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A classical inequality by Hardy

If u ∈W 1,2(RN ) then

ΛN

Z

RN

u2

|x|2
≤

Z

RN

|∇u|2,

where the optimal constant is

ΛN =
`N − 2

2

´2
.

ΛN is not attained in W 1,2(RN )

The optimal constant for the corresponding inequality in W
1,2
0 (Ω) is ΛN (Ω) ≡ ΛN provides

that 0 ∈ Ω. Moreover ΛN is not attained in W 1,2(Ω)
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Linear precedents.

It is well known that for problem

−∆u = f, x ∈ Ω, u|∂Ω = 0,

we have

if f ∈ Lm(Ω),m > N
2

, then u ∈ W
1,2
0 (Ω) ∩ L∞(Ω);

if f ∈ Lm(Ω), 2N
N+2

≤ m ≤ N
2

then u ∈ W
1,2
0 (Ω) ∩ Lm∗∗

(Ω),m∗∗ = Nm
N−2m

;

if f ∈ Lm(Ω), 1 < m < 2N
N+2

then u ∈W
1,m∗

0 (Ω),m∗ = Nm
N−m

.

Consider now the following zero-order perturbation of the L aplacian,

−∆u = λ
u

|x|2
+ f in Ω, u = 0 on ∂Ω,

where 0 ∈ Ω bounded domain in RN and 0 < λ ≤ ΛN ≡
`N − 2

2

´2
.

THEOREM.(L. Boccardo, L. Orsina, I.P.) Assume

(E) λ <
N(m− 1)(N − 2m)

m2
,

then

If f ∈ Lm(Ω), 2N
N+2

≤ m < N
2

, u ∈ Lm∗∗

(Ω) ∩W 1,2
0 (Ω),m∗∗ =

Nm

N − 2m
.

If f ∈ Lm, 1 < m < 2N
N+2

, u ∈W
1,m∗

0 (Ω).

If m = 1 in general are no solution.

If m >
N

2
in general the solution are unbounded.
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Semilinear precedents.

Consider the semilinear equation

(E) −∆u− λ
u

|x|2
= up

and α(−) =
N − 2

2
−

p

Λn − λ

THEOREM. (H. Brezis, L. Dupaigne, A. Tesei)

Let 0 ≤ λ ≤ ΛN . If 1 < p < p+(λ) ≡ 1 +
2

α−
there exists a nontrivial solution to (E) such

that,

up,
u

|x|2
∈ L1

loc

Let 0 < λ ≤ ΛN and p ≥ p+(λ). If u ∈ L
p
loc(BR(0) \ {0}), u ≥ 0 satisfies

−∆u− λ
u

|x|2
≥ up in D′(BR(0) \ {0}),

then u ≡ 0.
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The quasilinear case: Presentation.

We will consider the model problem:

−∆u± |∇u|p = λ
u

|x|2
+ α f in Ω, u = 0 on ∂Ω, 1 ≤ p ≤ 2.

The main point under consideration is to clarify the competi tion of the Hardy potential versus the

gradient term.

According with the sign of the term in the gradient we study:
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Optimality of the results.
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Optimal power for nonexistence

Consider,

(PR)

8

>

>

>

<

>

>

>

:

−∆u = |∇u|p + λ
u

|x|2
+ f in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where f ∈ L1
loc(Ω) f(x) ≥ 0 in Ω ⊂ RN , smooth bounded domain such that 0 ∈ Ω,N ≥ 3.

DEFINITION. We say that u ∈ L1
loc(Ω) is a very weak supersolution (subsolution) to equation

−∆u = |∇u|p + λ
u

|x|2
+ f in Ω,

if
u

|x|2
∈ L1

loc(Ω), |∇u|p ∈ L1
loc(Ω) and ∀φ ∈ C∞

0 (Ω) such that φ ≥ 0, we have that

Z

Ω
(−∆φ)udx ≥ (≤)

Z

Ω
(|∇u|p + λ

u

|x|2
+ f)φ dx.

If u is a very weak super and sub-solution, then we say that u is a very weak solution.
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Optimal power for nonexistence

If in problem (PR) we replace |x|−2 by a weight g ∈ Lm(Ω) with m > N
2

, then there exists

λ0, 0 < λ0 < λ1(g) such that for 0 < λ < λ0 problem (PR) has a weak solution for suitable

datum f .

We will see that the weight |x|−2 behaves in a very different way.

NOTATION.

We denote

α(±) =
N − 2

2
±

r

“N − 2

2

”2
− λ.

α(±) are the roots of α2 − (N − 2)α+ λ = 0.

Such roots give the radial solutions |x|−α(±) to the equation

−∆u− λ
u

|x|2
= 0.
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Optimal power for nonexistence

LEMMA 1. Assume u � 0 in Ω such that u ∈ L1
loc(Ω) and

u

|x|2
∈ L1

loc(Ω).

If u satisfies −∆u− λ
u

|x|2
≥ 0 in D′(Ω) with λ ≤ ΛN ⇒∃C > 0 and there exists a ball

BR(0) ⊂ Ω such that u(x) ≥ C|x|−α− in BR(0), where α− = N−2
2

−
q

( N−2
2

)2 − λ.

Outline of the proof. By strong M. P. u ≥ η in a small ball BR(0).

Fix R > 0 and consider w ∈W 1,2(BR(0)) the unique solution to

−∆w − λ
w

|x|2
= 0 in BR(0), w = η on ∂BR(0).

By an elementary computation, it follows that w(r) = Cr−α− in BR(0), with

α− = N−2
2

−
q

( N−2
2

)2 − λ and C = ηRα− .
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Optimal power for nonexistence

LEMMA 1. Assume u � 0 in Ω such that u ∈ L1
loc(Ω) and

u

|x|2
∈ L1

loc(Ω).

If u satisfies −∆u− λ
u

|x|2
≥ 0 in D′(Ω) with λ ≤ ΛN ⇒∃C > 0 and there exists a ball

BR(0) ⊂ Ω such that u(x) ≥ C|x|−α− in BR(0), where α− = N−2
2

−
q

( N−2
2

)2 − λ.

