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A classical inequality by Hardy

-

If u € W1H2(RY) then

’11,2
v [ s [ vl
RN || RN

where the optimal constant is

® Ay isnotattainedin W12 (RNY)

® The optimal constant for the corresponding inequality in Wi2(Q)is AN () = A provides
0
that 0 € 2. Moreover A is not attained in W 1:2(Q0)

-
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Linear precedents.

It is well known that for problem
_Au:f7 $€Q7 U|8Q:O,
we have
® it fecL™Q),m> L thenue Wy?(Q) N L®(Q);

ES

>
® it feL™Q) 25 <m< JthenueWyH(Q)NLm(Q), m™ =

® ifel™Q)1<m< 2L thenueWh™ (Q),m* = Do

N+2 N—m
Consider now the following zero-order perturbation of the L aplacian,
—AUZAW—I—me u = 0on OS2,
x
. N N =22
where 0 € 2 bounded domainin R and 0 < A < Any = ( 5 ) .
THEOREM.(L. Boccardo, L. Orsina, I.P.)  Assume
N(m —1)(N — 2m)
(£) A< 5 :
m
then
2N * 1,2 .
® ifecL™Q), 713 <m< S ue L™ (Q)NWyH(Q), mt =

ffelm1l<m< we WE™ (Q).

N+2

If m = 1 in general are no solution.

If m > 5 in general the solution are unbounded.

N—2m;
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Semilinear precedents.

Consider the semilinear equation

N -2
—V/Ar —
2 n

THEOREM. (H. Brezis, L. Dupaigne, A. Tesei)

2
D 1ct0< A< AN.If1<p<pT(N) =1+ — there exists a nontrivial solution to
o

and Q) =
(E) such

that,
u 1
u?, B € Lioe

O et0<A<Ayandp>pT(A).ifue LY (Bgr(0)\{0}), u > 0 satisfies

_Au— A — > uP in D'(Br(0) \ {0}),

]2

then u = O.

-
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Thequasilinear case: Presentation.

We will consider the model problem:

U
—Au £ |[Vul? :AW +afin®, u=00022, 1<p<2.
x
The main point under consideration is to clarify the competi tion of the Hardy potential versus the

gradient term.

According with the sign of the term in the gradient we study:

-
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Presentation and plan of thetalk.
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Optimal power for nonexistence

Consider,

—Au = |Vu|p+>\| ‘2+f in Q,
(PR) \ u > 0 in €,

u = 0 on O0f2,

where f € Li (£2) f(z) > 0in © C R¥, smooth bounded domain suchthat 0 € Q, N > 3.

DEFINITION. We say that u &€ L}OC(Q) is a very weak supersolution (subsolution) to equation

—Au = |VulP + A 2—|—f in €,

if W € Li, . (), |VulP € Li,.(Q) and Y € C°(Q) such that ¢ > 0, we have that

| Caopdr> (<) [ (vup 2+ Do

If u is a very weak super and sub-solution, then we say that u is a very weak solution.

-
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Optimal power for nonexistence

® ifinproblem (PR) we replace |z|~2 by aweight g € L™(Q) with m > % then there exists
A0, 0 < Ao < A1(g) suchthatfor 0 < A < Ag problem (P R) has a weak solution for suitable
datum f.

® e will see that the weight || ~2 behaves in a very different way.

NOTATION.
We denote

NRREELN =

() are the roots of a? — (N —2)a+X=0.
Such roots give the radial solutions ||~ “(£) to the equation

u
—Au— A— = 0.
T

-
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Optimal power for nonexistence

- .

LEMMA 1. Assume u = 0in Qsuchthat u € LI () and —= € L}, .().

loc ‘ |2

If u satisfies —Au — )\|—2 > 0in D/ (©2) with A < A = 3C > 0 and there exists a ball
x

Br(0) C Qsuchthat u(z) > Clz|~“— in Br(0), where v = N_ _ \/( 2)2

Outline of the proof. By strong M. P. w > ninasmallball Br(0).

® rix R > 0andconsider w € W12(Bg(0)) the unique solution to
—Aw—-A—= =0 in Bgr(0), w=mn on 0Bgr(0).

By an elementary computation, it follows that ~ w(r) = Cr~%— in Bpg(0), with
N—2 N—2
a_ = 5= — \/(T)2 — Xand C = nR%~

-
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Optimal power for nonexistence

- .

LEMMA 1. Assume u 2 Oin Qsuchthat uw € L} () and — P |2 € Li.(Q).
If u satisfies —Au — )\|—2 > 0in D/ (©2) with A < A = 3C > 0 and there exists a ball
x
Br(0) C Q2suchthat u(x) > Clz|~%*= in Bg(0), where a— = N— - \/( N-2)2 )\

Outline of the proof. By strong M. P. w > ninasmallball Br(0).

