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6. Bifurcation and Perturbation

Here we deal with perturbed problems, variational in nature, whose solutions
are critical points of a functional

Iε(u) = I0(u) + εG(u)

We assume that there is a smooth d-dimensional manifold Z such that
I ′0(z) = 0, for all z ∈ Z. Z is called the critical manifold of the unperturbed
functional I0.

Let TzZ denote the tangent space to Z at z ∈ Z. Since I ′0(z) = 0 for all
z ∈ Z, differentiating along Z we get

(I ′′0 (z)[v] | φ) = 0, ∀ v ∈ TzZ, ∀φ ∈ E.

This shows that TzZ ⊆ Ker[I ′′0 (z)].

Then Ker[I ′′0 (z)] is not empty and has dimension ≤ d.
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As a consequence, each z ∈ Z is degenerate and we cannot apply the
implicit function theorem to find solutions of I ′ε(u) = 0.

We will assume that Z has the lowest possible degeneracy, namely

(ND) TzZ = Ker[I ′′0 (z)]

We also suppose that I ′′0 (z) is a 0−Fredholm map.

A critical manifold Z satisfying the above conditions will be called
Non-Degenerate Critical Manifold (NDCM).

If we look for critical points of Iε in the form u = z + w, with z ∈ Z and
w ∈ (TzZ)⊥, we find the equation

I ′ε(z + w) = I ′0(z + w) + εG(z + w) = 0

Roughly, we will treat this equation as a bifurcation problem, the trivial
solution being u = z and the bifurcation parameter(s) (ε, z) ∈ R× Z.
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A finite dimensional reduction.

If P :7→ W denotes the orthogonal projection onto W , the equation I ′ε(z+
w) = 0 is equivalent to the system

(S)

{
PI ′ε(z + w) = 0 auxiliary equation;
QI ′ε(z + w) = 0, bifurcation equation.

where Q = IE − P is the conjugate projection of P .

Let F : R× Z ×W → W be defined by setting

F (ε, z, w) = PI ′0(z + w)(z + w) + εPG′(z + w).

F is of class C1 and one has F (0, z, 0) = 0, for every z ∈ Z. Moreover, let-
ting DwF (0, z, 0) denote the partial derivative with respect to w evaluated
at (0, z, 0), one has:

Lemma 1 If Z is a NDCM, then DwF (0, z, 0) is invertible as a map from
W into itself.
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Proof. The map DwF (0, z, 0)W 7→ W is given by

DwF (0, z, 0) : v 7→ PI ′′0 (z)[v], v ∈ W.

Remark that I ′′0 (z) is orthogonal to TzZ. Actually, if TzZ =span{qi},
i = 1, 2, . . . , d, there holds:

(I ′′0 (z)[v] | qi) = (I ′′0 (z)[qi] | v) = 0,

because qi ∈ TzZ.

Hence PI ′′0 (z)[v] = I ′′0 (z)[v] and the equation DwF (0, z, 0)[v] = 0 becomes
I ′′0 (z)[v] = 0.

Thus v ∈ Ker[I ′′0 (z)]∩W and from (ND) it follows that v = 0, namely that
DwF (0, z, 0) is injective. Since I ′′0 is Fredholm, we deduce thatDwF (0, z, 0) :
W → W is invertible.
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Lemma 1 allows us to apply the Implicit Function Theorem to F (ε, z, w) =
0, yielding

Lemma 2 Given any compact subset Zc of Z there exists ε0 > 0 such
that: for all |ε| < ε0, for all z ∈ Zc, the auxiliary equation has a unique
solution w = wε(z) such that:

(i) wε(z) ∈ W = (TzZ)⊥ and is of class C1 with respect to z ∈ Zc and
wε(z) → 0 as |ε| → 0, uniformly with respect to z ∈ Zc, together with
its derivative with respect to z, w′

ε;

(ii) more precisely one has that ‖wε(z)‖ = O(ε) as ε→ 0, for all z ∈ Zc.

We shall now solve the bifurcation equation. In order to do this, let us
define the reduced functional Φε : Z → R by setting

(1) Φε(z) = Iε(z + wε(z)).
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Theorem 3 Let I0, G ∈ C2(E,R) and suppose that I0 has a smooth
critical manifold Z which is non-degenerate, in the sense that (ND) and
(Fr) hold. Given a compact subset Zc of Z, let us assume that Φε has, for
|ε| sufficiently small, a critical point zε ∈ Zc. Then uε = zε + wε(zε) is a
critical point of Iε = I0 + εG.

