3. A short Review on Critical Point Theory

Let E be a Hilbert space. A functional J is a map from E to \mathbb{R}. Suppose $J \in C^{1}(E, \mathbb{R})$. Then the Frechet derivative $d J(u)$ is a linear continuous map from E to \mathbb{R} and hence we can define, by the Riesz theorem, the gradient $J^{\prime}(u)$ of J at u by setting

$$
\left(J^{\prime}(u) \mid v\right)=d J(u)[v], \quad \forall v \in E .
$$

Example: Ω bounded domain in $\mathbb{R}^{n}, E=W_{0}^{1,2}(\Omega)$ with scalar product $(u \mid v)=\int \nabla u \cdot \nabla v$. Let

$$
J_{1}(u)=\frac{1}{2} \int|\nabla u|^{2}=\frac{1}{2}\|u\|^{2}
$$

Clearly, $d J_{1}(u)[v]=\int \nabla u \cdot \nabla v$. Hence $J_{1}^{\prime}(u)$ is the element $w \in E$ such that $(w \mid v)=d J_{1}(u)[v]$. Then

$$
\int \nabla w \cdot \nabla v=\int \nabla u \cdot \nabla v \Rightarrow w=u
$$

In other words, $J_{1}^{\prime}(u)=u$.

Consider now

$$
\Phi(u)=\int F(u) .
$$

One finds $d \Phi(u)[v]=\int F^{\prime}(u) v$.
The gradient $\Phi^{\prime}(u)$ is the element of $\phi \in E$ such that $(\phi \mid v)=\int F^{\prime}(u) v, \quad \forall v \epsilon$ E. Since $(\phi \mid v)=\int \nabla \phi \cdot \nabla v d x$ we find that ϕ satisfies

$$
\int \nabla \phi \cdot \nabla v=\int F^{\prime}(u) v, \quad \forall v \in E .
$$

Thus ϕ is the weak (and, by regularity) strong solutions of

$$
-\Delta \phi=F^{\prime}(u), x \in \Omega, \quad \phi(x)=0, x \in \partial \Omega
$$

namely

$$
\phi\left(=\Phi^{\prime}(u)\right)=(-\Delta)^{-1} \circ F^{\prime}(u)
$$

For example, if $F(u)=\frac{1}{2} \lambda u^{2} \pm \frac{1}{p+1}|u|^{p+1}$, everything works provided $1<$ $p+1<2^{*}$. Recall that $2^{*}=2 n / n-2$ if $n>2$, otherwise we set $2^{*} 0+\infty$

A critical point of J is a $u \in E$ such that $J^{\prime}(u)=0$.
In our applications critical points are (weak) solutions of differential equations. For example, in the preceding case, the critical points of

$$
J(u)=\frac{1}{2}\|u\|^{2}-\frac{\lambda}{2} \int|u|^{2} \mp \frac{1}{p+1} \int|u|^{p+1}, \quad u \in W_{0}^{1,2}(\Omega)
$$

are solutions of

$$
\left\{\begin{array}{ccc}
-\Delta u & =\lambda u \pm|u|^{p-1} u, & x \in \Omega, \\
u & = & 0,
\end{array}\right.
$$

Existence of critical points

We will focus on two cases:

- Minima
- Mountain-Pass

We will check the abstract results on the model problem
$\left(B V P_{ \pm}\right)$

$$
\left\{\begin{array}{ccc}
-\Delta u & =\lambda u \pm|u|^{p-1} u, & x \in \Omega, \\
u= & 0, & x \in \partial \Omega .
\end{array}\right.
$$

We will see that the results depend on the sign of the nonlinear term.

Minima

Theorem. Suppose that $J \in C^{1}(E, \mathbb{R})$ is:

- coercive, i.e. $\lim _{\|u\| \rightarrow \infty} J(u)=+\infty$;
- w.l.s.c., i.e. $u_{n} \rightharpoonup u \Rightarrow J(u) \leq \liminf J\left(u_{n}\right)$.

Then J (is bounded from below and) has a global minimum z.