Outline of the proof. By strong M. P. u ≥ η in a small ball BR(0).

Fix R > 0 and consider w ∈W 1,2(BR(0)) the unique solution to

−∆w − λ
w

|x|2
= 0 in BR(0), w = η on ∂BR(0).

By an elementary computation, it follows that w(r) = Cr−α− in BR(0), with

α− = N−2
2

−
q

( N−2
2

)2 − λ and C = ηRα− .

By comparison, we conclude that u ≥ w in BR(0), then u ≥ C|x|−α− in BR(0).
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Optimal power for nonexistence

LEMMA 2.(Necessary condition for existence). Consider the equation

(L) − ∆w − λ
w

|x|2
= g in Ω,

with g ∈ L1
loc(Ω), g(x) ≥ 0 and λ ≤ ΛN . If (L) has a very weak supersolution then

|x|−α(−)g ∈ L1
loc(Ω).

Outline of the proof. Assume w a very weak supersolution to (L).

Let BR(0) ⊂ Ω be a ball.

Consider gn ≡ Tn(g) and solve the problem

(Ln) − ∆wn − λ
wn

|x|2
= gn in BR(0), wn = 0 on ∂BR(0).

Then, i) {wn}n∈N in nondecreasing and ii)wn ≤ w.

Consider φ, the solution to problem

−∆φ− λ
φ

|x|2
= 1 in BR(0), φ = 0 on ∂BR(0),

then φ(x) ⋍ c|x|−α(−) in a neighborhood of x = 0.

Take (formally) φ as a test function in problem (Ln) there result

Z

BR(0)
wndx =

Z

BR(0)
gnφdx ≥ C2

Z

BR(0)
gn|x|

−α−dx,

then the result follows by monotone convergence theorem.
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Optimal power for nonexistence

THEOREM. (Main nonexistence result). Assume that f ≥ 0 and p+(λ) =
2+α(−)

1+α(−)
.

Then if p ≥ p+(λ), there is not very weak supersolution to equation (PR). In the case where f ≡ 0,

the unique non negative very weak supersolution is u ≡ 0.

Outline of the proof. We divide the proof in three steps.

First step: p > p+(λ). Assume by contradiction that u is a weak super-solution to (PR).

Then −∆u− λ
u

|x|2

 0 and hence u(x) ≥ C|x|−α(−) in Br(0) ⊂ IRN.

Consider φ ∈ C∞
0 (Br(0)) and use |φ|p

′

as a test function in (PR),
Z

Br(0)
p′|φ|p

′−1∇u∇φ =

Z

Br(0)
|∇u|p|φ|p

′

+ λ

Z

Br(0)

u

|x|2
|φ|p

′

+

Z

Br(0)
f |φ|p

′

,

by Hölder and Young inequalities,
Z

Br(0)
p′|φ|p

′−1∇u∇φ ≤
1

2

Z

Br(0)
|∇u|p|φ|p

′

+ C

Z

Br(0)
|∇φ|p

′

, hence

c1λ

Z

Br(0)

u|φ|p
′

|x|2
dx ≤

Z

Br(0)
|∇φ|p

′

dx, (c1 > 0 independent of u and φ).

By the local behavior of u in Br(0),

c2λ

Z

Br(0)

|φ|p
′

|x|2+α(−)
dx ≤

Z

Br(0)
|∇φ|p

′

dx.

Since p > p+(λ), hence 2 + α(−) > p′ ⇒ a contradiction with the Hardy inequality in

W
1,p′

0 (Br(0)).
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Optimal power for nonexistence

Second step: p = p+(λ) and λ < ΛN . As in the first step if u is a very weak super-solution,

u(x) ≥
c0

|x|α(−)
in some ball Bη(0) ⊂⊂ Ω, without loss of generality we assume that η = e−1 .

Notice that in this case p+(λ)′ ≡ 2 + α(−), then we need a sharper lower estimate for u

By Lemma 2 we obtain that
Z

Bη(0)
|∇u|

p
+

(λ)
|x|−α(−)dx < ∞ and

Z

Bη(0)

u

|x|2+α(−)
dx < ∞.

Consider w(x) = |x|−α(−) (log( 1
|x|

))β , β > 0 to be chosen later.

Since λ < ΛN ,w ∈W 1,2(Bη(0)) and in particular w ∈W
1,p

+
(λ)

(Bη(0)).

By a direct computation we obtain that for |x| ≤ e−1, by choosing β small enough,

−∆w − λ
w

|x|2
≤ β

1
2 |∇w|

p
+

(λ)
h(x)

where h(x) =
“

α(−) log( 1
|x|

) + β((log( 1
|x|

))−1
”1−p

+
(λ)
, which is bounded in the ball Bη(0).

By scaling, u1 ≡ c1u,

−∆u1 − λ
u1

|x|2
≥ c

1−p
1 |∇u1|

p+(λ).

We have to prove that u1 ≥ w.
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Optimal power for nonexistence

Fixed c0 satisfying u(x) ≥
c0

|x|α−
in |x| ≤ η = e−1, chose c1 > 0 such that c1c0 ≥ 1.

Then for a suitable small β we have:

c
1−p

+
(λ)

1 ≥ ||h||∞β
1
2 .

u1(x) ≥ w(x) for |x| = e−1 and −∆u1 − λ
u1

|x|2
≥ β

1
2 h(x)|∇u1|

p
+

(λ)
.

CLAIM: u1 ≥ w. If v = w − u1 one can check that

v ∈W
1,p

+
(λ)

(Bη(0)), v ≤ 0 on ∂Bη(0) and
Z

Bη(0)

|v|

|x|2+α(−)
dx < ∞,

Z

Bη(0)
|∇v|

p
+

(λ)
|x|−α(−)dx <∞.