Proof. (outline) Consider the manifold Zε = {z +wε(z)}. Since zε is a
critical point of Φε, it follows that uε ∈ Zε is a critical point of Iε constrained
on Zε and thus uε satisfies I ′ε(uε) ⊥ Tuε

Zε. Moreover the definition of wε

implies that I ′ε(z + wε(z)) ∈ TzZ. In particular, I ′ε(uε) ∈ Tzε
Z. Since,

for |ε| small, Tuε
Zε and Tzε

Z are close, see (i) in Lemma 2, it follows that
I ′ε(uε) = 0.

In order to use Theorem 3 it is convenient to expand Φε.

Lemma 4 One has:

Φε(z) = c0 + εG(z) + o(ε), where c0 = I0(z).

Proof. Recall that

Φε(z) = I0(z + wε(z)) + εG(z + wε(z)).
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Let us evaluate separately the two terms above. First we have

I0(z + wε(z)) = I0(z) + (I ′0(z) |wε(z)) + o(‖wε(z)‖).

Since I ′0(z) = 0 we get

(2) I0(z + wε(z)) = c0 + o(‖wε(z)‖).

Similarly, one has

G(z + wε(z)) = G(z) + (G′(z) |wε(z)) + o(‖wε(z)‖)
= G(z) +O(‖wε(z)‖).(3)

Putting together (2) and (3) we infer that

(4) Φε(z) = c0 + ε
[
G(z) +O(‖wε(z)‖)

]
+ o(‖wε(z)‖).

Since ‖wε(z)‖ = O(ε), see Lemma 2-(ii), the result follows.
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The preceding lemma, jointly with Theorem 3 yields

Theorem 5 Let I0, G ∈ C2(E,R) and suppose that I0 has a smooth
critical manifold Z which is non-degenerate.
Let Γ := G|Z and let z̄ ∈ Z be either

(i) a strict local maximum or minimum of Γ, or

(ii) z̄ ∈ Z is a critical point of Γ satisfying

(G′) ∃ r > 0 such that the topological degree d(Γ′, Br(z̄), 0) 6= 0.

Then for |ε| small the functional Iε has a critical point uε and if z̄ is isolated,
then uε → z̄ as ε→ 0.

From the point of view of bifurcation, we can say that from z̄ ∈ Z branch
off solutions of I ′ε = 0.
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As a first application of the preceding theorems we are going to prove
the result stated in the previous lecture dealing with the existence of a
bifurcation from the essential spectrum for the problem

(5) ψ′′ + λψ + h(x)|ψ|p−1ψ = 0, lim
|x|→∞

ψ(x) = 0,

where p > 1 and h satisfies

(h.1) ∃ ` > 0 : h− ` ∈ L1(R), and
∫

R(h− `)dx 6= 0.

To frame the problem as a perturbation one, we use the change of variable

ψ(x) = ε−αu(ε x), i.e. u(x) = εαψ(x/ε).

One finds:

−u′′(x) = −εα−2ψ′′(x/ε)

= εα−2 [λψ(x/ε) + h(x/ε)ψp(x/ε)]

= εα−2
[
λε

−α

u(x) + h(x/ε)ε−αpup(x)
]

= λε−2u(x) + h(x/ε)εα−2−αpup(x)
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Hence, choosing λ = −ε2 and α = 2/(1−p) we find the following equation

(6) −u′′(x) + u(x) = h(x/ε)u(x)p, u ∈ W 1,2(R),

Solutions of (6) are the critical points of

Iε(u) = 1
2‖u‖

2 − 1

p + 1

∫
R
h(x/ε)|u|p+1dx

on E = W 1,2(R).

In order to use the abstract frame, we set Iε(u) = I0(u) +G(ε, u) where

I0(u) = 1
2‖u‖

2 − `

p + 1

∫
R
|u|p+1dx,

and

(7) G(ε, u) =

{
− 1

p+1

∫
R [h(x/ε)− `] |u|p+1dx if ε 6= 0;

0 if ε = 0.
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Study of the unperturbed problem.

The unperturbed problem I ′0(u) = 0 is the equation

(8) −u′′(x) + u(x) = `|u(x)|p−1u(x), u ∈ W 1,2(R)

which has a unique even positive solution U(x) such that

U ′(0) = 0, lim
|x|→∞

U(x) = 0.

Then I0 has a one dimensional critical manifold given by

Z = {zξ(x) := U(x + ξ) : ξ ∈ R}.