This Theorem applies to $(B V P)_{-}$and $p>1$. Precisely:

- If $\lambda \leq \lambda_{1}$ (the first eigenvalue of $-\Delta$ on $W_{0}^{1,2}(\Omega)$), then the minimum is the trivial solution of $(B V P)_{-}$;
- If $\lambda>\lambda_{1}$, then the minimum is the positive solution of $(B V P)_{-}$.

The Mountain-Pass Theorem

This Theorem deals with the existence of critical points of a functional $J \in C^{1}(E, \mathbb{R})$ which satisfies the following two "geometric" assumptions (A):

A1. J has a local strict minimum at, say, $u=0$: there exist $r, \rho>0$ such that $J(u) \geq \rho$ for all $u \in E$ with $\|u\|=r$.
$A 2 . \exists v \in E,\|v\|>r$, such that $J(v) \leq 0=J(0)$.

In addition, one assumes the "compactness" condition $(P S)_{c}$, called Palais-Smale condition at level c

Every sequence u_{n} such that
(a) $J\left(u_{n}\right) \rightarrow c$,
(b) $J^{\prime}\left(u_{n}\right) \rightarrow 0$,
has a converging subsequence.

The sequences satisfying $(a)-(b)$ are called $(P S)_{c}$ sequences.

For example, if $(P S)$ holds and J is bounded from below, then the steepest descent flow, namely the solutions of the Cauchy problem

$$
\left\{\begin{array}{l}
\frac{d}{d t} \sigma=-J^{\prime}(\sigma) \\
\sigma(0)=u
\end{array}\right.
$$

converges to a critical point of J as $t \rightarrow+\infty$. This could be false if (PS) does not hold.

If J is bounded from below and (PS) holds, then J the infimum is attained.

This could be false if (PS) does not hold.

Let $J \in C^{1}(E, \mathbb{R})$ be a functional that satisfies the assumptions (A1A2). Without loss of generality, we can also assume (to simplify notation) that $J(0)=0$.

Consider the class of all paths joining $u=0$ and $u=v$:

$$
\Gamma=\{\gamma \in C([0,1], E): \gamma(0)=0, \gamma(1)=v\}
$$

and set

$$
c=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} J(\gamma(t)) .
$$

Remark: $c \geq \rho>0$

Theorem (Mountain-Pass) If $J \in C^{1}(E, \mathbb{R})$ satisfies (A1-A2) and $(P S)_{c}$ holds, then c is a positive critical level for J. Precisely, there exists $z \in E$ such that $J(z)=c>0$ and $J^{\prime}(z)=0$. In particular $z \neq 0$ and $z \neq v$.

Remarks. (a) J can be unbounded from above and from below.
(b) The M-P critical point is a saddle point: if it is non-degenerate, then its Morse index is 1.
(c) The following example shows that, even on \mathbb{R}^{n}, the geometric assumptions (A1-2) alone, without the (PS) condition, do not suffice for the existence of a M-P critical point.

Let $E=\mathbb{R}^{2}$ and $J(x, y)=x^{2}+(1-x)^{3} y^{2}$. It is easy to see that $(0,0)$ is a strict local minimum and that $J(2,2)=J(0,0)=0$.
-The only critical point of J is $(0,0)$.

- The M-P critical level is $c=1$ and $(P S)_{c}$ does not hold for $c=1$.

The M-P Theorem applies, for example, to $(B V P)_{+}$with $\lambda<\lambda_{1}$. If $1<p<2^{*}-1=\frac{n+2}{n-2}(n>2)$ the functional is

$$
J(u)=\frac{1}{2}\|u\|^{2}-\frac{\lambda}{2} \int u^{2}-\frac{1}{p+1} \int|u|^{p+1}, \quad u \in E=W_{0}^{1,2}(\Omega)
$$

Let us check the assumptions (A1-2):
(A1) The second derivative of $\Phi(u)=\frac{1}{p+1} \int|u|^{p+1}$ is given by $\Phi^{\prime \prime}(u)[v]^{2}=$ $p \int|u|^{p-1} v^{2}$. Since $p>1$ we infer $\Phi^{\prime \prime}(0)[v]^{2}=0$. Then

$$
J^{\prime \prime}(0)[v]^{2}=\|v\|^{2}-\lambda \int v^{2}-\Phi^{\prime \prime}(0)[v]^{2}=\|v\|^{2}-\lambda \int v^{2}
$$

