Some Results for Elliptic Equations with a term $\pm|\nabla u|^{q}$.

Ireneo Peral Alonso

Departamento de Matemáticas
Universidad Autónoma de Madrid

FisyMat, Granada 2007

Work supported by project MTM2004-02223 M.E.C. of Spain

Joint works with:

- Boumediene Abdellaoui, Université de Tlemcem, Argelia.
- Ana Primo, U.A.M. , Spain.
\qquad

A classical inequality by Hardy

If $u \in W^{1,2}\left(\mathbb{R}^{N}\right)$ then

$$
\Lambda_{N} \int_{\mathbb{R}^{N}} \frac{u^{2}}{|x|^{2}} \leq \int_{\mathbb{R}^{N}}|\nabla u|^{2}
$$

where the optimal constant is

$$
\Lambda_{N}=\left(\frac{N-2}{2}\right)^{2}
$$

- Λ_{N} is not attained in $W^{1,2}\left(\mathbb{R}^{N}\right)$

T The optimal constant for the corresponding inequality in $W_{0}^{1,2}(\Omega)$ is $\Lambda_{N}(\Omega) \equiv \Lambda_{N}$ provides that $0 \in \Omega$. Moreover Λ_{N} is not attained in $W^{1,2}(\Omega)$

Linear precedents.

It is well known that for problem

$$
-\Delta u=f, \quad x \in \Omega,\left.\quad u\right|_{\partial \Omega}=0
$$

we have
Ω if $f \in L^{m}(\Omega), m>\frac{N}{2}$, then $u \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$;
O if $f \in L^{m}(\Omega), \frac{2 N}{N+2} \leq m \leq \frac{N}{2}$ then $u \in W_{0}^{1,2}(\Omega) \cap L^{m^{* *}}(\Omega), m^{* *}=\frac{N m}{N-2 m}$;
○ if $f \in L^{m}(\Omega), 1<m<\frac{2 N}{N+2}$ then $u \in W_{0}^{1, m^{*}}(\Omega), m^{*}=\frac{N m}{N-m}$.
Consider now the following zero-order perturbation of the Laplacian,

$$
-\Delta u=\lambda \frac{u}{|x|^{2}}+f \text { in } \Omega, u=0 \text { on } \partial \Omega
$$

where $0 \in \Omega$ bounded domain in \mathbb{R}^{N} and $0<\lambda \leq \Lambda_{N} \equiv\left(\frac{N-2}{2}\right)^{2}$.
THEOREM.(L. Boccardo, L. Orsina, I.P.) Assume

$$
(E) \quad \lambda<\frac{N(m-1)(N-2 m)}{m^{2}}
$$

then
O If $f \in L^{m}(\Omega), \frac{2 N}{N+2} \leq m<\frac{N}{2}, u \in L^{m^{* *}}(\Omega) \cap W_{0}^{1,2}(\Omega), m^{* *}=\frac{N m}{N-2 m}$.
〇 If $f \in L^{m}, 1<m<\frac{2 N}{N+2}, u \in W_{0}^{1, m^{*}}(\Omega)$.
If $m=1$ in general are no solution.
If $m>\frac{N}{2}$ in general the solution are unbounded.

Semilinear precedents.

Consider the semilinear equation

$$
(E)-\Delta u-\lambda \frac{u}{|x|^{2}}=u^{p}
$$

and $\alpha_{(-)}=\frac{N-2}{2}-\sqrt{\Lambda_{n}-\lambda}$
THEOREM. (H. Brezis, L. Dupaigne, A. Tesei)
Let $0 \leq \lambda \leq \Lambda_{N}$. If $1<p<p^{+}(\lambda) \equiv 1+\frac{2}{\alpha_{-}}$there exists a nontrivial solution to (E) such that,

$$
u^{p}, \frac{u}{|x|^{2}} \in L_{l o c}^{1}
$$

Let $0<\lambda \leq \Lambda_{N}$ and $p \geq p^{+}(\lambda)$. If $u \in L_{l o c}^{p}\left(B_{R}(0) \backslash\{0\}\right), u \geq 0$ satisfies

$$
-\Delta u-\lambda \frac{u}{|x|^{2}} \geq u^{p} \text { in } \mathcal{D}^{\prime}\left(B_{R}(0) \backslash\{0\}\right)
$$

then $u \equiv 0$.
\qquad

The quasilinear case: Presentation.

We will consider the model problem:

$$
-\Delta u \pm|\nabla u|^{p}=\lambda \frac{u}{|x|^{2}}+\alpha f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \quad 1 \leq p \leq 2
$$

The main point under consideration is to clarify the competition of the Hardy potential versus the gradient term.

According with the sign of the term in the gradient we study:

Presentation and plan of the talk.

We will consider the model problem:

$$
-\Delta u \pm|\nabla u|^{p}=\lambda \frac{u}{|x|^{2}}+\alpha f \geq 0 \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \quad 1 \leq p \leq 2
$$

The main point under consideration is to clarify the competition of the Hardy potential versus the gradient term.
According with the sign of the term in the gradient we study:

- Sign -

Presentation and plan of the talk.

We will consider the model problem:

$$
-\Delta u \pm|\nabla u|^{p}=\lambda \frac{u}{|x|^{2}}+\alpha f \geq 0 \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \quad 1 \leq p \leq 2
$$

The main point under consideration is to clarify the competition of the Hardy potential versus the gradient term.
According with the sign of the term in the gradient we study:

- Sign -
- Optimal power for existence/nonexistence depending on λ.

Presentation and plan of the talk.

We will consider the model problem:

$$
-\Delta u \pm|\nabla u|^{p}=\lambda \frac{u}{|x|^{2}}+\alpha f \geq 0 \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \quad 1 \leq p \leq 2
$$

The main point under consideration is to clarify the competition of the Hardy potential versus the gradient term.
According with the sign of the term in the gradient we study:

- Sign -
- Optimal power for existence/nonexistence depending on λ.
- Blow-up

Presentation and plan of the talk.

We will consider the model problem:

$$
-\Delta u \pm|\nabla u|^{p}=\lambda \frac{u}{|x|^{2}}+\alpha f \geq 0 \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \quad 1 \leq p \leq 2
$$

The main point under consideration is to clarify the competition of the Hardy potential versus the gradient term.
According with the sign of the term in the gradient we study:

- Sign -
- Optimal power for existence/nonexistence depending on λ.
- Blow-up
- Existence in the complementary interval.

Presentation and plan of the talk.

We will consider the model problem:

$$
-\Delta u \pm|\nabla u|^{p}=\lambda \frac{u}{|x|^{2}}+\alpha f \geq 0 \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \quad 1 \leq p \leq 2
$$

The main point under consideration is to clarify the competition of the Hardy potential versus the gradient term.
According with the sign of the term in the gradient we study:

- Sign -
- Optimal power for existence/nonexistence depending on λ.
- Blow-up
- Existence in the complementary interval.
- Sign +

Presentation and plan of the talk.

We will consider the model problem:

$$
-\Delta u \pm|\nabla u|^{p}=\lambda \frac{u}{|x|^{2}}+\alpha f \geq 0 \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \quad 1 \leq p \leq 2
$$

The main point under consideration is to clarify the competition of the Hardy potential versus the gradient term.
According with the sign of the term in the gradient we study:

- Sign -
- Optimal power for existence/nonexistence depending on λ.
- Blow-up
- Existence in the complementary interval.
- Sign +
- Breaking down the resonance.

Presentation and plan of the talk.

We will consider the model problem:

$$
-\Delta u \pm|\nabla u|^{p}=\lambda \frac{u}{|x|^{2}}+\alpha f \geq 0 \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \quad 1 \leq p \leq 2
$$

The main point under consideration is to clarify the competition of the Hardy potential versus the gradient term.
According with the sign of the term in the gradient we study:

- Sign -
- Optimal power for existence/nonexistence depending on λ.
- Blow-up
- Existence in the complementary interval.
- Sign +
- Breaking down the resonance.
- Optimality of the results.

Optimal power for nonexistence

Consider,

$$
(P R) \quad\left\{\begin{aligned}
-\Delta u & =|\nabla u|^{p}+\lambda \frac{u}{|x|^{2}}+f \text { in } \Omega \\
u & >0 \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

where $f \in L_{\text {loc }}^{1}(\Omega) f(x) \geq 0$ in $\Omega \subset \mathbb{R}^{N}$, smooth bounded domain such that $0 \in \Omega, N \geq 3$. DEFINITION. We say that $u \in L_{l o c}^{1}(\Omega)$ is a very weak supersolution (subsolution) to equation

$$
-\Delta u=|\nabla u|^{p}+\lambda \frac{u}{|x|^{2}}+f \quad \text { in } \quad \Omega
$$

if $\frac{u}{|x|^{2}} \in L_{l o c}^{1}(\Omega),|\nabla u|^{p} \in L_{l o c}^{1}(\Omega)$ and $\forall \phi \in C_{0}^{\infty}(\Omega)$ such that $\phi \geq 0$, we have that

$$
\int_{\Omega}(-\Delta \phi) u d x \geq(\leq) \int_{\Omega}\left(|\nabla u|^{p}+\lambda \frac{u}{|x|^{2}}+f\right) \phi d x
$$

If u is a very weak super and sub-solution, then we say that u is a very weak solution.