Moreover, every zξ is a Mountain-Pass critical point of I0.

In order to show that Z is non-degenerate we will make use of the following
lemma.
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Lemma 6 Let y(x) be a solution of

−y′′(x) +Q(x)y(x) = 0,

whereQ(x) is continuous and there exist a,R > 0 such thatQ(x) ≥ a > 0,
for all |x| > R. Then either lim|x|→∞ y(x) = 0 or lim|x|→∞ y(x) = ∞.
Moreover, the solutions y satisfying the first alternative are unique, up to a
constant.

Lemma 7 Z is non-degenerate.

Proof. Let v ∈ Ker[I ′′0 (zξ)], namely a solution of the linearized equation
I ′′0 (zξ)[v] = 0,

(9) −v′′(x) + v(x) = ` p zp−1
ξ (x)v(x), v ∈ W 1,2(R).

A solution of (9) is given by z′ξ(x) = U ′(x+ ξ), spanning the tangent space
Tzξ
Z.

Set Q = 1− ` pzp−1
ξ . Since lim|x|→∞ zξ(x) = 0 then lim|x|→∞Q(x) = 1 and

we can apply Lemma 6 yielding that all the solutions v ∈ W 1,2(R) of (9)
are given by c z′ξ, for some constant c ∈ R.
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This shows that Ker[I ′′0 (zξ)] ⊆ Tzξ
Z and implies that Z is ND.

We now apply the abstract existence results. Actually, here the perturbation
term is not of the form εG(u) but G(ε, u).
However, it is possible to overcome this difficulty, showing that
the map u 7→ G(ε, u) is of class C2 and there holds that G(0, u) = 0,
DuG(0, u) = 0, D2

uG(0, u) = 0.

Moreover, one has:

G(ε, zξ) = − ε

p + 1

∫
R
[h(y)− 1]U p+1(εy + ξ)dy.

By the Dominated Convergence Theorem we infer

lim
|ε|→0

G(ε, zξ)

ε
= − 1

p+1

(∫
R
[h(y)− 1]dy

)
U p+1(ξ) = − 1

p + 1
γ U p+1(ξ),

and this proves that

G(ε, zξ) = −ε 1

p + 1
γ U p+1(ξ) + o(ε)
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as |ε| → 0, uniformly for |ξ| bounded.

Using the abstract results we deduce that the reduced functional is given
by

Φε(ξ) = Iε(zξ + wε(zξ)) = c0 − ε
1

p + 1
γ U p+1(ξ) + o(ε), as ε→ 0.

Then we can apply the abstract existence Theorem with

Γ(ξ) = − 1

p + 1
γ U p+1(ξ).

Γ has a maximum at ξ = 0 and hence, for all |ε| > 0 small, equation (6)
has a solution uε ' zξε

= U(x + ξε), with ξε → 0 .

These uε correspond to a family (λ, ψλ) of solutions to (5) given by

λ = −ε2, ψλ(x) = (−λ)1/(p−1)uε(ε x).

Since λ→ 0−, p > 1 and uε ' U , it follows that ‖ψλ‖∞ → 0 as λ→ 0−.
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This shows that (λ, ψλ) gives rise to a bifurcation (on the left) from λ = 0,
the infimum of the essential spectrum.

Moreover, one has

‖ψλ‖2
L2(R) = ε4/(p−1)

∫
R
u2

ε(εx)dx = (−λ)(5−p)/2(p−1)‖uε‖2
L2(R).

This proves that

lim
λ→0−

‖ψλ‖2
L2(R) =

 0 if 1 < p < 5
const > 0 if p = 5
+∞ if p > 5

and completes the proof of the bifurcation Theorem.
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Other Applications.

The abstract setting applies to many other variational problems, perturba-
tive in nature. We will discuss in the sequel two of them.
A common feature is that the corresponding Euler functionals do not satisfy
the (PS) compactness condition.

1. Equations on Rn. We follow the paper
A.A - J. Garcia Azorero - I. Peral, Adv. Nonlin. Studies,2001

Let us consider the equation

(10) −∆u + u = (1 + εh(x))up, u ∈ W 1,2(Rn),

where 1 < p < (n + 2)/(n− 2).

Here E = W 1,2(Rn), and

Iε(u) = I0(u) + εG(u)
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where

I0(u) =
1

2
‖u‖2 −

∫
|u|p+1, G(u) = − 1

p + 1

∫
h(x)|u|p+1.