® rix R > 0andconsider w € WH2(Bg(0)) the unique solution to
—Aw—-A—= =0 in Bgr(0), w=mn on 0Bgr(0).

By an elementary computation, it follows that ~ w(r) = Cr~%— in Bpg(0), with
N—2 N—2
a_ = 5= — \/(T)2 — Xand C = nR%~

® By comparison, we conclude that  u > w in  Bgr(0),then u > Clz|~%~ in Bg(0).

-
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Optimal power for nonexistence

LEMMA 2.(Necessary condition for existence). Consider the equation
w

with g € L; _(2), g(z) > 0and A < Ap. If (L) has a very weak supersolution then
2| "% g e L] (Q).

Outline of the proof. Assume w a very weak supersolutionto  (L).
Let Br(0) C £ be aball.
Consider gn = T (g) and solve the problem

(Ln) —Awp, —A—= =gpnin BRr(0), wy, =0o0n 0BR(0).
x

Then, i) {wn, }nen in nondecreasingand  ii) wy, < w.

Consider ¢, the solution to problem

—A¢ — /\% = 1in Br(0), ¢ =0o0n 0BRr(0),
x
then ¢(x) = c|x|” ¥(=) in a neighborhood of = = 0.

Take (formally) ¢ as a test function in problem (Ln) there result

/ Wndr = / gnpdx > 02/ gnlz|” % d,
Br(0) Br(0) Bgr(0)

then the result follows by monotone convergence theorem. J
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Optimal power for nonexistence

24 _
THEOREM. (Main nonexistence result). Assume that f > 0 and P (A) = 14—3%
Thenif p > p_ (), there is not very weak supersolution to equation (PR). In the case where f = 0,

the unique non negative very weak supersolution is u=0.
Outline of the proof.  We divide the proof in three steps.

First step: p > p, (A). Assume by contradiction that ~ u is a weak super-solutionto (P R).

Then —Au — A% > 0 and hence u(z) > Clz|”*(=) in B,(0) C RY.
x

Consider ¢ € C§°(B(0)) and use |q§|p, as a test functionin  (PR),
r / U /
[ e veve= [ qwapielea [ e |
B,.(0) B.-(0) B(0) || By (

s
by Hdlder and Young inequalities,

/ ]_ / /
/ plolP ~ Vuve < —/ |IVulP|p|P + C/ IV¢|P , hence
B,(0) 2 JB,.(0) B,-(0)

flo?,
0)

p’ ,
cl)\/ u\gb\Q dr < / |IVé|P dz, (c1 > 0independent of u and ¢).
B,(0) |zl B..(0)

By the local behavior of w in By (0),

|7’ /
cz)\/ dx §/ VolP dx.
B,(0) |z T BT(O)‘ ‘

Since p > p, (A), hence 2 + ay_y > p’ = a contradiction with the Hardy inequality in

W (B 0).
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Optimal power for nonexistence

Second step: p = p, (A)and A < An. Asinthefirststepif wu is a very weak super-solution,
c
u(x) > W% in some ball B, (0) CC €, without loss of generality we assume that 7 = e~ 1.

Notice that in this case p N =2+ Q(_), then we need a sharper lower estimate for ~ «

By Lemma 2 we obtain that

/ |Vu|p+(>‘)|ac|_a(—)d:c < oo and / Zfa dr < co.
By (0) By (0) |77 ()

Consider w(x) = |z|” %(=) (log(ﬁ))ﬁ, B > 0 to be chosen later.
Since A < An,w € W12(B,(0)) and in particular w € Wl’p+(>\)(Bn(O)).

By a direct computation we obtain that for |:E\ < e 1, by choosing (3 small enough,

_Aw — /\% < B2 |Vaw|P+ M h(z)
T

1— A
where h(x) = (a(_) log(ﬁ) + ﬁ((log(ﬁ))_l) Py ), which is bounded in the ball By, (0).

By scaling, w1 = ciu,
U _
—Aug — A— > ci Py [P+,

||
We have to prove that ©1 > w.
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Optimal power for nonexistence

c
Fixed cq satisfying u(xz) > | ‘2 in |z| <71 =e"1, chose c; > Osuchthat cico > 1.
o

Then for a suitable small (3 we have:
1—p, (N) 1
< €1 " > [|h]lcB2.
_ -1 u1 1 py (N)
O ui(z)>wx)for |z|] = e !and —Aug — )\? > B2 h(x)|Vur|"+77,

|z

CLAIM: u1 > w. If v = w — w1 one can check that

® Wl’p+(>\)(Bn(O)), v < 0on 9B, (0) and

/ 2‘3 dz < o, / VolP+ Mz~ dz < oo.
By (0) |z|*" (=) By (0)

® _No- /\ﬁ < p, (Nh(z)83 |Vw|P+ 2
Xr

a(x) = —ﬁ2p+()\)|? € LY1(By(0)) forall g < N.