If $\lambda<\lambda_{1}$ there exists $b>0$ such that

$$
J^{\prime \prime}(0)[v]^{2}\|v\|^{2}-\lambda \int u^{2} \geq b\|v\|^{2}
$$

(A2) Fix any $\bar{u} \in E$ with $\|\bar{u}\|=1$, and consider $J(t \bar{u}), t>0$. From

$$
J(t \bar{u})=\frac{1}{2} t^{2}-\frac{\lambda}{2} t^{2} \int \bar{u}^{2}-\frac{t^{p+1}}{p+1} \int|\bar{u}|^{p+1}
$$

it follows that $J(t \bar{u}) \rightarrow-\infty$ as $t \rightarrow+\infty$.

Finally, for the (PS) condition, let u_{n} be a $(P S)_{c}$ sequence.
From $J\left(u_{n}\right) \leq k$ we get

$$
\begin{equation*}
\|u\|^{2} \leq 2 k+2 \Phi\left(u_{n}\right) \tag{*}
\end{equation*}
$$

From $J^{\prime}\left(u_{n}\right) \rightarrow 0$ we infer

$$
\left|\|u\|^{2}-(p+1) \Phi\left(u_{n}\right)\right|=\left|\left(J^{\prime}\left(u_{n}\right) \mid u_{n}\right)\right| \leq\left\|J^{\prime}\left(u_{n}\right)\right\|\left\|u_{n}\right\|=o(1)\left\|u_{n}\right\|
$$

Thus

$$
\Phi\left(u_{n}\right) \leq \frac{1}{p+1}\|u\|^{2}+o(1)\left\|u_{n}\right\|
$$

Substituting in $\left(^{*}\right)$ we get

$$
\|u\|^{2} \leq 2 k+2 \Phi\left(u_{n}\right) \leq 2 k+\frac{2}{p+1}\|u\|^{2}+o(1)\left\|u_{n}\right\|
$$

and thus

$$
\left(1-\frac{2}{p+1}\right)\|u\|^{2} \leq 2 k+o(1)\left\|u_{n}\right\| \Rightarrow\left\|u_{n}\right\| \leq K
$$

Moreover:
(i) Since $\left\|u_{n}\right\| \leq K$, then, up to a subsequence, $u_{n} \rightharpoonup u^{*}$.
(ii) Since the embedding $W_{0}^{1,2}(\Omega)$ in $L^{p+1}(\Omega)$ is compact (because $p+1<$ 2^{*}) (i) implies that $u_{n} \rightarrow u^{*}$ strongly in $L^{p+1}(\Omega)$ and we deduce that

$$
\Phi\left(u_{n}\right) \rightarrow \Phi\left(u^{*}\right)
$$

(iii) Recall that $J^{\prime}\left(u_{n}\right)=u_{n}-(p+1) \Phi\left(u_{n}\right)$. Hence

$$
u_{n}=J^{\prime}\left(u_{n}\right)+(p+1) \Phi\left(u_{n}\right)
$$

Since $J^{\prime}\left(u_{n}\right) \rightarrow 0$, (ii) and (iii) yield

$$
u_{n} \rightarrow(p+1) \Phi\left(u^{*}\right),
$$

proving that $(P S)_{c}$ holds for every c.

The M-P theorem can be extended to cover the case in which $u=0$ is not a minimum but a saddle.

These results are called "linking theorems" and can be applied to $(B V P)_{+}$ in the case that $\lambda>\lambda_{1}$.

4. Bifurcation for Variational Operators

Let E be a Hilbert space and consider the equation

$$
\begin{equation*}
L u+H(u)=\lambda u, \quad u \in E, \tag{1}
\end{equation*}
$$

where $L: E \rightarrow E$ is linear and $H \in C^{1}(E, E)$ is such that $H(0)=0$, $H^{\prime}(0)=0$. Let $(\cdot \mid \cdot)$ denote the scalar product in E.

Let Σ denote the closure of the set of non-trivial solutions $(\lambda, u) \in \mathbb{R} \times E$ of (1).

- $\mu \in \mathbb{R}$ is a bifurcation point of (1) if $(\mu, 0) \in \Sigma$.