It is understood that h ∈ L∞(Rn) in such a way h(x)|u|p+1 ∈ L1(Rn) for
all u ∈ E.

The Critical manifold Z is given by Z = {Uξ(x) = U(x− ξ) : ξ ∈ Rn} '
Rn, where U is the (unique) radial positive function satisfying

−∆U + U = U p.

Since I ′′0 (Uξ)[v] = 0 is equivalent to

−∆v + v = pU p−1
ξ v, v ∈ W 1,2(Rn),

then, to study the Kernel of I ′′0 (Uξ) we have to study the preceding linear
equation.
As in the ODE case, it is possible to show that Z is a NDCM. Actually,

Ker[I ′′0 (Uξ)] = T UξZ(= span{Dxi
Uξ : i = 1, · · · , n})
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Lemma 8 Suppose that h ∈ L∞ holds and that

(h0) lim
|x|→∞

h(x) = 0.

Then
lim
|ξ|→∞

Γ(ξ) = 0.

Proof. Given ρ > 0 we set

Γρ(ξ) :=

∫
|x|<ρ

h(x)U p+1(x− ξ)dx, Γ∗ρ(ξ) =

∫
|x|>ρ

h(x)U p+1(x− ξ)dx,

in such a way that

Γ(ξ) = − 1

p + 1

[
Γρ(ξ) + Γ∗ρ(ξ)

]
.

Since U tends to zero at infinity, it follows immediately that Γρ(ξ) tends to
zero as |ξ| tends to infinity.
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Furthermore, since also h tends to zero at infinity, we have that Γ∗ρ(ξ) =
oρ(1), where oρ(1) tends to zero as ρ tends to infinity. By the arbitrarity of
ρ we obtain immediately the conclusion.

The previous lemma allows us to prove the existence of solutions of (10),
provided Γ(ξ) 6≡ 0. Actually, we can show

Theorem 9 Let h ∈ L∞ satisfy (h0). Moreover, suppose that

(h1)
∫

Rn h(x)U p+1(x) 6= 0;

Then (10) has a positive solution provided |ε| is small enough.

Proof. By Lemma 8, Γ(ξ) tends to zero as |ξ| → ∞.

If (h1) holds then Γ(0) = − 1
p+1

∫
Rn h(x)U p+1(x) 6= 0. Then Γ is not

identically zero and it follows that Γ has a maximum or a minimum on Rn,
and the existence of a solution follows from Theorem 5.

Positivity follows from the fact that the solution is found near Uξ.
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Assumptions (h1) can be eliminated by studying directly the reduced func-
tional

Φε(ξ) = Iε(Uξ + w(ε, ξ)).

One proves that lim|ξ|→∞w(ε, ξ) = 0 (strongly in E) for all |ε| � 1 and
this leads to show that

lim
|ξ|→∞

Φε(ξ)) = 0, (|ε| � 1).

Therefore Φε(ξ) has at least a critical point (a maximum or a minimum).

By Theorem 3 we know that critical points of Φε give rise to solutions of
I ′ε = 0. So we obtain

Theorem 10 Suppose that h ∈ L∞ satisfy (h0).

Then for all |ε| small, problem (10) has a positive solution.
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2. Standing waves of NLS equations.

The second application deals with a singular perturbation problem:

(NLSε)

{
−ε2∆u + V (x)u = up, in Rn

u > 0, u ∈ W 1,2(Rn),

where p > 1 is subcritical and V is a smooth bounded function.

Problem (NLSε) arises in the study of the Nolinear Schrödinger Equation

i~
∂ψ

∂t
= −~2∆ψ + Ṽ (x)ψ − |ψ|p−1ψ in Rn,

where ψ : R×Rn → C is the wave function, Ṽ : Rn → R is the potential
and ~ is the Planck constant.

Looking for standing wave solutions, namely solutions of the form ψ(t, x) =
e−

i
~ωtu(x), the function u is easily seen to satisfy (NLSε), with V = Ṽ −ω

and ε = ~. Since ε = ~ is very small, one is interested is the asymptotic
behavior of solutions in the limit ε→ 0, the so-called semiclassical limit.
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We assume the following conditions on the potential V

(V1) V ∈ C2(Rn), and ‖V ‖C2(Rn) < +∞;

(V2) λ2
0 = infRn V > 0.

We say that a solution vε of (NLSε) concentrates at x0 (as ε→ 0) provided

(11) ∀ δ > 0, ∃ ε0 > 0, R > 0 : vε(x) ≤ δ, ∀ |x−x0| ≥ εR, ε < ε0.