Notice that a is not in the hypothesis by Alaa-Pierre.

VwVwv = a(x)Vuv where the vector field

P 10 overcame this lack of summability we start by applying the Kato’s type inequality by

Brezis-Ponce, then

dr < 00.

1 pi(NB3

P+
(1) —Am_—)\ |2,Vv_|_><0and/ Vo [Pr

|z |z B, (0) 2] (=)
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Optimal power for nonexistence

) () N—2 ) ) e
Since PRGN < == , by Hardy-Sobolev inequality v satisfies

vp+(>\) v
/ T dr < co. = do1 > 2+ (_)y, such that / + dxr < oo.
B, (0) |m|p+(>\)+a(—) B,y (0) ||

1
2 A N —2

B p2+( ) <

have Caffarelli-Kohn-Nirenberg inequalities.

For 3 small enough, ~v = and then the weight |:C|_27 Is an admissible weight to

We consider the equivalent inequality,

. -2 V4 ) i V4
—div(|z|*"Voy) = A—F— = |z 7(—Av + AN {(—=,Vouy) — —)<O.
1 1
The idea should be to use as a test functionin (1), p = - —,
z|e e
a = N_2;7+1) — \/(N—2gv+1) )2 — ), the solution to problem
—div (|z]| 72 Vp) — A L = . in B, (0)
2|20+ |z |2(v+1) A

¢ =0 on 0By(0),

v+ _
) |x‘2(—1+7)dm S 0, hence V4 = 0 & u; 2 w .
n

As  has not the required regularity we use an approximation argu ment. Granada February 2007 — p. 17/5:

Formally we reach the inequality /
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Optimal power for nonexistence

To finish the proof in this case we use the same argument as in th e first step. More precisely for all

¢ € CS°(Br(0)),0 < r << nwe have

'y ,
01/ %dazﬁ/ |V p|P+dx
B.(0) |7l B,.(0)

where c¢1 > 0 is independent of ¢. Using the result of the claim and by the fact that

obtain that,

p'+ 1 /
02/ K y (log(—)BdCI:S/ |V o|P+dx
B, (0) |z|P+ || B, (0)

1,p’,

a contradiction with Hardy inequality in W, = ™ (B (0)). Hence the result follows.

pg_ = Q) + 2 we

-
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Optimal power for nonexistence

Third step: p =p_ () and A = Ay
In this case a(_) = N—2 and py () = % hence u(x) > c|lz|” ¥(=) and

2
/ (Vu|P+ M|z () dz < oo.
By (0)
We consider ¢ € C3° (B, (0)) suchthat ¢ > 0and ¢ = 1in By (0), then by the regularity of u we
obtain / IV (¢u)|P+M|z| (=) dz < oo. Since ) = NV=2) o N2 e can apply
By (0)

py (M) 2(N+2) 2
Caffarelli-Kohn-Nirenberg inequalities to obtain that

< / (¢u)P+M|z| " da < / [V (¢u) [P+ V]| =) da < oo.
By (0) By (0)

A —o
anl(o)Uer( )|CC| (=) dx < oo forsome n1 < 1

In particular,

/ uP+ ) p
r < oQ.
By, (0) |$|a(_)—|—p+(>\)

Using the fact that u(x) > c|z|™ “ (=) there result that

|$|—a(_)p+(>\)
/ X dr < oo.
By, (0) |$|Oé(_)+P—|—( )

Since a(_) + p+(A) + a(—yp+(A) = N, we reach a contradiction.
End of the proof.
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f.’

Someremarks

Notice that p4 (M) < 2 and

® pi(N)—2ifA—0

® pi(N)— N+2 if A — Apn.

Therefore we find a dlscontlnwty with the known result for A = 0. ( See for instance,

Hansson-Maz’ya—Verbitsky paper).

N T then there is not very weak positive solution in RN,
N

By contradiction. Assume 1 <p < +

fl<p<

T and u a positive solution.
By using the strong maximum principle, for any compact set K C () there exists a positive
constant ¢(K) suchthat u > c(K). Let ¢ € C5°(£2), then using |q§|p/ as a test function and by

using Young inequalities we obtain that

/ \ng\p/dac > cl)\/ — \gb\p dz.
RN RN ||
Since p’ > N, then Clapy 7 (K) = 0 for any compactsetof IR™.

N
Thus, 3{¢n} C CG°(IR™) suchthat ¢ > xk and |[Vn||; (rN) — Oasn — oo,
Hence by substituting in the last inequality we reach a contr adiction. (See Alaa-Pierre).

In bounded domains there are no restriction on p from below.

-

Granada February 2007 — p. 20/5!