We suppose to be in the variational case, namely:
$\left(A_{1}\right) L \in L(E, E)$ is a symmetric Fredholm operator with index zero.
$\left(A_{2}\right)$ There exists a functional $h \in C^{k}(E, \mathbb{R})$, for some $k \geq 3$, such that $H(u)=h^{\prime}(u)$. Moreover $h(0)=h^{\prime}(0)=h^{\prime \prime}(0)=0$.

Let us define $f \in C^{k}(E, \mathbb{R})$ by setting

$$
\begin{equation*}
f(u)=\frac{1}{2} \lambda\|u\|^{2}-\frac{1}{2}(L u \mid u)-h(u), \tag{2}
\end{equation*}
$$

so that $f^{\prime}(u)=\lambda u-L u-H(u)$ and Σ is the closure of the set of the critical points u of f on E such that $u \neq 0$.

Since $f^{\prime}(0)[v]=\lambda v-L v-H^{\prime}(0)[v]=\lambda v-L v-h^{\prime \prime}(0)[v]$, the linearization of (1) at $u=0$ is given by

$$
\lambda v-L v=0 .
$$

Let $\mu \in \mathbb{R}$ be an eigenvalue of finite multiplicity of L and set $Z=\operatorname{Ker}[\mu I-$ $L]$, where I denotes the identity map in E.
Theorem 1 (Krasnoselski) Suppose that $\left(A_{1}\right)$ and $\left(A_{4}\right)$ hold and let μ be an isolated eigenvalue of finite multiplicity of L. Then μ is a bifurcation point of (1).

Other results:

- Marino-Prodi (1968): proof using Morse theory.
- Böhme (1972) who proved that if h is real analytic, then μ is a branching point. An example shows that if h is C^{∞}, μ can be merely a bifurcation point.

We will prove Theorem 1 under some further assumptions.
Suppose that there is an integer $k \geq 3$ such that $D^{j} h(0)=0, \forall j=$ $1, \ldots, k-1$, and $D^{k} h(0) \neq 0$. Let

$$
\alpha_{k}(v)=\frac{1}{k!} D^{k} h(0)[v]^{k}, \quad v \in E .
$$

$\alpha_{k}: Z \rightarrow \mathbb{R}$ is homogeneous of degree k and there results

$$
h(u)=\alpha_{k}(u)+o\left(\|u\|^{k}\right) \quad \text { as }\|u\| \rightarrow 0 .
$$

We also assume that
$\left(A_{3}\right) \exists \tilde{z} \in Z$ such that $\alpha_{k}(\tilde{z}) \neq 0$.
$\left(A_{4}\right) M$ and m have the same sign $(M \geq m>0$ or $m \leq M<0)$.
where
$M:=\max _{\partial B_{Z}} \alpha_{k}, \quad m:=\min _{\partial B_{Z}} \alpha_{k}, \quad B_{Z}=\left\{z \in Z^{\prime \prime}\|z\| \leq 1\right\}$.

Proof

Let W denote the orthogonal complement of Z in $E: E=Z \oplus W$, and let P denote the orthogonal projection on W, parallel to Z. Setting $u=z+w$, $z \in Z, w \in W$ and $\lambda=\mu+\epsilon$, equation (1) becomes

$$
F(\epsilon, z, w):=(\mu I-L) w+\epsilon z+\epsilon w-H(z+w)=0 .
$$

Lemma A. There exists $w=w(\epsilon, z)$ defined in a neighborhood \mathcal{O} of $(0,0)$ in $\mathbb{R} \times Z$ such that $P F(\epsilon, z, w)=0$. Moreover $w \in C^{k}(\mathcal{O}, W)$ and one has that $w(\epsilon, 0) \equiv 0, D_{z}^{j} w(0,0)=0 \forall j=1, \ldots, k-2$. In particular, $\exists a>0$ such that $\|w(\epsilon, z)\| \leq\|z\|$, for all $(\varepsilon, z) \in$ cal O. uniformly for $|\epsilon|$ small.
Proof. One has that $P F(0,0,0)=0$ as well as

$$
P D_{w} F(0,0,0)[v]=\mu v-L v, \quad(v \in W) .
$$

Then $P D_{w} F(0,0,0)$ is injective and hence invertible, because L is Fredholm. Then the result follows from the Implicit Function Theorem.

