for all $u, v \in H$

 $(\lambda, u) \in \mathbb{R} \times H$ satisfies bvp $\iff u = \lambda G(u)$. $K \in B(H, H)$ and $K = K^* > 0$ $G: H \to H$ is Hadamard and w-Hadamard differentiable at u = 0 with G'(0) = K. $G: H \to H$ is compact if $\sup_{s \in \mathbb{R}} |f(s)| < \infty$

$$\sigma(K) \subset [0,\infty)$$
 and $\sup \sigma_e(K) = \frac{4}{N^2}$

 $\sigma(K) \subset [0, \infty)$ and $\sup \sigma_e(K) = \frac{4}{N^2}$ $K = G'(0) : H \to H$ is not compact $G : H \to H$ is not Fréchet differentiable if $\sup_{s \in \mathbb{R}} |f(s)| < \infty$

 $\sigma(K) \subset [0,\infty)$ and $\sup \sigma_e(K) = \frac{4}{N^2}$

 $K = G'(0) : H \to H$ is not compact $G : H \to H$ is not Fréchet differentiable if $\sup_{s \in \mathbb{R}} |f(s)| < \infty$

 $\mu \in \sigma(K) \cap (\frac{4}{N^2}, \infty) \iff$ the linear boundary value problem

$$-\nabla \cdot \{A(x)\nabla u(x)\} = \lambda u(x) \text{ for } x \in \Omega$$
$$u = 0 \text{ for } x \in \partial \Omega$$

has a non-trivial solution $u \in H$ for $\lambda = \frac{1}{\mu}$.

 $\sigma(K) \subset [0,\infty)$ and $\sup \sigma_e(K) = \frac{4}{N^2}$

 $K = G'(0) : H \to H$ is not compact $G : H \to H$ is not Fréchet differentiable if $\sup_{s \in \mathbb{R}} |f(s)| < \infty$

 $\mu\in\sigma(K)\cap(\tfrac{4}{N^2},\infty)\Longleftrightarrow$ the linear boundary value problem

$$-\nabla \cdot \{A(x)\nabla u(x)\} = \lambda u(x) \text{ for } x \in \Omega$$
$$u = 0 \text{ for } x \in \partial \Omega$$

has a non-trivial solution $u \in H$ for $\lambda = \frac{1}{u}$.

 $\Sigma = \{\frac{1}{\mu} : \mu \in \sigma(K) \cap (\frac{4}{N^2}, \infty)\}$ is the set of all eigenvalues of this linearisation of bvp.

Theorem Suppose (D1) and (D2) are satisfied. Let *B* be the set of bifurcation points for the bvp.

Theorem Suppose (D1) and (D2) are satisfied. Let B be the set of bifurcation points for the bvp.

(i) If $0 \le f(s)/s \le 1$ for all $s \ne 0$, then $B \subset \Sigma \cup [\frac{N^2}{4}, \infty)$.

Theorem Suppose (D1) and (D2) are satisfied. Let B be the set of bifurcation points for the bvp.

(i) If $0 \le f(s)/s \le 1$ for all $s \ne 0$, then $B \subset \Sigma \cup [\frac{N^2}{4}, \infty)$.

(ii) If f is odd with $\sup_{s \in \mathbb{R}} |f(s)| < \infty$ and $sf(s) < 2 \int_0^s f(t) dts$ for all s > 0, then $\Sigma \cup [\frac{N^2}{4}, \infty) \subset B$.

Theorem Suppose (D1) and (D2) are satisfied. Let B be the set of bifurcation points for the bvp.

(i) If $0 \le f(s)/s \le 1$ for all $s \ne 0$, then $B \subset \Sigma \cup [\frac{N^2}{4}, \infty)$.

(ii) If f is odd with $\sup_{s \in \mathbb{R}} |f(s)| < \infty$ and $sf(s) < 2 \int_0^s f(t) dts$ for all s > 0, then $\Sigma \cup [\frac{N^2}{4}, \infty) \subset B$.