Complete blow-up

As a consequence of the non existence result, the following b low-up behavior for approximated

problems could be obtained.
THEOREM. Assume that p > p4+ (). If up, € Wol’p(ﬂ) is a solution to problem

.
—Aup = |Vup|P + dan(x)un +af in Q,
{ Un > 0 in €,
\ un = 0 on 09,
with f >0, f # 0and an(x) = W,then un (xg) — 00, Vg €
mn
ldea of the proof. If in some point the limit is finite, Harnack inequality provi de an estimate that allow us

to construct a local solution in contradiction to the nonexistence theorem.

The existence of such solution requires the following resul t.

LEMMA. Assume that {uy, } is a sequence of positive functions such that ~ {w, } is uniformly bounded
in Wllo’f (©2) forsome 2 > p > 1 with uy, — u weakly in Wllo’f (€2) and such that u,, < u for all

n € N. Assume that —Awuy,, > 0in D/ (2) and that, if p < 2, sequence {71 (un )} is uniformly
bounded in Wllo’f (Q) for k fixed. Then VT (upn) — VT () stronglyin (LZ ().

loc

-
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Existencein IRN: p_(\) < p<pr(A)and A < Ay

For Q) and Q(_) as above, consider
2+ oy 2+ o)

d A
PN = e =

THEOREM A. Assume that p— () < p < p+ () then

has a very weak solution w > 0in IRN,
Proof. We search a solution in the form  u(x) = Al|x| 5.
2-p
p—1
BPAP=1 = B(N 5~ 2) -
Tohave A > Oweneed 8 € (a(_), (4)) whichis equivalentto  p_(A) < p < p4(A).
Notice that

By a direct computation we obtain that 3 = and

N
€ L; .(RN)andsince p > p_()\) >

|:c|2 N_1’ [VulP € L, (RY) O

Remark. The solution wu in Theorem A is in the space W (]RN) if and only if p > N+2.

Forall A € [0, AnN), N]jf_Q (P—(A), (M) J

If A = A then % =p_(A\) = pr(N).
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Existence Dirichlet Problem: 1 <p <p,(A) and A < Ay

To find solution to Dirichlet problem:

1. Is needed a supersolution and then comparison arguments a sin
N.E. Alaa, M. Pierre , SIAM J. Math. Anal. Vol 24 no. 1 (1993), 23-35.

2. The datum must be small in some class of functions, as in the case A = 0

The precise statement is the next.
1

THEOREM B. Assumethat 1 < p < p4 (). There exist cg suchthatif ¢ < cg and f(z) < — 2 |2

then problem

—Aw = |Vw|p—|—)\| |2—|—cfinQ,
w = 0on OS2,

has a positive solution w & W01’2 (Q2).
Outline of the proof.

Assume W € Wol’p(Q) is a positive super-solution for the data  f(x) = |2 and ¢ small.

Wﬁ T lz|72, fr = min{f,n} T f. and problem,

Consider an (x) =

[V, |P
—Avy = Aap (x)vn + il + cfn in €,
v = 0on 012,
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Existence Dirichlet Problem: 1 <p <p,(A) and A < Ay

By classical theory (1'P) has a unique positive solution vy, € Wol’Q(Q) N L ().
Moreover by the comparison principle in Alaa-Pierre paper,
Un < Un+t1and vy, < W, YN

Hence ¥ = limy, 00 Uy, < w.
N—1)—N

Take as test function ¢, = (1 +vy)°5 — 1,0 < s < p( 5 < 1,
|V’Un|2 S
dr < Cq, IVun|P(1 4+ vp)?de < Co,
o (1+vp)t=s Q

Therefore, in particular
! / VTpon|2 < Cs, / Von|? < Cy.
k Q Q
Then by using ¢(Txvn — Trv) as atest function, where  ¢(s) = s exp%32, and the convergence
arguments by Boccardo-Gallou ét-Orsina we obtain that
VTiv, — VTivasn — oo strongly in W(}’Q(Q).
With the test function 1, = (1 4+ Gg(vn))® — 1, G (t) =t — Tk (t), we prove
imsup, o [, >y [Von|Pdz <limsupy_,o [q [VGr(vn)[P(1 + Gk (vn))*dz = 0,
uniformly in  n.
By Vitali Lemma Vv, — Vu, n — oo, stronglyin LP(£2).
Hence u is a very weak solution to problem

If the super-solution has finite energy the arguments are eas ier.
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Existence Dirichlet Problem: 1 <p <p,(A) and A < Ay

The construction of the super-solution is performed in two s teps

-
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Existence Dirichlet Problem: 1 <p <p,(A) and A < Ay

The construction of the super-solution is performed in two s teps

® Hp <p<pi(N).
Consider ¢, the solution to
—A¢ = 0in €,
s = wuon 0,

where wu is the radial solution obtained in Theorem A.

Then ¢ € C°(N)and 0 < ¢1 < ¢ < ca.

One can check that for ¢ small enough w = t(u — ), is a super-solution. Notice that
w e WP (Q),w > 0in Q.