Let us define $\Phi_{\epsilon}: Z \rightarrow \mathbb{R}$ by setting

$$
\Phi_{\epsilon}(z)=f(z+w(\epsilon, z))
$$

Lemma B. If $z_{\epsilon} \in Z$ is a critical point of Φ_{ϵ} then $u_{\epsilon}=z_{\epsilon}+w\left(\epsilon, z_{\epsilon}\right)$ is a solution of (1) with $\lambda=\mu+\epsilon$. Furthermore, if $z_{\epsilon} \neq 0$ and $\left\|z_{\epsilon}\right\| \rightarrow 0$ as $|\epsilon| \rightarrow 0$, then $u_{\epsilon} \neq 0$ and $\left\|u_{\epsilon}\right\| \rightarrow 0$.

Proof. If $z_{\epsilon} \in Z$ is a critical point of Φ_{ϵ} there results

$$
\left(f^{\prime}\left(u_{\epsilon}\right) \mid \zeta+D_{z} w\left(\epsilon, z_{\epsilon}\right)[\zeta]\right)=0, \quad \forall \zeta \in Z
$$

Recall that $P f^{\prime}(z+w(\epsilon, z))=0$ for all $z \in Z$. In particular, $P f^{\prime}\left(u_{\epsilon}\right)=0$, namely $f^{\prime}\left(u_{\epsilon}\right) \in Z$. Since $D_{z} w\left(\epsilon, z_{\epsilon}\right)[\zeta] \in W$ we infer

$$
\left(f^{\prime}\left(u_{\epsilon}\right) \mid D_{z} w\left(\epsilon, z_{\epsilon}\right)[\zeta]\right)=0, \quad \forall \zeta \in Z
$$

Thus $\left(f^{\prime}\left(u_{\epsilon}\right) \mid \zeta\right)=0, \quad \forall \zeta \in Z$. Using again the fact that $P f^{\prime}\left(u_{\epsilon}\right)=0$ we conclude that $f^{\prime}\left(u_{\epsilon}\right)=0$.

Let $M \geq m>0$ (if $m \leq M<0$, we simply consider $\varepsilon<0$ or $-\Phi_{\varepsilon}$ with $\varepsilon>0$) and let us prove that Φ_{ε} has a Mountain-Pass critical point for $\varepsilon>0$ small.

Let us evaluate $\Phi_{\varepsilon}(z)$. One has (for brevity we write w instead of $w(\epsilon, z)$)

$$
\Phi_{\epsilon}(z)=\frac{\epsilon}{2}\|z\|^{2}+\frac{1}{2}(\mu+\epsilon)\|w\|^{2}-\frac{1}{2}(L w \mid w)-h(z+w) .
$$

Since w satisfies $(\mu I-L) w+\epsilon(z+w)=H(z+w)$ it follows that

$$
(\mu+\epsilon)\|w\|^{2}-(L w \mid w)=(H(z+w) \mid w)
$$

thus

$$
\Phi_{\epsilon}(z)=\frac{\epsilon}{2}\|z\|^{2}+\frac{1}{2}(H(z+w) \mid w)-h(z+w) .
$$

Moreover, for some $s \in(0,1)$

$$
h(z+w)=h(z)+(H(z+s w) \mid w) .
$$

Hence we find
(3) $\Phi_{\epsilon}(z)=\frac{\epsilon}{2}\|z\|^{2}-h(z)+\frac{1}{2}(H(z+w) \mid w)-(H(z+s w) \mid w)$.