Optimal power for nonexistence

O If in problem $(P R)$ we replace $|x|^{-2}$ by a weight $g \in L^{m}(\Omega)$ with $m>\frac{N}{2}$, then there exists $\lambda_{0}, 0<\lambda_{0}<\lambda_{1}(g)$ such that for $0<\lambda<\lambda_{0}$ problem $(P R)$ has a weak solution for suitable datum f.

- We will see that the weight $|x|^{-2}$ behaves in a very different way.

NOTATION.
We denote

$$
\alpha_{(\pm)}=\frac{N-2}{2} \pm \sqrt{\left(\frac{N-2}{2}\right)^{2}-\lambda}
$$

$\alpha_{(\pm)}$are the roots of $\alpha^{2}-(N-2) \alpha+\lambda=0$.

Such roots give the radial solutions $|x|^{-\alpha}(\pm)$ to the equation

$$
-\Delta u-\lambda \frac{u}{|x|^{2}}=0
$$

Optimal power for nonexistence

LEMMA 1. Assume $u \geqq 0$ in Ω such that $u \in L_{l o c}^{1}(\Omega)$ and $\frac{u}{|x|^{2}} \in L_{l o c}^{1}(\Omega)$.
If u satisfies $-\Delta u-\lambda \frac{u}{|x|^{2}} \geq 0$ in $\mathcal{D}^{\prime}(\Omega)$ with $\lambda \leq \Lambda_{N} \Rightarrow \exists C>0$ and there exists a ball $B_{R}(0) \subset \Omega$ such that $u(x) \geq C|x|^{-\alpha_{-}}$in $B_{R}(0)$, where $\alpha_{-}=\frac{N-2}{2}-\sqrt{\left(\frac{N-2}{2}\right)^{2}-\lambda}$.

Outline of the proof. By strong M. P. $u \geq \eta$ in a small ball $B_{R}(0)$.

- Fix $R>0$ and consider $w \in W^{1,2}\left(B_{R}(0)\right)$ the unique solution to

$$
-\Delta w-\lambda \frac{w}{|x|^{2}}=0 \quad \text { in } \quad B_{R}(0), \quad w=\eta \quad \text { on } \quad \partial B_{R}(0)
$$

By an elementary computation, it follows that $w(r)=C r^{-\alpha_{-}} \quad$ in $\quad B_{R}(0)$, with $\alpha_{-}=\frac{N-2}{2}-\sqrt{\left(\frac{N-2}{2}\right)^{2}-\lambda}$ and $C=\eta R^{\alpha_{-}}$.

Optimal power for nonexistence

LEMMA 1. Assume $u \geqq 0$ in Ω such that $u \in L_{l o c}^{1}(\Omega)$ and $\frac{u}{|x|^{2}} \in L_{l o c}^{1}(\Omega)$.
If u satisfies $-\Delta u-\lambda \frac{u}{|x|^{2}} \geq 0$ in $\mathcal{D}^{\prime}(\Omega)$ with $\lambda \leq \Lambda_{N} \Rightarrow \exists C>0$ and there exists a ball $B_{R}(0) \subset \Omega$ such that $u(x) \geq C|x|^{-\alpha_{-}}$in $B_{R}(0)$, where $\alpha_{-}=\frac{N-2}{2}-\sqrt{\left(\frac{N-2}{2}\right)^{2}-\lambda}$.

Outline of the proof. By strong M. P. $u \geq \eta$ in a small ball $B_{R}(0)$.

- Fix $R>0$ and consider $w \in W^{1,2}\left(B_{R}(0)\right)$ the unique solution to
$-\Delta w-\lambda \frac{w}{|x|^{2}}=0 \quad$ in $\quad B_{R}(0), \quad w=\eta \quad$ on $\quad \partial B_{R}(0)$.
By an elementary computation, it follows that $w(r)=C r^{-\alpha_{-}} \quad$ in $\quad B_{R}(0)$, with $\alpha_{-}=\frac{N-2}{2}-\sqrt{\left(\frac{N-2}{2}\right)^{2}-\lambda}$ and $C=\eta R^{\alpha_{-}}$.

By comparison, we conclude that $u \geq w$ in $B_{R}(0)$, then $u \geq C|x|^{-\alpha_{-}}$in $\quad B_{R}(0)$.

Optimal power for nonexistence

LEMMA 2.(Necessary condition for existence). Consider the equation

$$
(L) \quad-\Delta w-\lambda \frac{w}{|x|^{2}}=g \text { in } \Omega
$$

with $g \in L_{l o c}^{1}(\Omega), g(x) \geq 0$ and $\lambda \leq \Lambda_{N}$. If (L) has a very weak supersolution then

$$
|x|^{-\alpha_{(-)}} g \in L_{l o c}^{1}(\Omega)
$$

Outline of the proof. Assume w a very weak supersolution to (L).
Let $B_{R}(0) \subset \Omega$ be a ball.
Consider $g_{n} \equiv T_{n}(g)$ and solve the problem

$$
\left(L_{n}\right) \quad-\Delta w_{n}-\lambda \frac{w_{n}}{|x|^{2}}=g_{n} \text { in } B_{R}(0), \quad w_{n}=0 \text { on } \partial B_{R}(0)
$$

Then, i) $\left\{w_{n}\right\}_{n \in \mathbb{N}}$ in nondecreasing and ii) $w_{n} \leq w$.
Consider ϕ, the solution to problem

$$
-\Delta \phi-\lambda \frac{\phi}{|x|^{2}}=1 \text { in } B_{R}(0), \quad \phi=0 \text { on } \partial B_{R}(0)
$$

then $\phi(x) \simeq c|x|^{-\alpha}(-)$ in a neighborhood of $x=0$.
Take (formally) ϕ as a test function in problem $\left(L_{n}\right)$ there result

$$
\int_{B_{R}(0)} w_{n} d x=\int_{B_{R}(0)} g_{n} \phi d x \geq C_{2} \int_{B_{R}(0)} g_{n}|x|^{-\alpha}-d x
$$

then the result follows by monotone convergence theorem.

Optimal power for nonexistence

THEOREM. (Main nonexistence result). Assume that $f \geq 0$ and $p_{+}(\lambda)=\frac{2+\alpha_{(-)}}{1+\alpha_{(-)}}$.
Then if $p \geq p_{+}(\lambda)$, there is not very weak supersolution to equation $(P R)$. In the case where $f \equiv 0$, the unique non negative very weak supersolution is $u \equiv 0$.
Outline of the proof. We divide the proof in three steps.
First step: $p>p_{+}(\lambda)$. Assume by contradiction that u is a weak super-solution to $(P R)$.
Then $-\Delta u-\lambda \frac{u}{|x|^{2}} \not \geq 0$ and hence $u(x) \geq C|x|^{-\alpha_{(-)}}$in $B_{r}(0) \subset \mathbb{R}^{\mathrm{N}}$.
Consider $\phi \in \mathcal{C}_{0}^{\infty}\left(B_{r}(0)\right)$ and use $|\phi|^{p^{\prime}}$ as a test function in $(P R)$,

$$
\int_{B_{r}(0)} p^{\prime}|\phi|^{p^{\prime}-1} \nabla u \nabla \phi=\int_{B_{r}(0)}|\nabla u|^{p}|\phi|^{p^{\prime}}+\lambda \int_{B_{r}(0)} \frac{u}{|x|^{2}}|\phi|^{p^{\prime}}+\int_{B_{r}(0)} f|\phi|^{p^{\prime}}
$$

by Hölder and Young inequalities,

$$
\begin{aligned}
& \int_{B_{r}(0)} p^{\prime}|\phi|^{p^{\prime}-1} \nabla u \nabla \phi \leq \frac{1}{2} \int_{B_{r}(0)}|\nabla u|^{p}|\phi|^{p^{\prime}}+C \int_{B_{r}(0)}|\nabla \phi|^{p^{\prime}} \text {, hence } \\
& c_{1} \lambda \int_{B_{r}(0)} \frac{u|\phi|^{p^{\prime}}}{|x|^{2}} d x \leq \int_{B_{r}(0)}|\nabla \phi|^{p^{\prime}} d x,\left(c_{1}>0 \text { independent of } u \text { and } \phi\right) .
\end{aligned}
$$

By the local behavior of u in $B_{r}(0)$,

$$
c_{2} \lambda \int_{B_{r}(0)} \frac{|\phi|^{p^{\prime}}}{|x|^{2+\alpha_{(-)}}} d x \leq \int_{B_{r}(0)}|\nabla \phi|^{p^{\prime}} d x
$$