There is bifurcation to the right at every $\lambda \in \Sigma$, vertical bifurcation at every $\lambda \in (\frac{N^2}{4}, \infty)$ and $B \cap (0, \infty) = \Sigma \cup [\frac{N^2}{4}, \infty)$.

A and f were normalised so that

$$\lim_{x \to 0} \frac{A(x)}{|x|^2} = 1 \text{ and } f'(0) = 1.$$

 \boldsymbol{A} and \boldsymbol{f} were normalised so that

$$\lim_{x \to 0} \frac{A(x)}{|x|^2} = 1 \text{ and } f'(0) = 1.$$

If instead

$$\lim_{x \to 0} \frac{A(x)}{|x|^2} = \alpha > 0 \text{ and } f'(0) = \beta > 0$$

then $\left[\frac{N^2\alpha}{4\beta},\infty\right)\subset B$.

A and f were normalised so that

$$\lim_{x \to 0} \frac{A(x)}{|x|^2} = 1 \text{ and } f'(0) = 1.$$

If instead

$$\lim_{x \to 0} \frac{A(x)}{|x|^2} = \alpha > 0 \text{ and } f'(0) = \beta > 0$$

then $\left[\frac{N^2\alpha}{4\beta},\infty\right)\subset B$.

This does not depend on Ω and other properties of A.

A and f were normalised so that

$$\lim_{x \to 0} \frac{A(x)}{|x|^2} = 1 \text{ and } f'(0) = 1.$$

If instead

$$\lim_{x \to 0} \frac{A(x)}{|x|^2} = \alpha > 0 \text{ and } f'(0) = \beta > 0$$

then $\left[\frac{N^2\alpha}{4\beta},\infty\right)\subset B$.

This does not depend on Ω and other properties of A.

 Σ does depend on Ω and global properties of A.

(F) For some $T > 0, f \in C^1([-T,T])$ is an odd function that is strictly concave on [0,T] with f(0) = f(T) = 0 and f'(0) = 1.

(F) For some $T > 0, f \in C^1([-T,T])$ is an odd function that is strictly concave on [0,T] with f(0) = f(T) = 0 and f'(0) = 1.

Examples: $f(s) = s - |s|^{\sigma} s$ for any $\sigma > 0$ (sublinear case) or $f(s) = \sin s$

(F) For some $T > 0, f \in C^1([-T,T])$ is an odd function that is strictly concave on [0,T] with f(0) = f(T) = 0 and f'(0) = 1.

Examples: $f(s) = s - |s|^{\sigma} s$ for any $\sigma > 0$ (sublinear case) or $f(s) = \sin s$

Set

$$F(s) = \int_0^s f(t)dt \text{ for } s \in [-T,T]$$

and extend F to \mathbb{R} as an even function with

$$F \in C^{2}(\mathbb{R}), F'(s) < 0 \text{ for all } s > T,$$
$$\lim_{s \to \infty} F(s) = \lim_{s \to \infty} F'(s) = \lim_{s \to \infty} F''(s) = 0.$$

(F) For some $T > 0, f \in C^1([-T,T])$ is an odd function that is strictly concave on [0,T] with f(0) = f(T) = 0 and f'(0) = 1.

Examples: $f(s) = s - |s|^{\sigma} s$ for any $\sigma > 0$ (sublinear case) or $f(s) = \sin s$

Set

$$F(s) = \int_0^s f(t)dt \text{ for } s \in [-T,T]$$

and extend F to \mathbb{R} as an even function with

$$F \in C^{2}(\mathbb{R}), F'(s) < 0 \text{ for all } s > T,$$
$$\lim_{s \to \infty} F(s) = \lim_{s \to \infty} F'(s) = \lim_{s \to \infty} F''(s) = 0.$$

Then f = F' satisfies the conditions of the previous theorems.