−∆v − λ
v

|x|2
≤ p+ (λ)h(x)β

1
2 |∇w|

p
+

(λ)−2
∇w∇v ≡ a(x)∇v where the vector field

a(x) = −β
1
2 p+(λ)

x

|x|2
∈ Lq(Bη(0)) for all q < N .

Notice that a is not in the hypothesis by Alaa-Pierre.

To overcame this lack of summability we start by applying the Kato’s type inequality by

Brezis-Ponce, then

(1) − ∆v+ − λ
v+

|x|2
+ p+(λ)β

1
2 〈

x

|x|2
,∇v+〉 ≤ 0 and

Z

Bη(0)

|∇v+|p+

|x|α(−)
dx < ∞.
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Optimal power for nonexistence

Since
α(−)

p+(λ)
< N−2

2
, by Hardy-Sobolev inequality v+ satisfies

Z

Bη(0)

v
p+(λ)
+

|x|p+(λ)+α(−)
dx < ∞. ⇒ ∃σ1 > 2 + α(−), such that

Z

Bη(0)

v+

|x|σ1
dx <∞.

For β small enough, γ =
β

1
2 p+(λ)

2
<
N − 2

2
and then the weight |x|−2γ is an admissible weight to

have Caffarelli-Kohn-Nirenberg inequalities.

We consider the equivalent inequality,

−div (|x|−2γ∇v+) − λ
v+

|x|2(γ+1)
= |x|−2γ

“

− ∆v+ + p+(λ)〈
x

|x|2
,∇v+〉 − λ

v+

|x|2

”

≤ 0.

The idea should be to use as a test function in (1), ϕ =
1

|x|a
−

1

ηa
,

a =
N−2(γ+1)

2
−

q

` N−2(γ+1)
2

´2
− λ, the solution to problem

8

>

<

>

:

−div (|x|−2γ∇ϕ) − λ
ϕ

|x|2(γ+1)
=

1

|x|2(γ+1)
in Bη(0),

ϕ = 0 on ∂Bη(0),

Formally we reach the inequality

Z

Bη(0))

v+

|x|2(1+γ)
dx ≤ 0, hence v+ ≡ 0 ⇔ u1 ≥ w .

As ϕ has not the required regularity we use an approximation argu ment. Granada February 2007 – p. 17/51



Optimal power for nonexistence

To finish the proof in this case we use the same argument as in th e first step. More precisely for all

φ ∈ C∞
0 (Br(0)), 0 < r << η we have

c1

Z

Br(0)

u1|φ|
p′
+

|x|2
dx ≤

Z

Br(0)
|∇φ|p

′
+dx

where c1 > 0 is independent of φ. Using the result of the claim and by the fact that p′+ = α(−) + 2 we

obtain that,

c2

Z

Br(0)

|φ|p
′
+

|x|
p′
+

(log(
1

|x|
)βdx ≤

Z

Br(0)
|∇φ|p

′
+dx

a contradiction with Hardy inequality in W
1,p′

+
0 (Br(0)). Hence the result follows.
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Optimal power for nonexistence

Third step: p = p+ (λ) and λ = ΛN

In this case α(−) = N−2
2

and p+(λ) = N+2
N

, hence u(x) ≥ c|x|−α(−) and
Z

Bη(0)
|∇u|p+(λ)|x|−α(−)dx < ∞.

We consider φ ∈ C∞
0 (Bη(0)) such that φ ≥ 0 and φ = 1 in Bη1 (0), then by the regularity of u we

obtain

Z

Bη(0)
|∇(φu)|p+(λ)|x|−α(−)dx <∞. Since

α(−)

p+(λ)
=

N(N−2)
2(N+2)

< N−2
2

, we can apply

Caffarelli-Kohn-Nirenberg inequalities to obtain that

C1

Z

Bη(0)
(φu)p+(λ)|x|−α(−)dx ≤

Z

Bη(0)
|∇(φu)|p+(λ)|x|−α(−)dx <∞.

R

Bη1 (0) u
p+(λ)|x|−α(−)dx < ∞ for some η1 < η

In particular,
Z

Bη1 (0)

up+(λ)

|x|α(−)+p+(λ)
dx <∞.

Using the fact that u(x) ≥ c|x|−α(−) there result that

Z

Bη1 (0)

|x|−α(−)p+(λ)

|x|α(−)+p+(λ)
dx <∞.

Since α(−) + p+(λ) + α(−)p+(λ) = N , we reach a contradiction.

End of the proof.
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Some remarks

Notice that p+(λ) < 2 and

p+(λ) → 2 if λ→ 0

p+(λ) → N+2
N

if λ→ ΛN .

Therefore we find a discontinuity with the known result for λ = 0. ( See for instance,

Hansson-Maz’ya-Verbitsky paper).

If 1 < p ≤ N
N−1

, then there is not very weak positive solution in IRN.

By contradiction. Assume 1 < p ≤ N
N−1

and u a positive solution.

By using the strong maximum principle, for any compact set K ⊂ Ω there exists a positive

constant c(K) such that u ≥ c(K). Let φ ∈ C∞
0 (Ω), then using |φ|p

′

as a test function and by

using Young inequalities we obtain that
Z

RN
|∇φ|p

′

dx ≥ c1λ

Z

RN

u

|x|2
|φ|p

′

dx.

Since p′ > N , then Cap1,p′(K) = 0 for any compact set of IRN.

Thus, ∃ {φn} ⊂ C∞
0 (IRN) such that φ ≥ χK and ||∇φn||Lp′

(IRN)
→ 0 as n → ∞.

Hence by substituting in the last inequality we reach a contr adiction. (See Alaa-Pierre).

In bounded domains there are no restriction on p from below.
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Complete blow-up

As a consequence of the non existence result, the following b low-up behavior for approximated

problems could be obtained.

THEOREM. Assume that p ≥ p+(λ). If un ∈ W
1,p
0 (Ω) is a solution to problem

8

>

>

<

>

>

:

−∆un = |∇un|p + λan(x)un + αf in Ω,

un > 0 in Ω,

un = 0 on ∂Ω,

with f ≥ 0, f 6= 0 and an(x) =
1

|x|2 + 1
n

, then un(x0) → ∞, ∀x0 ∈ Ω.