Since $p>p_{+}(\lambda)$, hence $2+\alpha_{(-)}>p^{\prime} \quad \Rightarrow$ a contradiction with the Hardy inequality in

$$
W_{0}^{1, p^{\prime}}\left(B_{r}(0)\right)
$$

Optimal power for nonexistence

Second step: $p=p_{+}(\lambda)$ and $\lambda<\Lambda_{N}$. As in the first step if u is a very weak super-solution, $u(x) \geq \frac{c_{0}}{|x|^{\alpha}(-)}$ in some ball $B_{\eta}(0) \subset \subset \Omega$, without loss of generality we assume that $\eta=e^{-1}$. Notice that in this case $p_{+}(\lambda)^{\prime} \equiv 2+\alpha_{(-)}$, then we need a sharper lower estimate for u
By Lemma 2 we obtain that
$\int_{B_{\eta}(0)}|\nabla u|^{p_{+}(\lambda)}|x|^{-\alpha_{(-)}} d x<\infty$ and $\int_{B_{\eta}(0)} \frac{u}{|x|^{2+\alpha_{(-)}}} d x<\infty$.
Consider $w(x)=|x|^{-\alpha}(-)\left(\log \left(\frac{1}{|x|}\right)\right)^{\beta}, \beta>0$ to be chosen later.
Since $\lambda<\Lambda_{N}, w \in W^{1,2}\left(B_{\eta}(0)\right)$ and in particular $w \in W^{1, p_{+}}{ }^{(\lambda)}\left(B_{\eta}(0)\right)$.
By a direct computation we obtain that for $|x| \leq e^{-1}$, by choosing β small enough,

$$
-\Delta w-\lambda \frac{w}{|x|^{2}} \leq \beta^{\frac{1}{2}}|\nabla w|^{p}{ }^{(\lambda)} h(x)
$$

where $h(x)=\left(\alpha_{(-)} \log \left(\frac{1}{|x|}\right)+\beta\left(\left(\log \left(\frac{1}{|x|}\right)\right)^{-1}\right)^{1-p_{+}(\lambda)}\right.$, which is bounded in the ball $B_{\eta}(0)$.
By scaling, $u_{1} \equiv c_{1} u$,

$$
-\Delta u_{1}-\lambda \frac{u_{1}}{|x|^{2}} \geq c_{1}^{1-p}\left|\nabla u_{1}\right|^{p_{+}}(\lambda) .
$$

We have to prove that $u_{1} \geq w$.

Optimal power for nonexistence

Fixed c_{0} satisfying $u(x) \geq \frac{c_{0}}{|x|^{\alpha-}}$ in $|x| \leq \eta=e^{-1}$, chose $c_{1}>0$ such that $c_{1} c_{0} \geq 1$.
Then for a suitable small β we have:
$\int c_{1}^{1-p_{+}{ }^{(\lambda)} \geq\|h\|_{\infty} \beta^{\frac{1}{2}} . . . ~}$
〇 $u_{1}(x) \geq w(x)$ for $|x|=e^{-1}$ and $-\Delta u_{1}-\lambda \frac{u_{1}}{|x|^{2}} \geq \beta^{\frac{1}{2}} h(x)\left|\nabla u_{1}\right|^{p_{+}}{ }^{(\lambda)}$.
CLAIM: $u_{1} \geq w$. If $v=w-u_{1}$ one can check that
$\int v \in W^{1, p_{+}}{ }^{(\lambda)}\left(B_{\eta}(0)\right), v \leq 0$ on $\partial B_{\eta}(0)$ and
$\int_{B_{\eta}(0)} \frac{|v|}{|x|^{2+\alpha_{(-)}}} d x<\infty, \int_{B_{\eta}(0)}|\nabla v|^{p_{+}(\lambda)}|x|^{-\alpha_{(-)}} d x<\infty$.
$-\Delta v-\lambda \frac{v}{|x|^{2}} \leq p_{+}(\lambda) h(x) \beta^{\frac{1}{2}}|\nabla w|^{p_{+}}{ }^{(\lambda)-2} \nabla w \nabla v \equiv a(x) \nabla v$ where the vector field
$a(x)=-\beta^{\frac{1}{2}} p_{+}(\lambda) \frac{x}{|x|^{2}} \in L^{q}\left(B_{\eta}(0)\right)$ for all $q<N$.
Notice that a is not in the hypothesis by Alaa-Pierre.
To overcame this lack of summability we start by applying the Kato's type inequality by Brezis-Ponce, then

$$
(1)-\Delta v_{+}-\lambda \frac{v_{+}}{|x|^{2}}+p_{+}(\lambda) \beta^{\frac{1}{2}}\left\langle\frac{x}{|x|^{2}}, \nabla v_{+}\right\rangle \leq 0 \text { and } \int_{B_{\eta}(0)} \frac{\left|\nabla v_{+}\right|^{p_{+}}}{|x|^{\alpha(-)}} d x<\infty
$$

Optimal power for nonexistence

Since $\frac{\alpha_{(-)}}{p_{+}(\lambda)}<\frac{N-2}{2}$, by Hardy-Sobolev inequality v_{+}satisfies
$\int_{B_{\eta}(0)} \frac{v_{+}^{p_{+}(\lambda)}}{|x|^{p_{+}(\lambda)+\alpha_{(-)}}} d x<\infty . \Rightarrow \exists \sigma_{1}>2+\alpha_{(-)}$, such that $\int_{B_{\eta}(0)} \frac{v_{+}}{|x|^{\sigma_{1}}} d x<\infty$.
For β small enough, $\gamma=\frac{\beta^{\frac{1}{2}} p_{+}(\lambda)}{2}<\frac{N-2}{2}$ and then the weight $|x|^{-2 \gamma}$ is an admissible weight to have Caffarelli-Kohn-Nirenberg inequalities.
We consider the equivalent inequality,

$$
-\operatorname{div}\left(|x|^{-2 \gamma} \nabla v_{+}\right)-\lambda \frac{v_{+}}{|x|^{2(\gamma+1)}}=|x|^{-2 \gamma}\left(-\Delta v_{+}+p_{+}(\lambda)\left\langle\frac{x}{|x|^{2}}, \nabla v_{+}\right\rangle-\lambda \frac{v_{+}}{|x|^{2}}\right) \leq 0
$$

The idea should be to use as a test function in (1), $\varphi=\frac{1}{|x|^{a}}-\frac{1}{\eta^{a}}$,
$a=\frac{N-2(\gamma+1)}{2}-\sqrt{\left(\frac{N-2(\gamma+1)}{2}\right)^{2}-\lambda}$, the solution to problem

$$
\left\{\begin{array}{r}
-\operatorname{div}\left(|x|^{-2 \gamma} \nabla \varphi\right)-\lambda \frac{\varphi}{|x|^{2(\gamma+1)}}=\frac{1}{|x|^{2(\gamma+1)}} \text { in } B_{\eta}(0) \\
\varphi=0 \quad \text { on } \quad \partial B_{\eta}(0)
\end{array}\right.
$$

Formally we reach the inequality $\int_{\left.B_{\eta}(0)\right)} \frac{v_{+}}{|x|^{2(1+\gamma)}} d x \leq 0$, hence $v_{+} \equiv 0 \Leftrightarrow u_{1} \geq w$.
As φ has not the required regularity we use an approximation argument.

Optimal power for nonexistence

To finish the proof in this case we use the same argument as in the first step. More precisely for all $\phi \in \mathcal{C}_{0}^{\infty}\left(B_{r}(0)\right), 0<r \ll \eta$ we have

$$
c_{1} \int_{B_{r}(0)} \frac{u_{1}|\phi|^{p_{+}^{\prime}}}{|x|^{2}} d x \leq \int_{B_{r}(0)}|\nabla \phi|^{p_{+}^{\prime}} d x
$$

where $c_{1}>0$ is independent of ϕ. Using the result of the claim and by the fact that $p_{+}^{\prime}=\alpha_{(-)}+2$ we obtain that,

$$
c_{2} \int_{B_{r}(0)} \frac{|\phi|^{p_{+}^{\prime}}}{|x|^{p_{+}^{\prime}}}\left(\log \left(\frac{1}{|x|}\right)^{\beta} d x \leq \int_{B_{r}(0)}|\nabla \phi|^{p_{+}^{\prime}} d x\right.
$$

a contradiction with Hardy inequality in $W_{0}^{1, p_{+}^{\prime}}\left(B_{r}(0)\right)$. Hence the result follows.

Optimal power for nonexistence

Third step: $p=p_{+}(\lambda)$ and $\lambda=\Lambda_{N}$ In this case $\alpha_{(-)}=\frac{N-2}{2}$ and $p_{+}(\lambda)=\frac{N+2}{N}$, hence $u(x) \geq c|x|^{-\alpha}(-)$ and

$$
\int_{B_{\eta}(0)}|\nabla u|^{p_{+}(\lambda)}|x|^{-\alpha_{(-)}} d x<\infty
$$

We consider $\phi \in \mathcal{C}_{0}^{\infty}\left(B_{\eta}(0)\right)$ such that $\phi \geq 0$ and $\phi=1$ in $B_{\eta_{1}}(0)$, then by the regularity of u we obtain $\int_{B_{\eta}(0)}|\nabla(\phi u)|^{p_{+}(\lambda)}|x|^{-\alpha_{(-)}} d x<\infty$. Since $\frac{\alpha_{(-)}}{p_{+}(\lambda)}=\frac{N(N-2)}{2(N+2)}<\frac{N-2}{2}$, we can apply Caffarelli-Kohn-Nirenberg inequalities to obtain that
$C_{1} \int_{B_{\eta}(0)}(\phi u)^{p_{+}(\lambda)}|x|^{-\alpha(-)} d x \leq \int_{B_{\eta}(0)}|\nabla(\phi u)|^{p_{+}(\lambda)}|x|^{-\alpha_{(-)}} d x<\infty$.
$\int_{B_{\eta_{1}}(0)} u^{p_{+}(\lambda)}|x|^{-\alpha_{(-)}} d x<\infty$ for some $\eta_{1}<\eta$
In particular,

$$
\int_{B_{\eta_{1}}(0)} \frac{u^{p_{+}(\lambda)}}{|x|^{\alpha}(-)+p_{+}(\lambda)} d x<\infty .
$$

Using the fact that $u(x) \geq c|x|^{-\alpha(-)}$ there result that

$$
\int_{B_{\eta_{1}}(0)} \frac{|x|^{-\alpha_{(-)} p_{+}(\lambda)}}{|x|^{\alpha_{(-)}+p_{+}(\lambda)}} d x<\infty
$$

Since $\alpha_{(-)}+p_{+}(\lambda)+\alpha_{(-)} p_{+}(\lambda)=N$, we reach a contradiction.