Condition (F)

(b) function ${\cal F}$

(a) function f

Extension of f

(d) extension of
$$f = F$$

(c) extension of ${\cal F}$

Bounded solutions

Theorem Let (D1) and (F) hold. Then $\Sigma \cup [\frac{N^2}{4}, \infty) \subset B$. For any $\lambda \in \Sigma \cup [\frac{N^2}{4}, \infty)$, there exists a sequence of solutions $\{(\lambda_n, u_n)\} \subset (0, \infty) \times [H_0 \setminus \{0\}]$ such that

for all $n \in \mathbb{N}, |u_n(x)| \leq T$ a.e. on Ω ,

 $\lambda_n \to \lambda \text{ and } |u_n|_2 \to 0 \text{ as } n \to \infty.$

Bounded solutions

Theorem Let (D1) and (F) hold. Then $\Sigma \cup [\frac{N^2}{4}, \infty) \subset B$. For any $\lambda \in \Sigma \cup [\frac{N^2}{4}, \infty)$, there exists a sequence of solutions $\{(\lambda_n, u_n)\} \subset (0, \infty) \times [H_0 \setminus \{0\}]$ such that

> for all $n \in \mathbb{N}$, $|u_n(x)| \leq T$ a.e. on Ω , $\lambda_n \to \lambda$ and $|u_n|_2 \to 0$ as $n \to \infty$.

Since $|u|_1 \leq |\Omega|^{\frac{1}{2}} |u|_2$ it follows that $|u_n|_p \leq |\Omega|^{\frac{1}{2p}} |u_n|_2^{\frac{1}{2}} T^{1-\frac{1}{p}}$.

Bounded solutions

Theorem Let (D1) and (F) hold. Then $\Sigma \cup [\frac{N^2}{4}, \infty) \subset B$. For any $\lambda \in \Sigma \cup [\frac{N^2}{4}, \infty)$, there exists a sequence of solutions $\{(\lambda_n, u_n)\} \subset (0, \infty) \times [H_0 \setminus \{0\}]$ such that

> for all $n \in \mathbb{N}$, $|u_n(x)| \leq T$ a.e. on Ω , $\lambda_n \to \lambda$ and $|u_n|_2 \to 0$ as $n \to \infty$.

Since $|u|_1 \leq |\Omega|^{\frac{1}{2}} |u|_2$ it follows that $|u_n|_p \leq |\Omega|^{\frac{1}{2p}} |u_n|_2^{\frac{1}{2}} T^{1-\frac{1}{p}}$. Hence $|u_n|_p \to 0$ as $n \to \infty$ for all $p \in [1, \infty)$.

$$\Omega = B = \{x \in \mathbb{R}^N : |x| < 1\} \text{ and } A(x) = C(|x|) \text{ where} \\ (\mathsf{R}) \ C \in C^1([0,1]) \text{ with } C(r) > 0 \text{ for all } r \in (0,1], C(0) = 0 \text{ and} \\ \lim_{r \to 0} \frac{C'(r)}{r} = 2.$$

 $\Omega = B = \{x \in \mathbb{R}^N : |x| < 1\} \text{ and } A(x) = C(|x|) \text{ where} \\ (\mathsf{R}) \ C \in C^1([0,1]) \text{ with } C(r) > 0 \text{ for all } r \in (0,1], C(0) = 0 \text{ and} \\ \lim_{r \to 0} \frac{C'(r)}{r} = 2.$

Then A satisfies (D1). Let f satisfy (F).

 $\Omega = B = \{x \in \mathbb{R}^N : |x| < 1\} \text{ and } A(x) = C(|x|) \text{ where} \\ (\mathsf{R}) \ C \in C^1([0,1]) \text{ with } C(r) > 0 \text{ for all } r \in (0,1], C(0) = 0 \text{ and} \\ \lim_{r \to 0} \frac{C'(r)}{r} = 2.$

Then A satisfies (D1). Let f satisfy (F).