We will show the following typical result.

Theorem 11 Let (V 1) and (V 2) hold, and suppose x0 is a non-degenerate
critical point of V , namely for which V ′′(x0) is non-singular. Then there
exists a solution v̄ε of (NLSε) which concentrates at x0 as ε→ 0.

To simplify the notation (and without losing generality) we will suppose
that x0 = 0 and that V (0) = 1.
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To frame (NLSε) in the abstract setting, we first make the change of
variable x 7→ εx and rewrite equation(NLSε) as

(12)

{
−∆u + V (εx)u = up in Rn

u > 0, u ∈ W 1,2(Rn).

If uε(x) is a solution of (12) then vε(x) := uε(x/ε) solves (NLSε).

We set again E = W 1,2(Rn) and consider the functional Iε ∈ C2(E,R),

(13) Iε(u) =
1

2

∫
Rn

(
|∇u|2 + V (εx)u2

)
− 1

p + 1

∫
Rn

|u|p+1.

Setting

I0(u) =
1

2
‖u‖2 − 1

p + 1

∫
Rn

|u|p+1, ‖u‖2 =

∫
Rn

(
|∇u|2 + u2

)
dx

the functional Iε takes the form
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Iε(u) = I0(u) +
1

2

∫
Rn

(V (εx)− 1)u2dx ≡ I0(u) +G(ε, u).

Obviously, for any fixed u ∈ E, we have G(ε, u) → 0 as ε→ 0 and hence
we can still view Iε as a perturbation of I0.
We define U and Z as before. However, the abstract method requires suit-
able modifications because one cannot apply the Implicit Function Theorem.

We look again for solutions u = Uξ + w, with w ∈ W , and consider the
system {

PI ′ε(Uξ + w) = 0,
QI ′ε(Uξ + w) = 0

which is equivalent to I ′ε(Uξ + w) = 0.

At this point, instead of using the Implicit Function Theorem, we write

PI ′ε(Uξ + w) = PI ′ε(Uξ) + PI ′′ε (Uξ)[w] +R(ξ, w),

where R(ξ, w) = o(‖w‖), uniformly with respect to bounded |ξ|.
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Next, using the non-degeneracy of Z, one can show that PI ′′ε (Uξ) is uni-
formly invertible for ξ belonging to a fixed bounded set of Rn.

Setting Aε,ξ = −(PI ′′ε (Uξ))
−1, the equation PI ′ε(zξ + w) = 0, namely

PI ′ε(Uξ) + PI ′′ε (Uξ)[w] +R(ξ, w) = 0

can be written in the form

w = Aε,ξ (PI ′ε(Uξ) +R(ξ, w)) := Nε,ξ(w).

It is also possible to show that Nε,ξ is a contraction in some ball of W
provided ε is sufficiently small.

This allows us to solve the auxiliary equation finding a solution wε(ξ) which
is of class C1 with respect to ξ. Furthermore, since V ′(0) = 0, one finds
that wε(ξ) = O(ε2), uniformly with respect to ξ in a bounded set.
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At this point we can repeat the expansion of Φε obtaining again

Φε(ξ) = c0 + ε2 Γ(ξ) + o(ε2),

where c0 = I0(U) and

Γ(ξ) = 1
2

∫
Rn

〈V ′′(0)x, x〉U 2(x− ξ)dx.

A straight calculation yields

Γ(ξ) = 1
2

∫
Rn

〈V ′′(0)(y + ξ), (y + ξ)〉U 2(y)dy

= 1
2

∫
Rn

〈V ′′(0)y, y〉U 2(y)dy + 1
2

∫
Rn

〈V ′′(0)ξ, ξ〉U 2(y)dy

= c1 + c2〈V ′′(0)ξ, ξ〉,

where

c1 = 1
2

∫
Rn

〈V ′′(0)y, y〉U 2(y)dy, c2 = 1
2

∫
Rn

U 2(x)dx.
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In other words, up to un-influent positive constants,

Γ(ξ) = 〈V ′′(0)ξ, ξ〉

Then ξ = 0 is a non-degenerate critical point of Γ and therefore, from
the general theory, it follows that for ε � 1, Iε has a critical point uε =
Uξε

+ wε(ξε), with ξε → 0 as ε→ 0.

In conclusion, coming back to the solutions vε of (NLSε) , we find that
this equation has a solution v̄ε(x) ∼ U(x−ξε

ε
) that concentrates at x = 0,

proving Theorem 11.
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