Some remarks

- Notice that $p_{+}(\lambda)<2$ and
- $p_{+}(\lambda) \rightarrow 2$ if $\lambda \rightarrow 0$
- $\quad p_{+}(\lambda) \rightarrow \frac{N+2}{N}$ if $\lambda \rightarrow \Lambda_{N}$.

Therefore we find a discontinuity with the known result for $\lambda=0$. (See for instance, Hansson-Maz'ya-Verbitsky paper).
O If $1<p \leq \frac{N}{N-1}$, then there is not very weak positive solution in \mathbb{R}^{N}.
By contradiction. Assume $1<p \leq \frac{N}{N-1}$ and u a positive solution.
By using the strong maximum principle, for any compact set $K \subset \Omega$ there exists a positive constant $c(K)$ such that $u \geq c(K)$. Let $\phi \in \mathcal{C}_{0}^{\infty}(\Omega)$, then using $|\phi|^{p^{\prime}}$ as a test function and by using Young inequalities we obtain that
$\int_{\mathbb{R}^{N}}|\nabla \phi|^{p^{\prime}} d x \geq c_{1} \lambda \int_{\mathbb{R}^{N}} \frac{u}{|x|^{2}}|\phi|^{p^{\prime}} d x$.
Since $p^{\prime}>N$, then $C a p_{1, p^{\prime}}(K)=0$ for any compact set of \mathbb{R}^{N}. Thus, $\exists\left\{\phi_{n}\right\} \subset \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{\mathrm{N}}\right)$ such that $\phi \geq \chi_{K}$ and $\left\|\nabla \phi_{n}\right\|_{L^{p^{\prime}}\left(\mathbb{R}^{\mathrm{N}}\right)} \rightarrow 0$ as $n \rightarrow \infty$. Hence by substituting in the last inequality we reach a contradiction. (See Alaa-Pierre).
O In bounded domains there are no restriction on p from below.

Complete blow-up

As a consequence of the non existence result, the following blow-up behavior for approximated problems could be obtained.
THEOREM. Assume that $p \geq p_{+}(\lambda)$. If $u_{n} \in W_{0}^{1, p}(\Omega)$ is a solution to problem

$$
\left\{\begin{aligned}
-\Delta u_{n} & =\left|\nabla u_{n}\right|^{p}+\lambda a_{n}(x) u_{n}+\alpha f \text { in } \Omega \\
u_{n} & >0 \text { in } \Omega \\
u_{n} & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

with $f \geq 0, f \neq 0$ and $a_{n}(x)=\frac{1}{|x|^{2}+\frac{1}{n}}$, then $u_{n}\left(x_{0}\right) \rightarrow \infty, \forall x_{0} \in \Omega$.
Idea of the proof. If in some point the limit is finite, Harnack inequality provide an estimate that allow us to construct a local solution in contradiction to the nonexistence theorem.
The existence of such solution requires the following result.
LEMMA. Assume that $\left\{u_{n}\right\}$ is a sequence of positive functions such that $\left\{u_{n}\right\}$ is uniformly bounded in $W_{l o c}^{1, p}(\Omega)$ for some $2 \geq p>1$ with $u_{n} \rightharpoonup u$ weakly in $W_{l o c}^{1, p}(\Omega)$ and such that $u_{n} \leq u$ for all $n \in \mathrm{~N}$. Assume that $-\Delta u_{n} \geq 0$ in $\mathcal{D}^{\prime}(\Omega)$ and that, if $p<2$, sequence $\left\{T_{k}\left(u_{n}\right)\right\}$ is uniformly bounded in $W_{l o c}^{1,2}(\Omega)$ for k fixed. Then $\nabla T_{k}\left(u_{n}\right) \rightarrow \nabla T_{k}(u)$ strongly in $\left(L_{l o c}^{2}(\Omega)\right)^{N}$.
\qquad

Existence in $\mathbb{R}^{\mathrm{N}}: p_{-}(\lambda)<p<p_{+}(\lambda)$ and $\lambda<\Lambda_{N}$

For $\alpha_{(+)}$and $\alpha_{(-)}$as above, consider
$p_{-}(\lambda) \equiv \frac{2+\alpha_{(+)}}{1+\alpha_{(+)}} \quad$ and $\quad p_{+}(\lambda) \equiv \frac{2+\alpha_{(-)}}{1+\alpha_{(-)}}$.
THEOREM A. Assume that $p_{-}(\lambda)<p<p_{+}(\lambda)$ then

$$
-\Delta u=|\nabla u|^{p}+\lambda \frac{u}{|x|^{2}}
$$

has a very weak solution $u>0$ in \mathbb{R}^{N}.
Proof. We search a solution in the form $u(x)=A|x|^{-\beta}$.
By a direct computation we obtain that $\beta=\frac{2-p}{p-1}$ and

$$
\beta^{p} A^{p-1}=\beta(N-\beta-2)-\lambda .
$$

To have $A>0$ we need $\beta \in\left(\alpha_{(-)}, \alpha_{(+)}\right)$which is equivalent to $p_{-}(\lambda)<p<p_{+}(\lambda)$. Notice that
$u, \frac{u}{|x|^{2}} \in L_{l o c}^{1}\left(\mathbb{R}^{\mathrm{N}}\right)$ and since $p>p_{-}(\lambda)>\frac{N}{N-1}, \quad|\nabla u|^{p} \in L_{l o c}^{1}\left(\mathbb{R}^{\mathrm{N}}\right)$

Remark. The solution u in Theorem \mathbf{A} is in the space $W_{l o c}^{1,2}\left(\mathbb{R}^{\mathrm{N}}\right)$ if and only if $p>\frac{N+2}{N}$.
For all $\lambda \in\left[0, \Lambda_{N}\right), \quad \frac{N+2}{N} \in\left(p_{-}(\lambda), p_{+}(\lambda)\right)$
If $\lambda=\Lambda_{N}$ then $\frac{N+2}{N}=p_{-}(\lambda)=p_{+}(\lambda)$.

Existence Dirichlet Problem: $1<p<p_{+}(\lambda)$ and $\lambda<\Lambda_{N}$

To find solution to Dirichlet problem:

1. Is needed a supersolution and then comparison arguments as in
N.E. Alaa, M. Pierre, SIAM J. Math. Anal. Vol 24 no. 1 (1993), 23-35.
2. The datum must be small in some class of functions, as in the case $\lambda=0$

The precise statement is the next.
THEOREM B. Assume that $1<p<p_{+}(\lambda)$. There exist c_{0} such that if $c<c_{0}$ and $f(x) \leq \frac{1}{|x|^{2}}$, then problem

$$
\left\{\begin{aligned}
-\Delta w & =|\nabla w|^{p}+\lambda \frac{w}{|x|^{2}}+c f \text { in } \Omega \\
w & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

has a positive solution $w \in W_{0}^{1,2}(\Omega)$.
Outline of the proof.
Assume $\bar{w} \in W_{0}^{1, p}(\Omega)$ is a positive super-solution for the data $f(x) \equiv \frac{1}{|x|^{2}}$ and c small. Consider $a_{n}(x)=\frac{1}{|x|^{2}+\frac{1}{n}} \uparrow|x|^{-2}, f_{n}=\min \{f, n\} \uparrow f$. and problem,
$(T P)\left\{\begin{array}{r}-\Delta v_{n}=\lambda a_{n}(x) v_{n}+\frac{\left|\nabla v_{n}\right|^{p}}{1+\frac{1}{n}\left|\nabla v_{n}\right|^{p}}+c f_{n} \text { in } \Omega, \\ v_{k}=0 \text { on } \partial \Omega,\end{array}\right.$

Existence Dirichlet Problem: $1<p<p_{+}(\lambda)$ and $\lambda<\Lambda_{N}$

By classical theory $(T P)$ has a unique positive solution $v_{n} \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$.
Moreover by the comparison principle in Alaa-Pierre paper,

$$
v_{n} \leq v_{n+1} \text { and } v_{n} \leq \bar{w}, \forall n
$$

Hence $\bar{v}=\lim _{n \rightarrow \infty} v_{n} \leq w$.
Take as test function $\phi_{n}=\left(1+v_{n}\right)^{s}-1,0<s<\frac{p(N-1)-N}{2-p}<1$,

$$
\int_{\Omega} \frac{\left|\nabla v_{n}\right|^{2}}{\left(1+v_{n}\right)^{1-s}} d x \leq C_{1}, \quad \int_{\Omega}\left|\nabla v_{n}\right|^{p}\left(1+v_{n}\right)^{s} d x \leq C_{2}
$$

Therefore, in particular

$$
\frac{1}{k} \int_{\Omega}\left|\nabla T_{k} v_{n}\right|^{2} \leq C_{3}, \quad \int_{\Omega}\left|\nabla v_{n}\right|^{p} \leq C_{4} .
$$

Then by using $\phi\left(T_{k} v_{n}-T_{k} v\right)$ as a test function, where $\phi(s)=s \exp ^{\frac{1}{4} s^{2}}$, and the convergence arguments by Boccardo-Gallouët-Orsina we obtain that

$$
\nabla T_{k} v_{n} \rightarrow \nabla T_{k} v \text { as } n \rightarrow \infty \text { strongly in } W_{0}^{1,2}(\Omega)
$$

With the test function $\psi_{n}=\left(1+G_{k}\left(v_{n}\right)\right)^{s}-1, G_{k}(t)=t-T_{k}(t)$, we prove
$\limsup _{k \rightarrow \infty} \int_{v_{n} \geq k}\left|\nabla v_{n}\right|^{p} d x \leq \lim \sup _{k \rightarrow \infty} \int_{\Omega}\left|\nabla G_{k}\left(v_{n}\right)\right|^{p}\left(1+G_{k}\left(v_{n}\right)\right)^{s} d x=0$, uniformly in n.