-
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Existence Dirichlet Problem: 1 <p <p,(A) and A < Ay

The construction of the super-solution is performed in two s teps

® Hp <p<pi(N).
Consider ¢, the solution to
—A¢ = 0in €,
s = wuon 0,

where wu is the radial solution obtained in Theorem A.

Then ¢ € C°(N)and 0 < ¢1 < ¢ < ca.

One can check that for ¢ small enough w = t(u — ), is a super-solution. Notice that
w e WP (Q),w > 0in Q.

® i) 1 < p < p_.Westart by getting a super-solutionin € = Br(0). For general 2 we perform
the same arguments as in the first case using the super-soluti on in a big ball.
Since p < p—, 3B € (), @(4)), closeto a(_yandsuchthat p(B+1) < B+ 2.
Define w(x) = A(|z|~° — R~P) with 3 close to a(_y, then W € Wol’Q(BR(O)) and
w A

AT — A = A(B(N — B —2) — N)|z| P2+ .
|| ||

Since B € (), a(4)),then B(N —B—2)— A > 0, hence if AP—1 = BN — ﬁﬁ; 2) - A),

T A
AT — A > VTP 4
|| ||

. — 1,2 . . .
So,if co = A, w € Wy, " (Bgr(0)). is asuper-solutionin  Br (0) for all ¢ < 0. cranada February 2007 - p. 2715




Existence Dirichlet Problem: A = A, and p < &2

his critical case is more involved. As above we find a super-s olution in a ball

® consider w(z) = = 7 (log(ﬁ))

w e Wol’q(Br(O)) forall ¢ < 2.

B rorsuitable positive constant  ¢1, ¢ w is a super-solution in the ball Br(0)to

—Aw = |Vw|P+ Ay 2—|—c0f|nB1(r)

||
0 on 0B (0).

w

where |z|? f is bounded and cg is small

®  The natural framework to find the solution is the Hilbert spac e H, complection of C§° (B (0))

respect to the norm

2

|V¢|2daz—AN/ ——du.
B, (0) ||

0|2 -/
1ol % (B, (0)) 5.0

In fact we find a solution is such space.

(We avoid technical details).

-
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Breaking down the resonance: existencefor all A > 0

Consider

( —Au+ |Vul? = Aglx)u+f in Q,
(PA) v > 0 in 9,
\ u = 0 on 012,

where 1 < ¢ <2, € Rand f € L™(2) with m > 1. We will assume that g is an admissible weight
in the sense that the

(H1) g>0andge LY (Q)NnW L7 (Q) Q’:q_%‘
Call
1
([ 1vopras)”
M(g,q) = inf 2 > 0.
beWy I (@)\ {0} /Q 96| dz
Examples.
® gcLm(Q)withm>
() 1tthtt'Id>N
r) = ——, the Har otential an .
g 22 yp 1> N7
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Existence of solutionsfor all A > 0

The main result is the following.

THEOREM. Assume 1 < g < 2, f € L'() and the hypothesis (H1) holds for g, then there exists
u € W(}’q(Q) a weak solution to problem (P A) for all parameter A > 0.

-
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Existence of solutionsfor all A > 0

The main result is the following.

THEOREM. Assume 1 < g < 2, f € L'(Q) and the hypothesis (H1) holds for g, then there exists
u € W(}’q(Q) a weak solution to problem (P A) for all parameter A > 0.

® The new feature is the existence forall A > 0.

-
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B Notice that the summability required on f is just Ll
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Existence of solutionsfor all A > 0

The main result is the following.

THEOREM. Assume 1 < g < 2, f € L'(Q) and the hypothesis (H1) holds for g, then there exists
u € W(}’q(Q) a weak solution to problem (P A) for all parameter A > 0.

® The new feature is the existence forall A > 0.

B Notice that the summability required on f is just Ll

Since 1 < q < 2, %<%

The proof is done in three steps.

P fandgin L" with r > %

-
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The main result is the following.

THEOREM. Assume 1 < g < 2, f € L'(Q) and the hypothesis (H1) holds for g, then there exists
u € W(}’q(Q) a weak solution to problem (P A) for all parameter A > 0.

® The new feature is the existence forall A > 0.

B Notice that the summability required on f is just Ll

Since 1 < q < 2, %<%

The proof is done in three steps.
P fandgin L" with r > %

P fcL'(Q)andgin L" with r > ](VT
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Existence of solutionsfor all A > 0

The main result is the following.

THEOREM. Assume 1 < g < 2, f € L'(Q) and the hypothesis (H1) holds for g, then there exists
u € Wol’q(Q) a weak solution to problem (P A) for all parameter A > 0.

® The new feature is the existence forall A > 0.

B Notice that the summability required on f is just Ll

Since 1 < q < 2, %<%

The proof is done in three steps.
P fandgin L" with r > %.
P fcL'(Q)andgin L" with r > %

P fcL'(Q)and gveriying (H1).