Then (i) $|u_n|_{\infty} = T$ for all n

 $\Omega = B = \{x \in \mathbb{R}^N : |x| < 1\} \text{ and } A(x) = C(|x|) \text{ where} \\ (\mathsf{R}) \ C \in C^1([0,1]) \text{ with } C(r) > 0 \text{ for all } r \in (0,1], C(0) = 0 \text{ and} \\ \lim_{r \to 0} \frac{C'(r)}{r} = 2.$

Then A satisfies (D1). Let f satisfy (F).

Then (i) $|u_n|_{\infty} = T$ for all n

and we have concentration at the origin: (ii) for any $\varepsilon \in (0, 1), u_n \to 0$ uniformly on $\{x \in \mathbb{R}^N : \varepsilon \le |x| \le 1\}$.
Radial solutions

$$u(x) = v(r) \qquad \qquad s = r^N \text{ and } w(s) = v(r)$$

Radial solutions

$$u(x) = v(r) \qquad \qquad s = r^N \text{ and } w(s) = v(r)$$

BVP becomes

$$-\{D(s)w'(s)\}' = \frac{\lambda}{N^2}f(w(s))$$
 for $0 < s < 1$

where $D(s)=s^{2(1-\frac{1}{N})}C(s^{\frac{1}{N}})$ and

$$w \in X = \{ w \in L^2_{loc}(0,1) : \int_0^1 s^2 w'(s)^2 ds < \infty \text{ and } w(1) = 0 \}$$

Nodal properties

If $\lambda > 0$ and $w \in X \setminus \{0\}$ satisfies

$$-\{D(s)w'(s)\}' = \frac{\lambda}{N^2}f(w(s))$$
 for $0 < s < 1$

then w has only a finite number of zeros in (0,1)

Nodal properties

If $\lambda > 0$ and $w \in X \setminus \{0\}$ satisfies

$$-\{D(s)w'(s)\}' = \frac{\lambda}{N^2}f(w(s))$$
 for $0 < s < 1$

then w has only a finite number of zeros in (0,1)

If $\lambda > \frac{N^2}{4}$ and $w \in X$ satisfies

$$-\{D(s)w'(s)\}' = \frac{\lambda}{N^2}w(s) \text{ for } 0 < s < 1$$

then w has infinitely many zeros in (0,1)

Weaker degeneracy

(D1)_t
$$A \in C(\overline{\Omega})$$
 with $A(x) > 0$ for all $x \in \overline{\Omega} \setminus \{0\}$ and
 $\lim_{|x|\to 0} \frac{A(x)}{|x|^t} = 1$
for some $t \in [0, 2]$.

Weaker degeneracy

(D1)_t $A \in C(\overline{\Omega})$ with A(x) > 0 for all $x \in \overline{\Omega} \setminus \{0\}$ and $\lim_{|x|\to 0} \frac{A(x)}{|x|^t} = 1$ for some $t \in [0, 2]$.

We can still define a Hilbert space $(H_A, \langle \cdot, \cdot \rangle_A)$ by $H_A = \{ u \in L^2(\Omega) :$ $\int_{\Omega} A(x) |\nabla u(x)|^2 dx < \infty$ and u = 0 on $\partial \Omega \}$

with $\langle u, v \rangle_A = \int_{\Omega} A(x) \nabla u(x) \cdot \nabla v(x) dx$.

Let A satisfy $(D1)_t$ for some $t \in [0, 2]$.

Let A satisfy (D1)_t for some $t \in [0, 2]$. Let $H_2 = H_{|\cdot|^2}$.

Let A satisfy (D1)_t for some $t \in [0, 2]$. Let $H_2 = H_{|\cdot|^2}$.

(i) $(H_A, \langle \cdot, \cdot \rangle_A)$ is continuously embedded in the space $(H_2, (\cdot, \cdot))$ and hence also in $L^2(\Omega)$.

Let A satisfy (D1)_t for some $t \in [0, 2]$. Let $H_2 = H_{|\cdot|^2}$.

(i) $(H_A, \langle \cdot, \cdot \rangle_A)$ is continuously embedded in the space $(H_2, (\cdot, \cdot))$ and hence also in $L^2(\Omega)$.