By Vitali Lemma $\nabla v_{n} \rightarrow \nabla u, \quad n \rightarrow \infty$, strongly in $L^{p}(\Omega)$.
Hence u is a very weak solution to problem
If the super-solution has finite energy the arguments are easier.

Existence Dirichlet Problem: $1<p<p_{+}(\lambda)$ and $\lambda<\Lambda_{N}$

The construction of the super-solution is performed in two steps

Existence Dirichlet Problem: $1<p<p_{+}(\lambda)$ and $\lambda<\Lambda_{N}$

The construction of the super-solution is performed in two steps
〇 i) $p_{-}<p<p_{+}(\lambda)$.
Consider ς, the solution to

$$
\left\{\begin{aligned}
-\Delta \varsigma & =0 \text { in } \Omega \\
\varsigma & =u \text { on } \partial \Omega
\end{aligned}\right.
$$

where u is the radial solution obtained in Theorem \mathbf{A}.
Then $\varsigma \in \mathcal{C}^{\infty}(\Omega)$ and $0<c_{1} \leq \varsigma \leq c_{2}$.
One can check that for t small enough $\bar{w}=t(u-\varsigma)$, is a super-solution. Notice that $\bar{w} \in W_{0}^{1, p}(\Omega), \bar{w} \geq 0$ in Ω.

Existence Dirichlet Problem: $1<p<p_{+}(\lambda)$ and $\lambda<\Lambda_{N}$

The construction of the super-solution is performed in two steps
〇 i) $p_{-}<p<p_{+}(\lambda)$.
Consider ς, the solution to

$$
\left\{\begin{aligned}
-\Delta \varsigma & =0 \text { in } \Omega \\
\varsigma & =u \text { on } \partial \Omega
\end{aligned}\right.
$$

where u is the radial solution obtained in Theorem A.
Then $\varsigma \in \mathcal{C}^{\infty}(\Omega)$ and $0<c_{1} \leq \varsigma \leq c_{2}$.
One can check that for t small enough $\bar{w}=t(u-\varsigma)$, is a super-solution. Notice that $\bar{w} \in W_{0}^{1, p}(\Omega), \bar{w} \geq 0$ in Ω.
O ii) $1<p \leq p_{-}$. We start by getting a super-solution in $\Omega=B_{R}(0)$. For general Ω we perform the same arguments as in the first case using the super-solution in a big ball.
Since $p \leq p_{-}, \exists \beta \in\left(\alpha_{(-)}, \alpha_{(+)}\right)$, close to $\alpha_{(-)}$and such that $p(\beta+1)<\beta+2$.
Define $\bar{w}(x) \equiv A\left(|x|^{-\beta}-R^{-\beta}\right)$ with β close to $\alpha_{(-)}$, then $\bar{w} \in W_{0}^{1,2}\left(B_{R}(0)\right)$ and

$$
-\Delta \bar{w}-\lambda \frac{\bar{w}}{|x|^{2}}=A(\beta(N-\beta-2)-\lambda)|x|^{-\beta-2}+\frac{A}{|x|^{2}}
$$

Since $\beta \in\left(\alpha_{(-)}, \alpha_{(+)}\right)$, then $\beta(N-\beta-2)-\lambda>0$, hence if $A^{p-1}=\frac{\beta(N-\beta-2)-\lambda)}{\beta^{p}}$,

$$
-\Delta \bar{w}-\lambda \frac{\bar{w}}{|x|^{2}} \geq|\nabla \bar{w}|^{p}+\frac{A}{|x|^{2}}
$$

So, if $c_{0}=A, \bar{w} \in W_{0}^{1,2}\left(B_{R}(0)\right)$. is a super-solution in $B_{R}(0)$ for all $c<c_{0}$. Granada February 2007-p. 27/5

Existence Dirichlet Problem: $\lambda \equiv \Lambda_{n}$ and $p<\frac{N+2}{N}$

This critical case is more involved. As above we find a super-solution in a ball
O Consider $w(x)=\left|\frac{x}{r}\right|^{-\frac{N-2}{2}}\left(\log \left(\frac{r}{|x|}\right)\right)^{1 / 2}$. $w \in W_{0}^{1, q}\left(B_{r}(0)\right)$ for all $q<2$.

- For suitable positive constant $c_{1}, c_{1} w$ is a super-solution in the ball $B_{R}(0)$ to

$$
\left\{\begin{aligned}
-\Delta w & =|\nabla w|^{p}+\Lambda_{N} \frac{w}{|x|^{2}}+c_{0} f \text { in } B_{1}(r) \\
w & =0 \text { on } \partial B_{r}(0)
\end{aligned}\right.
$$

where $|x|^{2} f$ is bounded and c_{0} is small
The natural framework to find the solution is the Hilbert space H, complection of $\mathcal{C}_{0}^{\infty}\left(B_{r}(0)\right)$ respect to the norm

$$
\|\phi\|_{H\left(B_{r}(0)\right)}^{2}=\int_{B_{r}(0)}|\nabla \phi|^{2} d x-\Lambda_{N} \int_{B_{r}(0)} \frac{\phi^{2}}{|x|^{2}} d x
$$

In fact we find a solution is such space.
(We avoid technical details).
\qquad

Breaking down the resonance: existence for all $\lambda>0$

Consider

$$
(P A)\left\{\begin{aligned}
-\Delta u+|\nabla u|^{q} & =\lambda g(x) u+f \text { in } \Omega \\
u & \geq 0 \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

where $1 \leq q \leq 2, \lambda \in \mathbb{R}$ and $f \in L^{m}(\Omega)$ with $m \geq 1$. We will assume that g is an admissible weight in the sense that the

$$
\text { (H1) } g \geq 0 \text { and } g \in L^{1}(\Omega) \cap W^{-1, q^{\prime}}(\Omega) \quad q^{\prime}=\frac{q}{q-1} .
$$

Call

$$
\lambda_{1}(g, q)=\inf _{\phi \in W_{0}^{1, q}(\Omega) \backslash\{0\}} \frac{\left(\int_{\Omega}|\nabla \phi|^{q} d x\right)^{\frac{1}{q}}}{\int_{\Omega} g|\phi| d x}>0
$$

Examples.
$\Omega g \in L^{m}(\Omega)$ with $m>\frac{N}{q}$.
$g(x) \equiv \frac{1}{|x|^{2}}$, the Hardy potential and $q>\frac{N}{N-1}$.

Existence of solutions for all $\lambda>0$

The main result is the following.
THEOREM. Assume $1<q \leq 2, f \in L^{1}(\Omega)$ and the hypothesis (H1) holds for g, then there exists $u \in W_{0}^{1, q}(\Omega)$ a weak solution to problem $(P A)$ for all parameter $\lambda>0$.

Existence of solutions for all $\lambda>0$

The main result is the following.
THEOREM. Assume $1<q \leq 2, f \in L^{1}(\Omega)$ and the hypothesis (H1) holds for g, then there exists $u \in W_{0}^{1, q}(\Omega)$ a weak solution to problem $(P A)$ for all parameter $\lambda>0$.

- The new feature is the existence for all $\lambda>0$.

Existence of solutions for all $\lambda>0$

The main result is the following.
THEOREM. Assume $1<q \leq 2, f \in L^{1}(\Omega)$ and the hypothesis (H1) holds for g, then there exists $u \in W_{0}^{1, q}(\Omega)$ a weak solution to problem $(P A)$ for all parameter $\lambda>0$.

- The new feature is the existence for all $\lambda>0$.
- Notice that the summability required on f is just L^{1}

Existence of solutions for all $\lambda>0$

The main result is the following.
THEOREM. Assume $1<q \leq 2, f \in L^{1}(\Omega)$ and the hypothesis (H1) holds for g, then there exists $u \in W_{0}^{1, q}(\Omega)$ a weak solution to problem $(P A)$ for all parameter $\lambda>0$.

- The new feature is the existence for all $\lambda>0$.
- Notice that the summability required on f is just L^{1}

Since $1 \leq q \leq 2, \quad \frac{N}{2}<\frac{N}{q}$
The proof is done in three steps.

- f and g in L^{r} with $r>\frac{N}{q}$.