Next, let us take $\mu<m /\left(1+2^{k}\right)$.
Since $h^{\prime}(u)=H(u)$ and $D^{j} h(0)=0, \forall j \leq k-1, \exists \rho=\rho_{\mu}>0$ s.t.

$$
\|H(u)\| \leq \mu\|u\|^{k-1}, \quad \forall\|u\|<\rho,
$$

and

$$
h(z)=\alpha_{k}(z)+\beta(z), \quad|\beta(z)| \leq \mu\|z\|^{k}, \forall\|z\|<\rho .
$$

Lemma A implies that for all $r<\rho / 2$ there exists $\varepsilon_{0}>0$ such that

$$
\|w(\varepsilon, z)\| \leq\|z\|, \quad \forall\|z\|<r, \quad \forall \varepsilon<\varepsilon_{0}
$$

and hence, if $\|z\|<r$ and $\varepsilon<\varepsilon_{0}$, one has that

$$
\|z+w(\varepsilon, z)\| \leq 2\|z\|<2 r<\rho
$$

and this yields

$$
\|H(z+w(\varepsilon, z))\| \leq \mu 2^{k-1}\|z\|^{k-1}, \quad \forall\|z\|<r, \quad \forall \varepsilon<\varepsilon_{0} .
$$

Then

$$
\Phi_{\epsilon}(z)=\frac{\epsilon}{2}\|z\|^{2}-h(z)+\frac{1}{2}(H(z+w) \mid w)-(H(z+s w) \mid w)
$$

where
$|(H(z+w) \mid w)| \leq\|H(z+w)\| \times\|w\| \leq \mu 2^{k-1}\|z\|^{k}, \quad \forall\|z\|<r, \quad \forall \varepsilon<\varepsilon_{0}$. and

$$
h(z)=\alpha_{k}(z)+\beta(z), \quad|\beta(z)| \leq \mu\|z\|^{k}, \forall\|z\|<\rho .
$$

In conclusion, we have found that

$$
\Phi_{\epsilon}(z)=\frac{\epsilon}{2}\|z\|^{2}-\alpha_{k}(z)+R(\varepsilon, z)
$$

where $R(\varepsilon, z)=\frac{1}{2}(H(z+w) \mid w)-(H(z+s w) \mid w)+\beta(z)$ satisfies

$$
|R(\varepsilon, z)| \leq \mu 2^{k}\|z\|^{k}+\mu\|z\|^{k}, \quad \forall\|z\|<r, \quad \forall \varepsilon<\varepsilon_{0} .
$$

- From $\Phi_{\varepsilon}(z)>0$ we find for $\|z\|<r$ and $\varepsilon<\varepsilon_{0}$:
$\frac{\epsilon}{2}\|z\|^{2}>\alpha_{k}(z)-R(\varepsilon, z) \geq m\|z\|^{k}-\mu\left(1+2^{k}\right)\|z\|^{k}=\left[m-\mu\left(1+2^{k}\right)\right]\|z\|^{k}$
Since $m>\mu\left(1+2^{k}\right)$ and $k \geq 3$ it follows that the set $\left\{\Phi_{\varepsilon}(z)>0\right\}$ is bounded and contained, for ε small, in the ball $\{z \in Z:\|z\|<\rho\}$.
- Φ_{ε} has a local strict minimum at $z=0$.
- Furthermore, using $\left(A_{3}\right)$ one has (for $\varepsilon>0$ small)

$$
\Phi_{\varepsilon}(t \tilde{z})=\frac{1}{2} t^{2}-t^{k} \alpha(\tilde{z})+R\left(\varepsilon, t^{k}\right) \rightarrow-\infty, \quad(t \rightarrow+\infty)
$$

- Since the set $\left\{\Phi_{\varepsilon}(z)>0\right\}$ is bounded, it follows that (PS) holds.

Applying the Mountain-Pass theorem to Φ_{e} we find a critical point z_{ε}. This completes the proof in the case that $\left(A_{4}\right)$ holds.
$\left(A_{4}\right)$ can be substituted by a different assumption.
Let $\xi \in \partial B_{Z}$, resp. $\eta \in \partial B_{Z}$, be such that $\alpha_{k}(\xi)=M$, resp. $\alpha_{k}(\eta)=m$. We assume
$\left(A_{5}\right) k M$ and $k m$ are not eigenvalues of the matrix $D^{2} \alpha_{k}(\xi)$, resp. $D^{2} \alpha_{k}(\eta)$.
To use $\left(A_{5}\right)$ we consider again the auxiliary functional

$$
\Phi_{\epsilon}(z)=\frac{\epsilon}{2}\|z\|^{2}-\alpha_{k}(z)+R(\varepsilon, z) .
$$

Let

$$
\Gamma_{\epsilon}(z)=\frac{1}{2} \epsilon\|z\|^{2}-\alpha_{k}(z), \quad z \in Z .
$$

Since $\alpha_{k} \not \equiv 0$, either $M:=\max _{T} \alpha_{k}>0$ or $\min _{T} \alpha_{k}<0$. Assume the former: in the other case it suffices to consider $-\varepsilon$ instead of ε.