(ii) $(H_A, \langle \cdot, \cdot \rangle_A)$ is continuously embedded in $W^{1,p}(\Omega)$ for $1 \le p < \frac{2N}{N+t}$.

Let A satisfy (D1)_t for some $t \in [0, 2]$. Let $H_2 = H_{|\cdot|^2}$.

(i) $(H_A, \langle \cdot, \cdot \rangle_A)$ is continuously embedded in the space $(H_2, (\cdot, \cdot))$ and hence also in $L^2(\Omega)$.

(ii) $(H_A, \langle \cdot, \cdot \rangle_A)$ is continuously embedded in $W^{1,p}(\Omega)$ for $1 \le p < \frac{2N}{N+t}$.

(iii) $(H_A, \langle \cdot, \cdot \rangle_A)$ is compactly embedded in $L^q(\Omega)$ for $1 \le q < t^* = \frac{2N}{N+t-2}$.

Let A satisfy (D1)_t for some $t \in [0, 2]$. Let $H_2 = H_{|\cdot|^2}$.

(i) $(H_A, \langle \cdot, \cdot \rangle_A)$ is continuously embedded in the space $(H_2, (\cdot, \cdot))$ and hence also in $L^2(\Omega)$.

(ii) $(H_A, \langle \cdot, \cdot \rangle_A)$ is continuously embedded in $W^{1,p}(\Omega)$ for $1 \le p < \frac{2N}{N+t}$.

(iii) $(H_A, \langle \cdot, \cdot \rangle_A)$ is compactly embedded in $L^q(\Omega)$ for $1 \le q < t^* = \frac{2N}{N+t-2}$.

(iv) If $t = 2, H_A$ is NOT compactly embedded in $L^2(\Omega)$.

The boundary-value problem

Let A satisfy $(D1)_t$ for some $t \in [0, 2]$ and (D2).

The boundary-value problem

Let A satisfy $(D1)_t$ for some $t \in [0, 2]$ and (D2).

A solution is a pair $(\lambda, u) \in \mathbb{R} \times H_A$ such that $\int_{\Omega} A(x) \nabla u(x) \cdot \nabla \varphi(x) dx = \lambda \int_{\Omega} f(u(x)) \varphi(x) dx$ for all $\varphi \in H_A$. The boundary-value problem

Let A satisfy $(D1)_t$ for some $t \in [0, 2]$ and (D2).

A solution is a pair $(\lambda, u) \in \mathbb{R} \times H_A$ such that $\int_{\Omega} A(x) \nabla u(x) \cdot \nabla \varphi(x) dx = \lambda \int_{\Omega} f(u(x)) \varphi(x) dx$ for all $\varphi \in H_A$.

 $\Lambda \in \mathbb{R}$ is a bifurcation point if there is a sequence $\{(\lambda_n, u_n)\} \subset \mathbb{R} \times [H_A \setminus \{0\}]$ of solutions such that $\lambda_n \to \Lambda$ and $|u_n|_2 \to 0$.

As before, define K(u) and $G(u) \in H_A$ by

$$\langle K(u), v \rangle_A = \int_{\Omega} uv dx$$
 and
 $\langle G(u), v \rangle_A = \int_{\Omega} f(u)v dx$ for all $u, v \in H_A$

As before, define K(u) and $G(u) \in H_A$ by

$$\langle K(u), v \rangle_A = \int_{\Omega} uv dx$$
 and
 $\langle G(u), v \rangle_A = \int_{\Omega} f(u)v dx$ for all $u, v \in H_A$

 $(\lambda, u) \in \mathbb{R} \times H_A$ satisfies by $\Leftrightarrow u = \lambda G(u)$.

As before, define K(u) and $G(u) \in H_A$ by

$$\langle K(u), v \rangle_A = \int_{\Omega} uv dx$$
 and
 $\langle G(u), v \rangle_A = \int_{\Omega} f(u)v dx$ for all $u, v \in H_A$

 $(\lambda, u) \in \mathbb{R} \times H_A$ satisfies by $\Leftrightarrow u = \lambda G(u)$.