Existence of solutions for all $\lambda>0$

The main result is the following.
THEOREM. Assume $1<q \leq 2, f \in L^{1}(\Omega)$ and the hypothesis (H1) holds for g, then there exists $u \in W_{0}^{1, q}(\Omega)$ a weak solution to problem $(P A)$ for all parameter $\lambda>0$.

- The new feature is the existence for all $\lambda>0$.
- Notice that the summability required on f is just L^{1}

Since $1 \leq q \leq 2, \quad \frac{N}{2}<\frac{N}{q}$
The proof is done in three steps.

- f and g in L^{r} with $r>\frac{N}{q}$.

〇 $f \in L^{1}(\Omega)$ and g in L^{r} with $r>\frac{N}{q}$.

Existence of solutions for all $\lambda>0$

The main result is the following.
THEOREM. Assume $1<q \leq 2, f \in L^{1}(\Omega)$ and the hypothesis (H1) holds for g, then there exists $u \in W_{0}^{1, q}(\Omega)$ a weak solution to problem $(P A)$ for all parameter $\lambda>0$.

- The new feature is the existence for all $\lambda>0$.
- Notice that the summability required on f is just L^{1}

Since $1 \leq q \leq 2, \quad \frac{N}{2}<\frac{N}{q}$
The proof is done in three steps.

- f and g in L^{r} with $r>\frac{N}{q}$.

〇 $f \in L^{1}(\Omega)$ and g in L^{r} with $r>\frac{N}{q}$.
O $f \in L^{1}(\Omega)$ and g verifying (H1).

First step: f and g in L^{r} with $r>\frac{N}{q}$

THEOREM a. Assume that $f, g \in L^{r}(\Omega)$, with $r>\frac{N}{q}$, are positive functions, then for all $\lambda>0$ there exists $u \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ a positive weak solution to problem $(P A)$.

Outline of the proof.
(I) For every fixed $k>0$ consider $v \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ such that $-\Delta v=\lambda k g(x)+f$ in Ω and denote $M=\|v\|_{L^{\infty}}$. Then zero is a subsolution and v is a supersolution to problems

$$
\left(P T_{n}\right)\left\{\begin{array}{l}
w_{0}=0 \\
-\Delta w_{n}+\frac{\left|\nabla w_{n}\right|^{q}}{1+\frac{1}{n}\left|\nabla w_{n}\right|^{q}}=\lambda g(x) T_{k} w_{n-1}+f \\
w_{n} \in W_{0}^{1,2}(\Omega)
\end{array}\right.
$$

for all $n \in \mathbb{N}$. As a consequence of the arguments in Boccardo-Murat-Puel, we find a sequence of nonnegative solutions $\left\{w_{n}\right\}$ to problems $\left(P T_{n}\right)$.
It follows that $-\Delta w_{n} \leq \lambda k g(x)+f=-\Delta v$, so by weak comparison principle, we conclude that $0 \leq w_{n} \leq v \leq M$, uniformly in n, then in particular, $w_{n} \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$.

First step: f and g in L^{r} with $r>\frac{N}{2}$

Call $H_{n}\left(\nabla w_{n}\right)=\frac{\left|\nabla w_{n}\right|^{q}}{1+\frac{1}{n}\left|\nabla w_{n}\right|^{q}}$.
Take w_{n} as a test function in $\left(P T_{n}\right)$,

$$
\int_{\Omega}\left|\nabla w_{n}\right|^{2} d x+\int_{\Omega} H_{n}\left(\nabla w_{n}\right) w_{n} d x=\lambda \int_{\Omega} g T_{k} w_{n-1} w_{n} d x+\int_{\Omega} f w_{n} d x
$$

Applying Poincaré and Young's inequality we obtain a positive constant $C(k, g, f, \Omega)$ such that

$$
\alpha \int_{\Omega}\left|\nabla w_{n}\right|^{2} d x \leq C(k, g, f, \Omega),
$$

therefore $w_{n} \rightharpoonup u_{k}$ weakly in $W_{0}^{1,2}(\Omega)$ with $u_{k} \in W_{0}^{1,2} \cap L^{\infty}(\Omega)$ and $u_{k} \leq M$.

First step: f and g in L^{r} with $r>\frac{N}{q}$

Convergence claim.- $w_{n} \rightarrow u_{k}$ strongly in $W_{0}^{1,2}(\Omega)$.
Outline of the proof of the convergence claim.-
Since $q \leq 2 \forall \epsilon \leq 1$ there exists $C_{\epsilon}>0$ such that

$$
s^{q} \leq \epsilon s^{2}+C_{\epsilon}, \quad s \geq 0
$$

Let $\phi(s)=s \exp ^{\frac{1}{4} s^{2}}, \quad$ which verifies $\phi^{\prime}(s)-|\phi(s)| \geq \frac{1}{2}$.
Take $\phi\left(w_{n}-u_{k}\right)$ as test function in $\left(P T_{n}\right)$ and using the same kind of arguments that in
Boccardo-Gallouët-Orsina. we obtain that

$$
\frac{1}{2} \int_{\Omega}\left|\nabla w_{n}-\nabla u_{k}\right|^{2} d x \leq \int_{\Omega}\left(\phi^{\prime}\left(w_{n}-u_{k}\right)-\epsilon\left|\phi\left(w_{n}-u_{k}\right)\right|\right)\left|\nabla w_{n}-\nabla u_{k}\right|^{2} d x \leq o(1)
$$

whence $w_{n} \rightarrow u_{k} \quad$ in $\quad W_{0}^{1,2}(\Omega)$.
In particular

$$
H_{n}\left(\nabla w_{n}\right) \rightarrow\left|\nabla u_{k}\right|^{q} \quad \text { in } \quad L^{1}(\Omega)
$$

Therefore

$$
(A P 1) \quad-\Delta u_{k}+\left|\nabla u_{k}\right|^{q}=\lambda g(x) T_{k} u_{k}+f \quad \text { in } \quad \Omega, \quad u_{k} \in W_{0}^{1,2}(\Omega)
$$

First step: f and g in L^{m} with $r>\frac{N}{q}$

(II) Taking $T_{m} u_{k}$ as test function in ($A P 1$),

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla T_{m} u_{k}\right|^{2} d x+\int_{\Omega}\left|\nabla \Psi_{m} u_{k}\right|^{q} d x \leq \lambda \int_{\Omega} g(x) T_{m} u_{k} u_{k} d x+\int_{\Omega} f T_{m} u_{k} d x \\
& \leq m \epsilon \lambda\left(\int_{\Omega} g(x) u_{k} d x\right)^{q}+\lambda m C(\epsilon)+C(\bar{\epsilon})\|f\|_{L^{\frac{N}{2}}}^{2}+\bar{\epsilon}|\Omega| m^{\frac{2 N}{N-2}} \\
& \leq \frac{\epsilon m \lambda}{C(q, g)} \int_{\Omega}\left|\nabla u_{k}\right|^{q} d x+C(\epsilon, \bar{\epsilon}, \lambda, \Omega, m, f) \\
& \text { where } \\
& \qquad \Psi_{m}(s)=\int_{0}^{s} T_{m}(t)^{\frac{1}{q}} d t
\end{aligned}
$$

Since

$$
\int_{\Omega}\left|\nabla \Psi_{m} u_{k}\right|^{q} d x \geq \int_{\left\{u_{k} \geq m\right\}}\left|\nabla \Psi_{m} u_{k}\right|^{q} d x \geq m \int_{\left\{u_{n} \geq m\right\}}\left|\nabla u_{k}\right|^{q} d x
$$

then

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla u_{k}\right|^{q} d x \leq \int_{\Omega}\left|\nabla T_{m} u_{k}\right|^{2} d x+m \int_{\left\{u_{k} \geq m\right\}}\left|\nabla u_{k}\right|^{q} d x \leq \\
& \frac{\epsilon m \lambda}{C(q, g)} \int_{\Omega}\left|\nabla u_{k}\right|^{q} d x+C(\epsilon, \bar{\epsilon}, \lambda, \Omega, m, f) .
\end{aligned}
$$

First step: f and g in L^{r} with $r>\frac{N}{q}$

Fixed $m \geq 1$, and choosing ϵ small enough we conclude that

$$
u_{k} \rightharpoonup u \text { weakly in } W_{0}^{1, q}(\Omega)
$$

Since $f, g \in L^{r}(\Omega)$ with $r>\frac{N}{q}$, the sequence $\left\{u_{k}\right\}$ is uniformly bounded in $L^{\infty}(\Omega)$, so

$$
u_{k} \rightharpoonup u \quad \text { in } W_{0}^{1,2}(\Omega) \text { with } u \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)
$$

To finish the proof we use the same arguments as in the convergence claim to obtain

$$
u_{k} \rightarrow u \text { in } W_{0}^{1,2}(\Omega)
$$

Then u is a positive solution to $(P A)$.

Second step $g \in L^{r}, r>\frac{N}{q}, f \in L^{1}$

We will use the following elementary lemma.
Lemma. $\forall \epsilon>0, \forall k>0, \exists C_{\epsilon}$ such that

$$
s T_{k}(s) \leq \epsilon \Psi_{k}^{q}(s)+C_{\epsilon}, \quad s \geq 0
$$

being $\Psi_{k}(s)=\int_{0}^{s} T_{k}(t)^{\frac{1}{q}} d t$
Notice that

$$
\Psi_{k}(s)=\left\{\begin{aligned}
\frac{q}{q+1} s^{\frac{q+1}{q}} & \text { if } \quad s<k \\
\frac{q}{q+1} k^{\frac{q+1}{q}}+(s-k) k^{\frac{1}{q}} & \text { if } \quad s>k
\end{aligned}\right.
$$

We will prove the next result.