-
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First step: fand gin L™ with r > &

-

THEOREM a. Assumethat f,g € L"(2), with r > %, are positive functions, then forall A > 0 there
exists u € Wol’Q(Q) N L°°(£2) a positive weak solution to problem (P A).

Outline of the proof.

(I) For every fixed k > O consider v € W01’2(Q) N L () suchthat —Av = Akg(z) + f in Q

and denote M = ||v|| oo . Then zero is a subsolution and v is a supersolution to problems
(
wo — O)
[Vwn|9
PT, —Awn + = Ag(x)Trwn—1 +
(PT) 3 =dunct 18 e = (@) T+,
Wn € W(}’Q(Q)a

forall n € N. As a consequence of the arguments in Boccardo-Murat-Puel,
nonnegative solutions  {wn, } to problems (PT3,).

we find a sequence of

It follows that —Aw, < )\kg(:r;) + f = —Aw, so by weak comparison principle, we conclude that
0 < wp < v < M, uniformly in - n, then in particular, wn, € Wol’2(Q) N L ().

-
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First step: fand gin L™ withr > 5

- - .

Cal H,(Vwy) =

1+ %|an\q |
Take wy, as a test functionin  (PT},),

/ |an|2da:—|—/ Hy, (Vwy) wn, da:z)\/ 9T wp—1wn da:—i—/ f wn dx
Q Q Q Q

Applying Poincar € and Young’s inequality we obtain a positive constant C(k, g, f,2) such that
o [ 1Vwaldo < Ok g, 1,9,
Q

therefore wy, — ujg weakly in Wol’Q(Q) with ug € VVol’2 N L>®(Q)and up, < M.

-
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First step: fand gin L™ with r > &

Convergence claim .- wy, — wg strongly in Wol’Z(Q).
Outline of the proof of the convergence claim .-
Since g < 2 Ve < 1 there exists C'¢ > 0 such that
s <es?24+C., s>0.
Let p(s) = sexp%SQ, which verifies ¢’(s) — |o(s)| > %
Take ¢(wn — ug ) astestfunctionin (PTy,) and using the same kind of arguments that in

Boi:cardo—GaIIou ét-Orsina. we obtain that
5 / Vwn, — Vg |? do < / (¢ (wn — uk) — el p(wn — u)|)|Vwn — Vug|? dz < o(1),
Q Q

whence wn — ug in Wol’Q(Q).
In particular
Hp(Vwyn) — |[Vugl? in L1(Q).
Therefore
(AP1) — Aup + |Vugl|? = Ag(x) Tpug + f in Q, ug € Wol’Q(Q)-

-
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First step: fand gin L™ withr > &

) Taking T, uy as test functionin  (AP1),

/ VT |? de —|—/ IV up|?de < )\/ g(x)Tmuruy dr —|—/ f Tmuy dx
Q Q Q Q

N

2N

q
<mor ([ g@hunde) +AmC(e) + C@IFI  +elm™
Q L2

A
~ ik / ‘V’U’k|qd$+c(€?ga)‘aﬂama f)
C(q,9) Ja
where
S 1
Viu(s) = [ T(t) T
0
Since
/ VU up |4 de > / VU ug|?de > m |\Vug|?de,
Q {up>m} {un>m}
then
/ |\Vug|?de < / IV Tmug|? de +m |\Vug|?de <
{ug>m}
eEMmA

/ |IVug|?dx + C(e, €, N, Q,m, f).
C(q,9)

-
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First step: fand gin L™ with r > &

Fixed m > 1, and choosing € small enough we conclude that

ur — uwweakly in Wol’q(Q).

Since f, g € L"(2) with r > %, the sequence {ug } is uniformly bounded in ~ L°°(£2), so
up = u in W2 () with uw € Wy 2(Q) N L°(Q).

To finish the proof we use the same arguments as in the convergence claim to obtain
Up — u in Wol’Q(Q).

Then w is a positive solutionto (P A).

-
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SecondstengL"“,fr>%,feL1

We will use the following elementary lemma.
Lemma. Ve > 0, Vk > 0, dC¢ such that

sTi(s) < e¥i(s)+Ce, s>0

S 1
being Wi (s) :/ Ty (t)adt

0
Notice that
( g Lt _
ms q if s < k’,
Ui (s) = 4
q q+1 1 _
\ mk q —|—(S—I€)l€q if S>k

We will prove the next result.

Theorem b. Assumethat f € L1(2)and g € L™(Q) with r > %, then forall A € IR, problem (PA)

has a positive solution u € Wol’q ().

-
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SecondstengL"“,r>%,fEL1

Outline of the proof. ~Consider a sequence f,, € L () suchthat f,, T fin L' (Q).

By Theorem a of step 1, 3{un, } e, solutions to problems

—Aup + |Vun|? = Ag(@)un + frn in Q,
(PT) up > 0 in €,
\ un, = 0 on Of2.