 $K \in B(H_A, H_A)$ and $K = K^* > 0$

As before, define K(u) and $G(u) \in H_A$ by

$$\langle K(u), v \rangle_A = \int_{\Omega} uv dx$$
 and
 $\langle G(u), v \rangle_A = \int_{\Omega} f(u)v dx$ for all $u, v \in H_A$

 $(\lambda, u) \in \mathbb{R} \times H_A$ satisfies by $\Leftrightarrow u = \lambda G(u)$.

 $K \in B(H_A, H_A)$ and $K = K^* > 0$

 $G \in C^1(H_A, H_A)$ if t < 2

If $t < 2, K \in B(H_A, H_A)$ is compact.

If $t < 2, K \in B(H_A, H_A)$ is compact.

```
\sigma(K) = \{\mu_i : i \in \mathbb{N}\} \subset (0, \infty)
where \mu_{i+1} < \mu_i and \lim_{i \to \infty} \mu_i = 0
```

If $t < 2, K \in B(H_A, H_A)$ is compact.

```
\sigma(K) = \{\mu_i : i \in \mathbb{N}\} \subset (0, \infty)
where \mu_{i+1} < \mu_i and \lim_{i \to \infty} \mu_i = 0
\sup \sigma_e(K) = \{0\}
```

If $t < 2, K \in B(H_A, H_A)$ is compact.

 $\sigma(K) = \{\mu_i : i \in \mathbb{N}\} \subset (0, \infty)$ where $\mu_{i+1} < \mu_i$ and $\lim_{i \to \infty} \mu_i = 0$ $\sup \sigma_e(K) = \{0\}$

The linear boundary value problem

$$-\nabla \cdot \{A(x)\nabla u(x)\} = \lambda u(x) \text{ for } x \in \Omega$$
$$u = 0 \text{ for } x \in \partial \Omega$$

has a non-trivial solution $u \in H_A$ for $\lambda = \frac{1}{\mu_i}$.

If $t < 2, K \in B(H_A, H_A)$ is compact.

 $\sigma(K) = \{\mu_i : i \in \mathbb{N}\} \subset (0, \infty)$ where $\mu_{i+1} < \mu_i$ and $\lim_{i \to \infty} \mu_i = 0$ $\sup \sigma_e(K) = \{0\}$

The linear boundary value problem

$$-\nabla \cdot \{A(x)\nabla u(x)\} = \lambda u(x) \text{ for } x \in \Omega$$
$$u = 0 \text{ for } x \in \partial \Omega$$

has a non-trivial solution $u \in H_A$ for $\lambda = \frac{1}{\mu_i}$. $\Sigma = \{\frac{1}{\mu_i}\}$ is the set of all eigenvalues.

Theorem Let $(D1)_t$ for some $t \in [0, 2)$ and (D2) be satisfied.

Theorem Let $(D1)_t$ for some $t \in [0, 2)$ and (D2) be satisfied.

Let *B* denote the set of all bifurcation points for the bvp.

Theorem Let $(D1)_t$ for some $t \in [0, 2)$ and (D2) be satisfied.

Let B denote the set of all bifurcation points for the bvp.

Then $B = \{\lambda_i : i \in \mathbb{N}\}\$ where $0 < \lambda_i < \lambda_{i+1}$ with $\lim_{i\to\infty} \lambda_i = \infty$.

Theorem Let $(D1)_t$ for some $t \in [0, 2)$ and (D2) be satisfied.

Let B denote the set of all bifurcation points for the bvp.

Then $B = \{\lambda_i : i \in \mathbb{N}\}\$ where $0 < \lambda_i < \lambda_{i+1}$ with $\lim_{i \to \infty} \lambda_i = \infty$.

Recall that for t = 2 and under some extra assumptions on f $B \cap (0, \infty) = \Sigma \cup [\frac{N^2}{4}, \infty).$