Idea of the proof. If in some point the limit is finite, Harnack inequality provi de an estimate that allow us

to construct a local solution in contradiction to the nonexistence theorem.

The existence of such solution requires the following resul t.

LEMMA. Assume that {un} is a sequence of positive functions such that {un} is uniformly bounded

in W 1,p
loc (Ω) for some 2 ≥ p > 1 with un ⇀ u weakly in W

1,p
loc (Ω) and such that un ≤ u for all

n ∈ IN. Assume that −∆un ≥ 0 in D′(Ω) and that, if p < 2, sequence {Tk(un)} is uniformly

bounded in W
1,2
loc (Ω) for k fixed. Then ∇Tk(un) → ∇Tk(u) strongly in (L2

loc(Ω))N .
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Existence in IRN: p−(λ) < p < p+(λ) and λ < ΛN

For α(+) and α(−) as above, consider

p−(λ) ≡
2 + α(+)

1 + α(+)

and p+(λ) ≡
2 + α(−)

1 + α(−)

.

THEOREM A. Assume that p−(λ) < p < p+(λ) then

−∆u = |∇u|p + λ
u

|x|2

has a very weak solution u > 0 in IRN.

Proof. We search a solution in the form u(x) = A|x|−β .

By a direct computation we obtain that β =
2 − p

p− 1
and

βpAp−1 = β(N − β − 2) − λ.

To have A > 0 we need β ∈ (α(−), α(+)) which is equivalent to p−(λ) < p < p+(λ).

Notice that

u,
u

|x|2
∈ L1

loc(IR
N) and since p > p−(λ) >

N

N − 1
, |∇u|p ∈ L1

loc(IR
N) �

Remark. The solution u in Theorem A is in the space W
1,2
loc (IRN) if and only if p > N+2

N
.

For all λ ∈ [0,ΛN ), N+2
N

∈ (p−(λ), p+(λ))

If λ = ΛN then N+2
N

= p−(λ) = p+(λ).
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Existence Dirichlet Problem: 1 < p < p+(λ) and λ < ΛN

To find solution to Dirichlet problem:

1. Is needed a supersolution and then comparison arguments a s in

N.E. Alaa, M. Pierre , SIAM J. Math. Anal. Vol 24 no. 1 (1993), 23-35.

2. The datum must be small in some class of functions, as in the case λ = 0

The precise statement is the next.

THEOREM B. Assume that 1 < p < p+(λ). There exist c0 such that if c < c0 and f(x) ≤
1

|x|2
,

then problem
8

<

:

−∆w = |∇w|p + λ
w

|x|2
+ c f in Ω,

w = 0 on ∂Ω,

has a positive solution w ∈W
1,2
0 (Ω).

Outline of the proof.

Assume w ∈ W
1,p
0 (Ω) is a positive super-solution for the data f(x) ≡ 1

|x|2
and c small.

Consider an(x) = 1
|x|2+ 1

n

↑ |x|−2, fn = min{f, n} ↑ f . and problem,

(TP )

8

>

<

>

:

−∆vn = λan(x)vn +
|∇vn|p

1 + 1
n
|∇vn|p

+ cfn in Ω,

vk = 0 on ∂Ω,
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Existence Dirichlet Problem: 1 < p < p+(λ) and λ < ΛN

By classical theory (TP ) has a unique positive solution vn ∈W
1,2
0 (Ω) ∩ L∞(Ω).

Moreover by the comparison principle in Alaa-Pierre paper,

vn ≤ vn+1 and vn ≤ w, ∀n

Hence v = limn→∞ vn ≤ w.

Take as test function φn = (1 + vn)s − 1, 0 < s <
p(N−1)−N

2−p
< 1,

Z

Ω

|∇vn|2

(1 + vn)1−s
dx ≤ C1,

Z

Ω
|∇vn|

p(1 + vn)sdx ≤ C2,

Therefore, in particular
1

k

Z

Ω
|∇Tkvn|

2 ≤ C3,

Z

Ω
|∇vn|

p ≤ C4.

Then by using φ(Tkvn − Tkv) as a test function, where φ(s) = s exp
1
4

s2
, and the convergence

arguments by Boccardo-Gallou ët-Orsina we obtain that

∇Tkvn → ∇Tkv as n → ∞ strongly in W
1,2
0 (Ω).

With the test function ψn = (1 +Gk(vn))s − 1,Gk(t) = t− Tk(t), we prove

lim supk→∞

R

vn≥k |∇vn|pdx ≤ lim supk→∞

R

Ω |∇Gk(vn)|p(1 +Gk(vn))sdx = 0,

uniformly in n.

By Vitali Lemma ∇vn → ∇u, n→ ∞, strongly in Lp(Ω).

Hence u is a very weak solution to problem

If the super-solution has finite energy the arguments are eas ier.
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Existence Dirichlet Problem: 1 < p < p+(λ) and λ < ΛN

The construction of the super-solution is performed in two s teps
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Existence Dirichlet Problem: 1 < p < p+(λ) and λ < ΛN

The construction of the super-solution is performed in two s teps

i) p− < p < p+(λ).

Consider ς , the solution to
8

<

:

−∆ς = 0 in Ω,

ς = u on ∂Ω,

where u is the radial solution obtained in Theorem A.

Then ς ∈ C∞(Ω) and 0 < c1 ≤ ς ≤ c2.

One can check that for t small enough w = t(u− ς), is a super-solution. Notice that

w ∈W
1,p
0 (Ω),w ≥ 0 in Ω.
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Existence Dirichlet Problem: 1 < p < p+(λ) and λ < ΛN

The construction of the super-solution is performed in two s teps

i) p− < p < p+(λ).

Consider ς , the solution to
8

<

:

−∆ς = 0 in Ω,

ς = u on ∂Ω,

where u is the radial solution obtained in Theorem A.

Then ς ∈ C∞(Ω) and 0 < c1 ≤ ς ≤ c2.