The functional Γ_{ε} has the Mountain-Pass geometry.
Let $\xi \in T$ be a point where M is achieved. By homogeneity it immediately follows that $\alpha_{k}^{\prime}(\xi)=k \alpha(\xi) \xi=k M \xi$.

Moreover, $p_{\varepsilon}=t_{\varepsilon} \xi$ is a critical point of Γ_{ε} whenever t_{ε} satisfies the equation

$$
t^{k-2}=\frac{\varepsilon}{k M} \quad(\varepsilon>0)
$$

It is easy to check that p_{ε} is the Mountain-Pass critical point of Γ_{ϵ} we were seeking. Let us explicitely point out that one has $p_{\epsilon} \rightarrow 0$ as $\epsilon \rightarrow 0^{+}$.

Lemma C. p_{ϵ} is a non-degenerate mountain-pass critical point of Γ_{ϵ} and there results

$$
\begin{equation*}
i\left(\Gamma_{\epsilon}^{\prime}, p_{\epsilon}\right)=-1 . \tag{4}
\end{equation*}
$$

Proof. Let I_{Z} denote the identity in Z. There results

$$
D^{2} \Gamma_{\epsilon}\left(p_{\epsilon}\right)=\epsilon I_{Z}-D^{2} \alpha_{k}\left(p_{\epsilon}\right) .
$$

Since $p_{\epsilon}=t_{\epsilon} \xi$ one finds

$$
D^{2} \Gamma_{\epsilon}\left(p_{\epsilon}\right)=\epsilon I_{Z}-t_{\epsilon}^{k-2} D^{2} \alpha_{k}(\xi)=\epsilon I_{Z}-\frac{\epsilon}{k M} D^{2} \alpha_{k}(\xi) .
$$

By $\left(A_{5}\right) k M$ is not an eigenvalue of $D^{2} \alpha_{k}(\xi)$. Hence $D^{2} \Gamma_{\epsilon}\left(p_{\epsilon}\right)$ is invertible and p_{ϵ} is a non degenerate critical point of Γ_{ϵ}.

As an non degenerate mountain-pass critical point, it is well known that (4) holds.

- Lemma C
- $\Phi_{\varepsilon}(z)=\Gamma_{\varepsilon}(z)+R(\varepsilon, z)$, and
- the properties of the topological degree
imply that for $\epsilon>0$ sufficiently small one also has

$$
\operatorname{deg}\left(\Phi_{\epsilon}^{\prime}, B\left(p_{\epsilon}, \delta\right), 0\right)=-1, \quad \delta>0 \text { small. }
$$

where $B\left(p_{\epsilon}, \delta\right)$ denote a ball in Z centered in p_{ϵ} with radius δ.
In particular Φ_{ϵ} has a critical point $z_{\epsilon} \in E$ in $B\left(p_{\epsilon}, \delta\right)$.

In fact, if $\left(A_{5}\right)$ holds, we can sharpen Theorem 1.

- If Σ contains a connected set S such that $(\mu, 0) \in S$ and $S \backslash\{(\mu, 0)\} \neq \emptyset$, we will say that μ is a branching point.

Theorem 2 Suppose that $\left(A_{1}, A_{2}, A_{3}\right)$ and $\left(A_{5}\right)$ hold and let μ be an isolated eigenvalue of finite multiplicity of L. Then μ is a branching point of (1).
Assumption $\left(A_{3}\right)$ rules out a counterexample of Böhme where $h \not \equiv 0$ is C^{∞} with all the derivatives at $u=0$ equal to zero and μ is not a branching point.
$\left(A_{5}\right)$ rules out, e.g. α_{k} such that $\alpha_{k}(z) \equiv c\|z\|^{k}$ on Z. If this is violated there are examples showing that μ can be a bifurcation point but not a branching point.