Take T un, as test functionin  (PT), then

/ VT un|? do —|—/ IVun|"Teun doe = )\/ 9(x) unTrundr —|—/ frnTun dz.
Q Q Q Q

3Ce > 0

} , . .. . >\1 (97 q)
By Poincar & and Young inequalities, if 0 < € << T

Q Q

-
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SecondstengL"“,r>%,fEL1

Then for every k > O,

/ IVTiun|? <  C(\eQ, f, k) uniformyin n € N,
Q

IVUun|? < C(\ e Q, f, k) uniformlyin n € N,
Q

Using the definition of W, we conclude that Ju € W(}’q(Q) such that wy, — u weakly in Wol’q(Q).

Since {un, } is uniformly bounded in  LP(2),Vp < ¢*, uniformly in n we have,

(44) {z € Q, suchthat k — 1 < up(x) < k}| — 0, as k — oo
sk

{z € Q, suchthat un(x) > k}| — 0as k — oo.
Consider Gi(s) = s —Tr(s)and Y _1(s) = T1(Gr_1(s)).

Notice that ¥ 1 (un)|Vun|? > [Vun|9X (4, >k}

-
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Secondstepge L",r > &, fe Ll

q ]

=

Claim. u,, — w strongly in Wol’q(Q).

® uUse ) _1(up)astestfunctionin  (PT), then

/ |V¢k_1(un)|2da:+/ wk_l(un)|Vun|qda::/ (Ag(@)un + frn)Y k—1(un)de.
Q Q Q

And then

(k% %) lim Sup/ IVup|?dz < lim Sup/ (Ag(x)upn + frn)de =0
k—oo J{up>k} k—oo J{un>(k—1)}
by using also () in the right hand side,
O  Nextwe prove that Thun — Tru in Wol’Q(Q).

1.2
Take ¢(Tpun — Tru) as atestfunctionin  (PT) with ¢(s) = sexp4® .

Notice that ¢(Tkun — Tru) — Ostronglyin LP(2), p > 1. Then

/ (Ag(x)un + frn)d(Trun — Tru)dr — Oasn — oo.
Q

-
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Secondstepge L",r > &, fe Ll

q ]

Using the same computation as inthe  convergence claim in the proof of Theorem of first step, we

conclude Tpun — Tiu strongly in Wol’Q(Q).
To finish the proof, it is sufficient to show that
Vun|? — |[Vu|? stronglyin L ().

Since the sequence converges a.e. in €2, by Vitali's theorem it is sufficient to check the equi-integ rability.

Consider F/ C §) a measurable set, then,

/qun|qda:§/ |VTkun|qda;—|—/ |Vun|?de.
E E {un>k}NE

Forevery k > 0, one has that T (un) — T} (u) strongly in W&’Q(Q)(Q), therefore the integral
S |V Tk (un)|? dx is uniformly small if | E| is small enough. By (% * x)

/ |\Vup|?de < / |\Vup|?dr — 0as k — oo uniformly in  n.
{un=k}NE {un >k}

The equintegrability of |Vun \q follows immediately.
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Final step general weight ¢

-

We assume that f € L1(Q), g verifies (D). Consider g, (z) = min{g(z),n} € L>(Q).

By Theorem b above, 3 {un }nen, un > 0, solutions to problems
(

=

—Aun + |Vunp|? = Agn(@)un+f in Q,
(PAR) 1 up > 0 in
\ un, = 0 on Of).

Consider Txun € Wol’q(ﬂ) N L°°(€2) as test function,
/ VT un|? do —|—/ VU un|?de < k/\/ gn(T)uy dx + k/ f dx.
Q Q Q Q

/ IV un|?de 2/ VU un|?de > k/ |IVul|? dz,
Q {unZk} {unzk}

Since

then as above

q
/ |VTk(un)|2da;—|—k/ IVup|?dr < ke (/ gn(x)un da;) —|—k/ fdx + AkC(e, Q).
Q {un >k} Q Q

And

ke
/|Vun|qu§ : /\Vun|qda:—|—k/fdac—|—)\k0(e,ﬂ),
Q C(9,9) Ja Q

-
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Final step general weight ¢

Hence u, — wweakly in Wol’q(Q).
Using the hypothesis on g it follows that gy, (x)un, — g(z)u strongly in L1 (Q).
Moreover, to prove that
Up — w strongly in Wol’q(Q).
we take again ¢(Txun — Tru), with ¢(s) = sexpis2 as test functionin (P Ay,).
The same arguments as in the convergence claim give the strong convergence and allow us to conclude

the proof of the main Theorem.