One can check that for t small enough w = t(u− ς), is a super-solution. Notice that

w ∈W
1,p
0 (Ω),w ≥ 0 in Ω.

ii) 1 < p ≤ p−. We start by getting a super-solution in Ω = BR(0). For general Ω we perform

the same arguments as in the first case using the super-soluti on in a big ball.

Since p ≤ p−, ∃β ∈ (α(−), α(+)), close to α(−) and such that p(β + 1) < β + 2.

Define w(x) ≡ A(|x|−β − R−β) with β close to α(−), then w ∈W
1,2
0 (BR(0)) and

−∆w − λ
w

|x|2
= A(β(N − β − 2) − λ)|x|−β−2 +

A

|x|2
.

Since β ∈ (α(−), α(+)), then β(N−β−2)−λ > 0, hence if Ap−1 =
β(N − β − 2) − λ)

βp
,

−∆w − λ
w

|x|2
≥ |∇w|p +

A

|x|2
.

So, if c0 = A, w ∈W
1,2
0 (BR(0)). is a super-solution in BR(0) for all c < c0. Granada February 2007 – p. 27/51



Existence Dirichlet Problem: λ ≡ Λn and p < N+2
N

This critical case is more involved. As above we find a super-s olution in a ball

Consider w(x) =
˛

˛

˛

x
r

˛

˛

˛

− N−2
2

“

log( r
|x|

)
”1/2

.

w ∈ W
1,q
0 (Br(0)) for all q < 2.

For suitable positive constant c1, c1w is a super-solution in the ball BR(0) to

8

<

:

−∆w = |∇w|p + ΛN
w

|x|2
+ c0f in B1(r),

w = 0 on ∂Br(0).

where |x|2f is bounded and c0 is small

The natural framework to find the solution is the Hilbert spac eH , complection of C∞
0 (Br(0))

respect to the norm

||φ||2H(Br(0)) =

Z

Br(0)
|∇φ|2dx− ΛN

Z

Br(0)

φ2

|x|2
dx.

In fact we find a solution is such space.

(We avoid technical details).
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Breaking down the resonance: existence for all λ > 0

Consider

(PA)

8

>

>

<

>

>

:

−∆u+ |∇u|q = λ g(x)u+ f in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

where 1 ≤ q ≤ 2, λ ∈ IR and f ∈ Lm(Ω) with m ≥ 1. We will assume that g is an admissible weight

in the sense that the

(H1) g ≥ 0 and g ∈ L1(Ω) ∩W−1,q′

(Ω) q′ =
q

q − 1
.

Call

λ1(g, q) = inf
φ∈W

1,q
0 (Ω)\{0}

„Z

Ω
|∇φ|q dx

« 1
q

Z

Ω
g|φ| dx

> 0.

Examples.

g ∈ Lm(Ω) with m > N
q

.

g(x) ≡
1

|x|2
, the Hardy potential and q >

N

N − 1
.
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Existence of solutions for all λ > 0

The main result is the following.

THEOREM. Assume 1 < q ≤ 2, f ∈ L1(Ω) and the hypothesis (H1) holds for g, then there exists

u ∈ W
1,q
0 (Ω) a weak solution to problem (PA) for all parameter λ > 0.
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Existence of solutions for all λ > 0

The main result is the following.

THEOREM. Assume 1 < q ≤ 2, f ∈ L1(Ω) and the hypothesis (H1) holds for g, then there exists

u ∈W
1,q
0 (Ω) a weak solution to problem (PA) for all parameter λ > 0.

The new feature is the existence for all λ > 0.
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Existence of solutions for all λ > 0

The main result is the following.

THEOREM. Assume 1 < q ≤ 2, f ∈ L1(Ω) and the hypothesis (H1) holds for g, then there exists

u ∈W
1,q
0 (Ω) a weak solution to problem (PA) for all parameter λ > 0.

The new feature is the existence for all λ > 0.

Notice that the summability required on f is just L1
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Existence of solutions for all λ > 0

The main result is the following.

THEOREM. Assume 1 < q ≤ 2, f ∈ L1(Ω) and the hypothesis (H1) holds for g, then there exists

u ∈W
1,q
0 (Ω) a weak solution to problem (PA) for all parameter λ > 0.

The new feature is the existence for all λ > 0.

Notice that the summability required on f is just L1

Since 1 ≤ q ≤ 2, N
2
< N

q

The proof is done in three steps.

f and g in Lr with r > N
q

.
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Existence of solutions for all λ > 0

The main result is the following.

THEOREM. Assume 1 < q ≤ 2, f ∈ L1(Ω) and the hypothesis (H1) holds for g, then there exists

u ∈W
1,q
0 (Ω) a weak solution to problem (PA) for all parameter λ > 0.

The new feature is the existence for all λ > 0.

Notice that the summability required on f is just L1

Since 1 ≤ q ≤ 2, N
2
< N

q

The proof is done in three steps.

f and g in Lr with r > N
q

.

f ∈ L1(Ω) and g in Lr with r > N
q

.
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Existence of solutions for all λ > 0

The main result is the following.

THEOREM. Assume 1 < q ≤ 2, f ∈ L1(Ω) and the hypothesis (H1) holds for g, then there exists

u ∈W
1,q
0 (Ω) a weak solution to problem (PA) for all parameter λ > 0.

The new feature is the existence for all λ > 0.

Notice that the summability required on f is just L1

Since 1 ≤ q ≤ 2, N
2
< N

q

The proof is done in three steps.

f and g in Lr with r > N
q

.

f ∈ L1(Ω) and g in Lr with r > N
q

.

f ∈ L1(Ω) and g verifying (H1).
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First step: f and g in Lr with r > N
q

THEOREM a. Assume that f, g ∈ Lr(Ω), with r > N
q

, are positive functions, then for all λ > 0 there

exists u ∈ W
1,2
0 (Ω) ∩ L∞(Ω) a positive weak solution to problem (PA).

Outline of the proof.