Theorem b. Assume that $f \in L^{1}(\Omega)$ and $g \in L^{r}(\Omega)$ with $r>\frac{N}{q}$, then for all $\lambda \in \mathbb{R}$, problem $(P A)$ has a positive solution $u \in W_{0}^{1, q}(\Omega)$.

Second step $g \in L^{r}, r>\frac{N}{q}, f \in L^{1}$

Outline of the proof. Consider a sequence $f_{n} \in L^{\infty}(\Omega)$ such that $f_{n} \uparrow f$ in $L^{1}(\Omega)$. By Theorem a of step 1, $\exists\left\{u_{n}\right\}_{n \in \mathbb{N}}$, solutions to problems

$$
(P T)\left\{\begin{aligned}
-\Delta u_{n}+\left|\nabla u_{n}\right|^{q} & =\lambda g(x) u_{n}+f_{n} \text { in } \Omega \\
u_{n} & >0 \text { in } \Omega \\
u_{n} & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

Take $T_{k} u_{n}$ as test function in $(P T)$, then

$$
\int_{\Omega}\left|\nabla T_{k} u_{n}\right|^{2} d x+\int_{\Omega}\left|\nabla u_{n}\right|^{q} T_{k} u_{n} d x=\lambda \int_{\Omega} g(x) u_{n} T_{k} u_{n} d x+\int_{\Omega} f_{n} T_{k} u_{n} d x
$$

By Poincaré and Young inequalities, if $0<\epsilon \ll \frac{\lambda_{1}(g, q)}{\lambda}, \exists C_{\epsilon}>0$

$$
\int_{\Omega}\left|\nabla T_{k} u_{n}\right|^{2} d x+\beta \int_{\Omega}\left|\nabla \Psi_{k} u_{n}\right|^{q} d x \leq \lambda C^{\prime}(g, \Omega, \epsilon)+k\left\|f_{n}\right\|_{L^{1}}
$$

Second step $g \in L^{r}, r>\frac{N}{q}, f \in L^{1}$

Then for every $k>0$,

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla T_{k} u_{n}\right|^{2} \leq C(\lambda, \epsilon, \Omega, f, k) \text { uniformly in } n \in \mathrm{~N} \\
& \int_{\Omega}\left|\nabla \Psi_{k} u_{n}\right|^{q} \leq C(\lambda, \epsilon, \Omega, f, k) \text { uniformly in } n \in \mathrm{~N}
\end{aligned}
$$

Using the definition of Ψ_{k}, we conclude that $\exists u \in W_{0}^{1, q}(\Omega)$ such that $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, q}(\Omega)$.

Since $\left\{u_{n}\right\}$ is uniformly bounded in $L^{p}(\Omega), \forall p<q^{*}$, uniformly in n we have,

$$
(* *)\left\{\begin{array}{l}
\mid\left\{x \in \Omega, \text { such that } k-1<u_{n}(x)<k\right\} \mid \rightarrow 0, \text { as } k \rightarrow \infty \\
\mid\left\{x \in \Omega, \text { such that } u_{n}(x)>k\right\} \mid \rightarrow 0 \text { as } k \rightarrow \infty
\end{array}\right.
$$

Consider $G_{k}(s)=s-T_{k}(s)$ and $\psi_{k-1}(s)=T_{1}\left(G_{k-1}(s)\right)$.

Notice that $\psi_{k-1}\left(u_{n}\right)\left|\nabla u_{n}\right|^{q} \geq\left|\nabla u_{n}\right|^{q} \chi_{\left\{u_{n} \geq k\right\}}$

Second step $g \in L^{r}, r>\frac{N}{q}, f \in L^{1}$

Claim. $u_{n} \rightarrow u$ strongly in $W_{0}^{1, q}(\Omega)$.
OUse $\psi_{k-1}\left(u_{n}\right)$ as test function in $(P T)$, then

$$
\int_{\Omega}\left|\nabla \psi_{k-1}\left(u_{n}\right)\right|^{2} d x+\int_{\Omega} \psi_{k-1}\left(u_{n}\right)\left|\nabla u_{n}\right|^{q} d x=\int_{\Omega}\left(\lambda g(x) u_{n}+f_{n}\right) \psi_{k-1}\left(u_{n}\right) d x
$$

And then

$$
(* * *) \quad \limsup _{k \rightarrow \infty} \int_{\left\{u_{n} \geq k\right\}}\left|\nabla u_{n}\right|^{q} d x \leq \limsup _{k \rightarrow \infty} \int_{\left\{u_{n}>(k-1)\right\}}\left(\lambda g(x) u_{n}+f_{n}\right) d x=0
$$

by using also $(* *)$ in the right hand side,
〇 Next we prove that $T_{k} u_{n} \rightarrow T_{k} u$ in $W_{0}^{1,2}(\Omega)$.
Take $\phi\left(T_{k} u_{n}-T_{k} u\right)$ as a test function in $(P T)$ with $\phi(s)=s \exp ^{\frac{1}{4} s^{2}}$.
Notice that $\phi\left(T_{k} u_{n}-T_{k} u\right) \rightarrow 0$ strongly in $L^{p}(\Omega), p \geq 1$. Then

$$
\int_{\Omega}\left(\lambda g(x) u_{n}+f_{n}\right) \phi\left(T_{k} u_{n}-T_{k} u\right) d x \rightarrow 0 \text { as } n \rightarrow \infty
$$

Second step $g \in L^{r}, r>\frac{N}{q}, f \in L^{1}$

Using the same computation as in the convergence claim in the proof of Theorem of first step, we conclude $T_{k} u_{n} \rightarrow T_{k} u$ strongly in $W_{0}^{1,2}(\Omega)$.

To finish the proof, it is sufficient to show that

$$
\left|\nabla u_{n}\right|^{q} \rightarrow|\nabla u|^{q} \quad \text { strongly in } L^{1}(\Omega)
$$

Since the sequence converges a.e. in Ω, by Vitali's theorem it is sufficient to check the equi-integrability. Consider $E \subset \Omega$ a measurable set, then,

$$
\int_{E}\left|\nabla u_{n}\right|^{q} d x \leq \int_{E}\left|\nabla T_{k} u_{n}\right|^{q} d x+\int_{\left\{u_{n} \geq k\right\} \cap E}\left|\nabla u_{n}\right|^{q} d x
$$

For every $k>0$, one has that $T_{k}\left(u_{n}\right) \rightarrow T_{k}(u)$ strongly in $W_{0}^{1,2}(\Omega)(\Omega)$, therefore the integral $\int_{E}\left|\nabla T_{k}\left(u_{n}\right)\right|^{q} d x$ is uniformly small if $|E|$ is small enough. By $(* * *)$

$$
\int_{\left\{u_{n} \geq k\right\} \cap E}\left|\nabla u_{n}\right|^{q} d x \leq \int_{\left\{u_{n} \geq k\right\}}\left|\nabla u_{n}\right|^{q} d x \rightarrow 0 \text { as } k \rightarrow \infty \text { uniformly in } n
$$

The equintegrability of $\left|\nabla u_{n}\right|^{q}$ follows immediately.

Final step general weight g

We assume that $f \in L^{1}(\Omega), g$ verifies (D). Consider $g_{n}(x)=\min \{g(x), n\} \in L^{\infty}(\Omega)$.
By Theorem b above, $\exists\left\{u_{n}\right\}_{n \in \mathbb{N}}, u_{n} \geq 0$, solutions to problems

$$
\left(P A_{n}\right)\left\{\begin{aligned}
-\Delta u_{n}+\left|\nabla u_{n}\right|^{q} & =\lambda g_{n}(x) u_{n}+f \text { in } \Omega \\
u_{n} & >0 \text { in } \Omega \\
u_{n} & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

Consider $T_{k} u_{n} \in W_{0}^{1, q}(\Omega) \cap L^{\infty}(\Omega)$ as test function,

$$
\int_{\Omega}\left|\nabla T_{k} u_{n}\right|^{2} d x+\int_{\Omega}\left|\nabla \Psi_{k} u_{n}\right|^{q} d x \leq k \lambda \int_{\Omega} g_{n}(x) u_{n} d x+k \int_{\Omega} f d x
$$

Since

$$
\int_{\Omega}\left|\nabla \Psi_{k} u_{n}\right|^{q} d x \geq \int_{\left\{u_{n} \geq k\right\}}\left|\nabla \Psi_{k} u_{n}\right|^{q} d x \geq k \int_{\left\{u_{n} \geq k\right\}}|\nabla u|^{q} d x
$$

then as above
$\int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2} d x+k \int_{\left\{u_{n} \geq k\right\}}\left|\nabla u_{n}\right|^{q} d x \leq k \epsilon \lambda\left(\int_{\Omega} g_{n}(x) u_{n} d x\right)^{q}+k \int_{\Omega} f d x+\lambda k C(\epsilon, \Omega)$.
And

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{q} d x \leq \frac{k \epsilon \lambda}{C(g, q)} \int_{\Omega}\left|\nabla u_{n}\right|^{q} d x+k \int_{\Omega} f d x+\lambda k C(\epsilon, \Omega)
$$

Final step general weight g

Hence $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, q}(\Omega)$.
Using the hypothesis on g it follows that $g_{n}(x) u_{n} \rightarrow g(x) u$ strongly in $L^{1}(\Omega)$.
Moreover, to prove that

$$
u_{n} \rightarrow u \text { strongly in } W_{0}^{1, q}(\Omega)
$$

we take again $\phi\left(T_{k} u_{n}-T_{k} u\right)$, with $\phi(s)=s \exp ^{\frac{1}{4} s^{2}}$ as test function in $\left(P A_{n}\right)$.
The same arguments as in the convergence claim give the strong convergence and allow us to conclude the proof of the main Theorem.