COROLLARY
1. Assumethat g € L™ () with m > %, thenforall f € L'(€)and A > 0, problem
(PA) has a positive solution v € Wol’q(Q) in the distributional sense.
2. Define
[ veld
(g, q) = inf r

peW, 1 (2)\{0} / g|¢|qu7
Q

thenif A1(g,q) > O, it follows that C'(g,q) > 0 and then problem (P A) has a positive solution
u € Wol’q(Q) forall f € L1(Q)and X > 0.
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Someremarks

1. The existence result obtained means that resonance pheno menon can not occurs if we add
\Vu\q as an absorption term. Without the presence of this term, pos itive solution exists just by
assuming that \ is less than the infimum of the spectrum of the operator — A with the

corresponding weight and under a suitable condition of f.

2. The same existence result holds if ~ f is a bounded positive Radon measure such that
f e LY (Q)+W=52(Q), (f is absolutely continuous respect to capacity). In this case , the
solution means a renormalized solution.

The result follows using the same approximation arguments.

3. By the classical regularity theory of renormalized solut ion we get easily that if w is a positive
solution to problem (PA), then u € Wol’q(ﬂ) N Wol’p(ﬂ) forall p < %

-
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Optimality of theresults: Hardy Potential

Consider the problem
)

“Aut|Vulf = A— 4 f in Q,
|z|?
(PH) u > 0 in €,
\ u = 0 on O01.

Hardy potential is an admissible weightif 2 > q > %

Hence in this interval of values of g we have the main existence theorem.
1

Hardy potential, g(z) = —=, verifies,
]2
[ Vol d
(H2) g>0and g € L*(Q)with \1(g,2) = inf & > 0.
bWy (@)\{0} /Q 9|62 dz
N —2
In fact, A1(g,2) = ( 5 )2,

Itis easy to check thatby (H2),forall A < A1(g,2), there exists a unique € W5’2(Q), @ > 0 weak

solution to problem

(AuX) —Ap=XMg(x)p+g(x) in Q =0 on ON.

-
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Optimality of theresults: Hardy Potential.

The first result is the following one.

THEOREM. Assume that 0 < \ < (T) and 1 < g < 2, let  be the solution to problem  (AuX).

Suppose f is a positive function such that / fodxr < oo, then there exists . solution to (PH) such
Q

N
N —1

that / |Vu|?dzr < oo and / |IVu|P dz < o0, Vp <
Q Q

N
® iq>
1-°N

then the result holds forall  f € L ()

P Thenewfeatureisthatfor 1 < g <

the existence requires some extra summability on f.

We will see that for A > ( there in not solution.

)2and 1 < g < N
- N

-
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Optimality of theresults: Hardy Potential.

o . .
4

THEOREM. Assumethat ¢ < g2 = % ifA> ANy = , then problem (P H) has no

positive very weak positive supersolution in the sense that v, - |2 V|7 € L () and

/(v( A¢)+|Vv|q¢)da:>)\/Wda:—l—/fqbdm,

forall ¢ € C5°(€2).

Outline of the proof. By contradiction suppose that problem (PH) has a positive solution v for some

A> Ay
Then by iteration we could construct ~ u € V[/(}’p(B77 (0)) forall p < % and u € L™ (By(0)) for all
m < % We will choose 7) > 0O below

2
For ¢ € C3°(Br(0)) consider ¢ as test functionin (P H), then
u
2

2 .2 g 42
_/ wdaj+2/ MVudaz—i—/ Mdajz)\/ ¢_2d33
B,(0) U Bp(0) U Bp(0) U 7 (0) 1]

Direct computation provides
Vul?p? 2 Vul? S 2(q 1)
Y [T aE P 2 [ Ay,
y % 7/ Bn(0) u By(0) U "(0)
o be chosen later.

€0 IS a positive number

l\'JIvQ

—+
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Optimality of theresults: Hardy Potential.

On the other hand we have

2 2
2/ uVualar:< / Mdaz%—el—Q/ V|? da.
B,(0) U B,(0) U B, (0)

2
Hence it follows that fixed €5 X > A and €9 > 0 small enough such that (1 — €2 — 2€4) >0,

2 )_ g —=2_ 2(qg—1)
e%)\/ ¢—2da: <224 2—‘1/ w2ma ¢ da:—l—/ IVo|? d.
B, (0) || 2 B, (0) B, (0)

2(q—l) N(q—1) 2 5
/ —a ¢2dr < S~ (/ = daz) / V|2 de.
Bn(O) B, (0) B, (0)

N N(q-1)
N—1'" 2—q

N(g—1)
/ u 2= dxr — 0asn — 0.
n(0)

Now,

N
< N hence we conclude that

where S is the classical Sobolev constant. Since g <

Then we can fix 17 > 0, €p, €1 > 1 such that
9 2% N(q—1) 241
)\{1+62 ey qS_l(/ u 2—4 dac) } =\ > Ay
By (0)

Therefore we conclude that )
/\1/ ¢—2da: </ V|2 da,
n(0) || B, (0)

n
a contradiction with Hardy |nequal|ty :
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