(I) For every fixed k > 0 consider v ∈W
1,2
0 (Ω) ∩ L∞(Ω) such that −∆v = λkg(x) + f in Ω

and denote M = ‖v‖L∞ . Then zero is a subsolution and v is a supersolution to problems

(PTn)

8

>

>

>

>

<

>

>

>

>

:

w0 = 0,

−∆wn +
|∇wn|q

1 + 1
n
|∇wn|q

= λg(x)Tkwn−1 + f,

wn ∈ W
1,2
0 (Ω),

for all n ∈ N. As a consequence of the arguments in Boccardo-Murat-Puel, we find a sequence of

nonnegative solutions {wn} to problems (PTn).

It follows that −∆wn ≤ λkg(x) + f = −∆v, so by weak comparison principle, we conclude that

0 ≤ wn ≤ v ≤M , uniformly in n, then in particular, wn ∈W
1,2
0 (Ω) ∩ L∞(Ω).
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First step: f and g in Lr with r > N
2

Call Hn(∇wn) =
|∇wn|q

1 + 1
n
|∇wn|q

.

Take wn as a test function in (PTn),

Z

Ω
|∇wn|

2 dx+

Z

Ω
Hn(∇wn)wn dx = λ

Z

Ω
gTkwn−1wn dx+

Z

Ω
f wn dx

Applying Poincar é and Young’s inequality we obtain a positive constant C(k, g, f,Ω) such that

α

Z

Ω
|∇wn|

2 dx ≤ C(k, g, f,Ω),

therefore wn ⇀ uk weakly in W
1,2
0 (Ω) with uk ∈W

1,2
0 ∩ L∞(Ω) and uk ≤ M .
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First step: f and g in Lr with r > N
q

Convergence claim .- wn → uk strongly in W
1,2
0 (Ω).

Outline of the proof of the convergence claim .-

Since q ≤ 2 ∀ǫ ≤ 1 there exists Cǫ > 0 such that

sq ≤ ǫs2 + Cǫ, s ≥ 0.

Let φ(s) = s exp
1
4

s2
, which verifies φ′(s) − |φ(s)| ≥

1

2
.

Take φ(wn − uk) as test function in (PTn) and using the same kind of arguments that in

Boccardo-Gallou ët-Orsina. we obtain that
1

2

Z

Ω
|∇wn −∇uk|

2 dx ≤

Z

Ω
(φ′(wn − uk) − ǫ|φ(wn − uk)|)|∇wn −∇uk|

2 dx ≤ o(1),

whence wn → uk in W
1,2
0 (Ω).

In particular

Hn(∇wn) → |∇uk|
q in L1(Ω).

Therefore

(AP1) − ∆uk + |∇uk|
q = λg(x)Tkuk + f in Ω, uk ∈W

1,2
0 (Ω).
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First step: f and g in Lm with r > N
q

(II) Taking Tmuk as test function in (AP1),
Z

Ω
|∇Tmuk|

2 dx+

Z

Ω
|∇Ψmuk|

q dx ≤ λ

Z

Ω
g(x)Tmukuk dx+

Z

Ω
f Tmuk dx

≤ mǫλ

„Z

Ω
g(x)uk dx

«q

+ λmC(ǫ) + C(ǫ)‖f‖2

L
N
2

+ ǫ |Ω|m
2N

N−2

≤
ǫmλ

C(q, g)

Z

Ω
|∇uk|

q dx+ C(ǫ, ǫ, λ,Ω,m, f).

where

Ψm(s) =

Z s

0
Tm(t)

1
q dt

Since
Z

Ω
|∇Ψmuk|

q dx ≥

Z

{uk≥m}
|∇Ψmuk|

q dx ≥ m

Z

{un≥m}
|∇uk|

q dx,

then
Z

Ω
|∇uk|

q dx ≤

Z

Ω
|∇Tmuk|

2 dx+m

Z

{uk≥m}
|∇uk|

q dx ≤

ǫmλ

C(q, g)

Z

Ω
|∇uk|

q dx+ C(ǫ, ǫ, λ,Ω,m, f).
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First step: f and g in Lr with r > N
q

Fixed m ≥ 1, and choosing ǫ small enough we conclude that

uk ⇀ u weakly in W
1,q
0 (Ω).

Since f, g ∈ Lr(Ω) with r > N
q

, the sequence {uk} is uniformly bounded in L∞(Ω), so

uk ⇀ u in W
1,2
0 (Ω) with u ∈ W

1,2
0 (Ω) ∩ L∞(Ω).

To finish the proof we use the same arguments as in the convergence claim to obtain

uk → u in W
1,2
0 (Ω).

Then u is a positive solution to (PA).
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Second step g ∈ Lr, r > N
q

, f ∈ L1

We will use the following elementary lemma.

Lemma. ∀ǫ > 0, ∀k > 0, ∃Cǫ such that

s Tk(s) ≤ ǫΨq
k(s) + Cǫ, s ≥ 0

being Ψk(s) =

Z s

0
Tk(t)

1
q dt

Notice that

Ψk(s) =

8

>

>

>

<

>

>

>

:

q
q+1

s
q+1

q if s < k,

q
q+1

k
q+1

q + (s− k)k
1
q if s > k.

We will prove the next result.

Theorem b. Assume that f ∈ L1(Ω) and g ∈ Lr(Ω) with r > N
q

, then for all λ ∈ IR, problem (PA)

has a positive solution u ∈W
1,q
0 (Ω).
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Second step g ∈ Lr, r > N
q

, f ∈ L1

Outline of the proof. Consider a sequence fn ∈ L∞(Ω) such that fn ↑ f in L1(Ω).

By Theorem a of step 1, ∃{un}n∈N, solutions to problems

(PT )

8

>

>

<

>

>

:

−∆un + |∇un|q = λ g(x)un + fn in Ω,

un > 0 in Ω,

un = 0 on ∂Ω.

Take Tkun as test function in (PT ), then

Z

Ω
|∇Tkun|

2 dx+

Z

Ω
|∇un|

qTkun dx = λ

Z

Ω
g(x)unTkundx+

Z

Ω
fnTkun dx.