COROLLARY

1. Assume that $g \in L^{m}(\Omega)$ with $m \geq \frac{q N}{(q-1) N+1}$, then for all $f \in L^{1}(\Omega)$ and $\lambda \geq 0$, problem ($P A$) has a positive solution $u \in W_{0}^{1, q}(\Omega)$ in the distributional sense.
2. Define

$$
\lambda_{1}(g, q)=\inf _{\phi \in W_{0}^{1, q}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla \phi|^{q} d x}{\int_{\Omega} g|\phi|^{q} d x}
$$

then if $\lambda_{1}(g, q)>0$, it follows that $C(g, q)>0$ and then problem $(P A)$ has a positive solution $u \in W_{0}^{1, q}(\Omega)$ for all $f \in L^{1}(\Omega)$ and $\lambda \geq 0$.

Some remarks

1. The existence result obtained means that resonance phenomenon can not occurs if we add $|\nabla u|^{q}$ as an absorption term. Without the presence of this term, positive solution exists just by assuming that λ is less than the infimum of the spectrum of the operator $-\Delta$ with the corresponding weight and under a suitable condition of f.
2. The same existence result holds if f is a bounded positive Radon measure such that $f \in L^{1}(\Omega)+W^{-1,2}(\Omega),(f$ is absolutely continuous respect to capacity). In this case, the solution means a renormalized solution.
The result follows using the same approximation arguments.
3. By the classical regularity theory of renormalized solution we get easily that if u is a positive solution to problem $(P A)$, then $u \in W_{0}^{1, q}(\Omega) \cap W_{0}^{1, p}(\Omega)$ for all $p<\frac{N}{N-1}$.
\qquad

Optimality of the results: Hardy Potential

Consider the problem

$$
(P H)\left\{\begin{aligned}
-\Delta u+|\nabla u|^{q} & =\lambda \frac{u}{|x|^{2}}+f \text { in } \Omega \\
u & >0 \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

Hardy potential is an admissible weight if $2 \geq q>\frac{N}{N-1}$.
Hence in this interval of values of q we have the main existence theorem.
Hardy potential, $g(x) \equiv \frac{1}{|x|^{2}}$, verifies,

$$
\text { (H2) } g \geq 0 \text { and } g \in L^{1}(\Omega) \text { with } \lambda_{1}(g, 2)=\inf _{\phi \in W_{0}^{1,2}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla \phi|^{2} d x}{\int_{\Omega} g|\phi|^{2} d x}>0 \text {. }
$$

In fact, $\lambda_{1}(g, 2)=\left(\frac{N-2}{2}\right)^{2}$.
It is easy to check that by $(H 2)$, for all $\bar{\lambda}<\lambda_{1}(g, 2)$, there exists a unique $\varphi \in W_{0}^{1,2}(\Omega), \varphi>0$ weak solution to problem

$$
(A u X) \quad-\Delta \varphi=\bar{\lambda} g(x) \varphi+g(x) \text { in } \Omega, \quad \varphi=0 \text { on } \partial \Omega .
$$

Optimality of the results: Hardy Potential.

The first result is the following one.
THEOREM. Assume that $0<\lambda<\left(\frac{N-2}{2}\right)^{2}$ and $1<q \leq 2$, let φ be the solution to problem $(A u X)$. Suppose f is a positive function such that $\int_{\Omega} f \varphi d x<\infty$, then there exists u solution to $(P H)$ such that $\int_{\Omega}|\nabla u|^{q} d x<\infty$ and $\int_{\Omega}|\nabla u|^{p} d x<\infty, \forall p<\frac{N}{N-1}$.

If $q>\frac{N}{N-1}$ then the result holds for all $f \in L^{1}(\Omega)$
The new feature is that for $1<q \leq \frac{N}{N-1}$ the existence requires some extra summability on f.
We will see that for $\lambda>\left(\frac{N-2}{2}\right)^{2}$ and $1<q \leq \frac{N}{N-1}$ there in not solution.

Optimality of the results: Hardy Potential.

THEOREM. Assume that $q<q_{2} \equiv \frac{N}{N-1}$, if $\lambda>\Lambda_{N}=\frac{(N-2)^{2}}{4}$, then problem $(P H)$ has no positive very weak positive supersolution in the sense that $v, \frac{v}{|x|^{2}},|\nabla v|^{q} \in L_{l o c}^{1}(\Omega)$ and

$$
\int\left(v(-\Delta \phi)+|\nabla v|^{q} \phi\right) d x \geq \lambda \int \frac{v \phi}{|x|^{2}} d x+\int f \phi d x
$$

for all $\phi \in \mathcal{C}_{0}^{\infty}(\Omega)$.
Outline of the proof. By contradiction suppose that problem (PH) has a positive solution v for some $\lambda>\Lambda_{N}$
Then by iteration we could construct $u \in W_{0}^{1, p}\left(B_{\eta}(0)\right)$ for all $p<\frac{N}{N-1}$ and $u \in L^{m}\left(B_{\eta}(0)\right)$ for all $m<\frac{N}{N-2}$. We will choose $\eta>0$ below
For $\phi \in \mathcal{C}_{0}^{\infty}\left(B_{\eta}(0)\right)$ consider $\frac{\phi^{2}}{u}$ as test function in $(P H)$, then

$$
-\int_{B_{\eta}(0)} \frac{|\nabla u|^{2} \phi^{2}}{u^{2}} d x+2 \int_{B_{\eta}(0)}^{\omega} \frac{\phi \nabla \phi}{u} \nabla u d x+\int_{B_{\eta}(0)} \frac{|\nabla u|^{q} \phi^{2}}{u} d x \geq \lambda \int_{B_{\eta}(0)} \frac{\phi^{2}}{|x|^{2}} d x
$$

Direct computation provides

ϵ_{0} is a positive number to be chosen later.

Optimality of the results: Hardy Potential.

On the other hand we have

$$
2 \int_{B_{\eta}(0)} \frac{\phi \nabla \phi}{u} \nabla u d x \leq \epsilon_{1}^{2} \int_{B_{\eta}(0)} \frac{\phi^{2}|\nabla u|^{2}}{u^{2}} d x+\epsilon_{1}^{-2} \int_{B_{\eta}(0)}|\nabla \phi|^{2} d x
$$

Hence it follows that fixed $\epsilon_{1}^{2} \lambda>\Lambda_{N}$ and $\epsilon_{0}>0$ small enough such that $\left(1-\epsilon_{1}^{2}-\frac{q}{2} \epsilon_{0}^{\frac{2}{q}}\right) \geq 0$,

$$
\epsilon_{1}^{2} \lambda \int_{B_{\eta}(0)} \frac{\phi^{2}}{|x|^{2}} d x \leq \epsilon_{1}^{2} \frac{2-q}{2} \epsilon_{0}^{-\frac{2}{2-q}} \int_{B_{\eta}(0)} u^{\frac{2(q-1)}{2-q}} \phi^{2} d x+\int_{B_{\eta}(0)}|\nabla \phi|^{2} d x
$$

Now,

$$
\int_{B_{\eta}(0)} u^{\frac{2(q-1)}{2-q}} \phi^{2} d x \leq S^{-1}\left(\int_{B_{\eta}(0)} u^{\frac{N(q-1)}{2-q}} d x\right)^{\frac{2}{N}} \int_{B_{\eta}(0)}|\nabla \phi|^{2} d x
$$

where S is the classical Sobolev constant. Since $q<\frac{N}{N-1}, \frac{N(q-1)}{2-q}<\frac{N}{N-2}$ hence we conclude that

$$
\int_{B_{\eta}(0)} u^{\frac{N(q-1)}{2-q}} d x \rightarrow 0 \text { as } \eta \rightarrow 0
$$

Then we can fix $\eta>0, \epsilon_{0}, \epsilon_{1}>1$ such that

$$
\epsilon_{1}^{2} \lambda\left\{1+\epsilon_{1}^{2} \frac{2-q}{2} \epsilon_{0}^{-\frac{2}{2-q}} S^{-1}\left(\int_{B_{\eta}(0)} u^{\frac{N(q-1)}{2-q}} d x\right)^{\frac{2}{N}}\right\}^{-1} \equiv \lambda_{1}>\Lambda_{N}
$$

Therefore we conclude that

$$
\lambda_{1} \int_{B_{\eta}(0)} \frac{\phi^{2}}{|x|^{2}} d x \leq \int_{B_{\eta}(0)}|\nabla \phi|^{2} d x
$$

a contradiction with Hardy inequality.