By Poincar é and Young inequalities, if 0 < ǫ <<
λ1(g, q)

λ
, ∃Cǫ > 0

Z

Ω
|∇Tkun|

2 dx+ β

Z

Ω
|∇Ψkun|

q dx ≤ λC′(g,Ω, ǫ) + k‖fn‖L1 .
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Second step g ∈ Lr, r > N
q

, f ∈ L1

Then for every k > 0,

Z

Ω
|∇Tkun|

2 ≤ C(λ, ǫ,Ω, f, k) uniformly in n ∈ IN,

Z

Ω
|∇Ψkun|

q ≤ C(λ, ǫ,Ω, f, k) uniformly in n ∈ IN.

Using the definition of Ψk , we conclude that ∃u ∈W
1,q
0 (Ω) such that un ⇀ u weakly in W

1,q
0 (Ω).

Since {un} is uniformly bounded in Lp(Ω),∀p < q∗, uniformly in n we have,

(∗∗)

8

<

:

|{x ∈ Ω, such that k − 1 < un(x) < k}| → 0, as k → ∞

|{x ∈ Ω, such that un(x) > k}| → 0 as k → ∞.

Consider Gk(s) = s− Tk(s) and ψ k−1(s) = T1(Gk−1(s)).

Notice that ψ k−1(un)|∇un|q ≥ |∇un|qχ{un≥k}
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Second step g ∈ Lr, r > N
q

, f ∈ L1

Claim. un → u strongly in W
1,q
0 (Ω).

Use ψ k−1(un) as test function in (PT ), then

Z

Ω
|∇ψ k−1(un)|2 dx+

Z

Ω
ψ k−1(un)|∇un|

q dx =

Z

Ω
(λg(x)un + fn)ψ k−1(un)dx.

And then

(∗ ∗ ∗) lim sup
k→∞

Z

{un≥k}
|∇un|

q dx ≤ lim sup
k→∞

Z

{un>(k−1)}
(λg(x)un + fn)dx = 0

by using also (∗∗) in the right hand side,

Next we prove that Tkun → Tku in W
1,2
0 (Ω).

Take φ(Tkun − Tku) as a test function in (PT ) with φ(s) = s exp
1
4

s2
.

Notice that φ(Tkun − Tku) → 0 strongly in Lp(Ω), p ≥ 1. Then

Z

Ω
(λg(x)un + fn)φ(Tkun − Tku) dx→ 0 as n→ ∞.
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Second step g ∈ Lr, r > N
q

, f ∈ L1

Using the same computation as in the convergence claim in the proof of Theorem of first step, we

conclude Tkun → Tku strongly in W
1,2
0 (Ω).

To finish the proof, it is sufficient to show that

|∇un|
q → |∇u|q strongly in L1(Ω).

Since the sequence converges a.e. in Ω, by Vitali’s theorem it is sufficient to check the equi-integ rability.

Consider E ⊂ Ω a measurable set, then,

Z

E
|∇un|

q dx ≤

Z

E
|∇Tkun|

q dx+

Z

{un≥k}∩E
|∇un|

q dx.

For every k > 0, one has that Tk(un) → Tk(u) strongly in W
1,2
0 (Ω)(Ω), therefore the integral

R

E |∇Tk(un)|q dx is uniformly small if |E| is small enough. By (∗ ∗ ∗)

Z

{un≥k}∩E
|∇un|

q dx ≤

Z

{un≥k}
|∇un|

q dx→ 0 as k → ∞ uniformly in n.

The equintegrability of |∇un|q follows immediately.
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Final step general weight g

We assume that f ∈ L1(Ω), g verifies (D). Consider gn(x) = min{g(x), n} ∈ L∞(Ω).

By Theorem b above, ∃ {un}n∈N, un ≥ 0, solutions to problems

(PAn)

8

>

>

<

>

>

:

−∆un + |∇un|q = λ gn(x)un + f in Ω,

un > 0 in Ω,

un = 0 on ∂Ω.

Consider Tkun ∈W
1,q
0 (Ω) ∩ L∞(Ω) as test function,

Z

Ω
|∇Tkun|

2 dx+

Z

Ω
|∇Ψkun|

q dx ≤ kλ

Z

Ω
gn(x)un dx+ k

Z

Ω
f dx.

Since
Z

Ω
|∇Ψkun|

q dx ≥

Z

{un≥k}
|∇Ψkun|

q dx ≥ k

Z

{un≥k}
|∇u|q dx,

then as above
Z

Ω
|∇Tk(un)|2 dx+ k

Z

{un≥k}
|∇un|

q dx ≤ kǫλ

„Z

Ω
gn(x)un dx

«q

+ k

Z

Ω
f dx+ λkC(ǫ,Ω).

And
Z

Ω
|∇un|

q dx ≤
kǫλ

C(g, q)

Z

Ω
|∇un|

q dx+ k

Z

Ω
f dx+ λkC(ǫ,Ω),
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Final step general weight g

Hence un ⇀ u weakly in W
1,q
0 (Ω).

Using the hypothesis on g it follows that gn(x)un → g(x)u strongly in L1(Ω).

Moreover, to prove that

un → u strongly in W
1,q
0 (Ω).

we take again φ(Tkun − Tku), with φ(s) = s exp
1
4

s2
as test function in (PAn).

The same arguments as in the convergence claim give the strong convergence and allow us to conclude

the proof of the main Theorem.

COROLLARY

1. Assume that g ∈ Lm(Ω) with m ≥ qN
(q−1)N+1

, then for all f ∈ L1(Ω) and λ ≥ 0, problem

(PA) has a positive solution u ∈W
1,q
0 (Ω) in the distributional sense.

2. Define

λ1(g, q) = inf
φ∈W

1,q
0 (Ω)\{0}

Z

Ω
|∇φ|q dx

Z

Ω
g|φ|q dx

,

then if λ1(g, q) > 0, it follows that C(g, q) > 0 and then problem (PA) has a positive solution

u ∈ W
1,q
0 (Ω) for all f ∈ L1(Ω) and λ ≥ 0.
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Some remarks

1. The existence result obtained means that resonance pheno menon can not occurs if we add

|∇u|q as an absorption term. Without the presence of this term, pos itive solution exists just by

assuming that λ is less than the infimum of the spectrum of the operator −∆ with the

corresponding weight and under a suitable condition of f .

2. The same existence result holds if f is a bounded positive Radon measure such that

f ∈ L1(Ω) +W−1,2(Ω), (f is absolutely continuous respect to capacity). In this case , the

solution means a renormalized solution.

The result follows using the same approximation arguments.

3. By the classical regularity theory of renormalized solut ion we get easily that if u is a positive

solution to problem (PA), then u ∈W
1,q
0 (Ω) ∩W 1,p

0 (Ω) for all p < N
N−1

.
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Optimality of the results: Hardy Potential

Consider the problem

(PH)

8

>

>

>

<

>

>

>

:

−∆u+ |∇u|q = λ
u

|x|2
+ f in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

Hardy potential is an admissible weight if 2 ≥ q > N
N−1

.

Hence in this interval of values of q we have the main existence theorem.

Hardy potential, g(x) ≡
1

|x|2
, verifies,

(H2) g ≥ 0 and g ∈ L1(Ω) with λ1(g, 2) = inf
φ∈W

1,2
0 (Ω)\{0}

Z

Ω
|∇φ|2 dx

Z

Ω
g|φ|2 dx

> 0.

In fact, λ1(g, 2) = (
N − 2

2
)2.

It is easy to check that by (H2), for all λ < λ1(g, 2), there exists a unique ϕ ∈W
1,2
0 (Ω), ϕ > 0 weak

solution to problem

(AuX) − ∆ϕ = λg(x)ϕ+ g(x) in Ω, ϕ = 0 on ∂Ω.
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Optimality of the results: Hardy Potential.

The first result is the following one.

THEOREM. Assume that 0 < λ < (
N − 2

2
)2 and 1 < q ≤ 2, let ϕ be the solution to problem (AuX).

Suppose f is a positive function such that

Z

Ω
fϕ dx <∞, then there exists u solution to (PH) such

that

Z

Ω
|∇u|q dx <∞ and

Z

Ω
|∇u|p dx < ∞,∀p <

N

N − 1
.

If q >
N

N − 1
then the result holds for all f ∈ L1(Ω)

The new feature is that for 1 < q ≤
N

N − 1
the existence requires some extra summability on f .

We will see that for λ > (
N − 2

2
)2 and 1 < q ≤

N

N − 1
there in not solution.
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Optimality of the results: Hardy Potential.

THEOREM. Assume that q < q2 ≡ N
N−1

, if λ > ΛN =
(N − 2)2

4
, then problem (PH) has no

positive very weak positive supersolution in the sense that v,
v

|x|2
, |∇v|q ∈ L1

loc(Ω) and

Z

“

v(−∆φ) + |∇v|qφ
”

dx ≥ λ

Z

v φ

|x|2
dx+

Z

fφdx,

for all φ ∈ C∞
0 (Ω).

Outline of the proof. By contradiction suppose that problem (PH) has a positive solution v for some

λ > ΛN

Then by iteration we could construct u ∈ W
1,p
0 (Bη(0)) for all p < N

N−1
and u ∈ Lm(Bη(0)) for all

m < N
N−2

. We will choose η > 0 below

For φ ∈ C∞
0 (Bη(0)) consider

φ2

u
as test function in (PH), then

−

Z

Bη(0)

|∇u|2φ2

u2
dx+ 2

Z

Bη(0)

φ∇φ

u
∇u dx+

Z

Bη(0)

|∇u|qφ2

u
dx ≥ λ

Z

Bη(0)

φ2

|x|2
dx.

Direct computation provides
Z

Bη(0)

|∇u|qφ2

u
dx ≤

q

2
ǫ
2
q

0

Z

Bη(0)

|∇u|2

u2
φ2 dx+

2 − q

2
ǫ
− 2

2−q

0

Z

Bη(0)
u

2(q−1)
2−q φ2 dx

ǫ0 is a positive number to be chosen later.
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Optimality of the results: Hardy Potential.

On the other hand we have

2

Z

Bη(0)

φ∇φ

u
∇u dx ≤ ǫ21

Z

Bη(0)

φ2|∇u|2

u2
dx+ ǫ−2

1

Z

Bη(0)
|∇φ|2 dx.

Hence it follows that fixed ǫ21λ > ΛN and ǫ0 > 0 small enough such that (1 − ǫ21 − q
2
ǫ
2
q

0 ) ≥ 0,

ǫ21λ

Z

Bη(0)

φ2

|x|2
dx ≤ ǫ21

2 − q

2
ǫ
− 2

2−q

0

Z

Bη(0)
u

2(q−1)
2−q φ2 dx+

Z

Bη(0)
|∇φ|2 dx.

Now,
Z

Bη(0)
u

2(q−1)
2−q φ2 dx ≤ S−1

“

Z

Bη(0)
u

N(q−1)
2−q dx

” 2
N

Z

Bη(0)
|∇φ|2 dx.

where S is the classical Sobolev constant. Since q < N
N−1

,
N(q−1)

2−q
< N

N−2
hence we conclude that

Z

Bη(0)
u

N(q−1)
2−q dx→ 0 as η → 0.

Then we can fix η > 0, ǫ0, ǫ1 > 1 such that

ǫ21λ
n

1 + ǫ21
2−q
2
ǫ
− 2

2−q

0 S−1
“

Z

Bη(0)
u

N(q−1)
2−q dx

” 2
N

o−1
≡ λ1 > ΛN .

Therefore we conclude that

λ1

Z

Bη(0)

φ2

|x|2
dx ≤

Z

Bη(0)
|∇φ|2 dx,

a contradiction with Hardy inequality .
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