Examples

Consider the bvp

$$
\left\{\begin{align*}
-\lambda \Delta u & =u+G^{\prime}(u), \quad \text { in } \Omega, \tag{5}\\
u & =0, \quad \text { on } \partial \Omega,
\end{align*}\right.
$$

where Ω is a bounded domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega$ and G satisfies, for some integer $k \geq 3$,
$\left(G_{1}\right) G \in C^{k}(\mathbb{R})$,
$\left(G_{2}\right) G(u)=\frac{1}{k} u^{k}+o\left(|u|^{k}\right)$, as $u \rightarrow 0$.
Let $E=H_{0}^{1}(\Omega)$ be the usual Sobolev space endowed with scalar product

$$
(u \mid v)=\int_{\Omega} \nabla u \cdot \nabla v d x
$$

Define L and h by

$$
(L u \mid v)=\int_{\Omega} u(x) v(x) d x, \quad h(u)=\int_{\Omega} G(u(x)) d x
$$

Let us point out that the bifurcating solutions of (5) have norm which is small in E and, by regularity, in $C(\Omega)$. Thus, without loss of generality, we can assume that G is, say, quadratic at infinity so that h is well defined and smooth.

Setting $f(u)=\frac{1}{2} \lambda\|u\|^{2}-\frac{1}{2}(L u \mid u)-h(u)$ we get

$$
f^{\prime}(u)=\lambda u-L u-h^{\prime}(u)
$$

Hence $\left(f^{\prime}(u) \mid v\right)=0$ is equivalent to $\lambda(u \mid v)-(L u \mid v)-\left(h^{\prime}(u) \mid v\right)=0$ for all $v \in E$, namely

$$
\lambda \int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} u(x) v(x) d x+\int_{\Omega} G^{\prime}(u(x)) v(x) d x
$$

Thus critical points of f are weak (and, by regularity, strong) solutions of (5).

Moreover, let μ be an eigenvalue of L with eigenfunction $\phi: L \phi=\mu \phi$. From

$$
(L \phi \mid v)=\mu(\phi \mid v), \quad \forall v \in E
$$

it follows that

$$
\int_{\Omega} \phi v d x=\mu \int_{\Omega} \nabla \phi \cdot \nabla v d x \Rightarrow \phi=-\mu \Delta \phi .
$$

Thus the μ are nothing but the characteristic value of $-\Delta$ on $H_{0}^{1}(\Omega)$.
It is immediate to verify that the assumptions $\left(A_{1}\right)$ and $\left(A_{2}\right)$ hold true.

Let $\operatorname{dim} Z=\operatorname{dim} \operatorname{Ker}[L-\mu I]$ be spanned by φ_{1}, φ_{2}.
Any $z \in Z=\operatorname{Ker}[L-\mu I]$ has the form $z=z_{1} \varphi_{1}+z_{2} \varphi_{2}$. Then we find

$$
\left.\alpha_{k}(z)=\frac{1}{k} \int_{\Omega}\left(z_{1} \varphi_{1}+z_{2} \varphi_{2}\right)\right)^{k} d x
$$

Then $\left(A_{3}\right)$ holds if $\exists\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ such that

$$
\left.\int_{\Omega}\left(z_{1} \varphi_{1}+z_{2} \varphi_{2}\right)\right)^{k} d x \neq 0
$$

In particular, $\left(A_{3}\right)$ is always satisfied if k is even.
If k is odd, say $k=3,\left(A_{3}\right)$ holds provided e.g. at least one of the following integrals

$$
\int_{\Omega} \varphi_{1}^{3}, \quad \int_{\Omega} \varphi_{1}^{2} \varphi_{2}, \quad \int_{\Omega} \varphi_{1} \varphi_{2}^{2}, \quad \int_{\Omega} \varphi_{2}^{3}
$$

is different from zero.

As for $\left(A_{5}\right)$, a straight calculation shows:

1) let $k=3$ and let

$$
\int_{\Omega} \varphi_{1}^{3}=\int_{\Omega} \varphi_{2}^{3}=1, \int_{\Omega} \varphi_{1}^{2} \varphi_{2}=\int_{\Omega} \varphi_{1} \varphi_{2}^{2}=0 .
$$

Then $\left(A_{5}\right)$ holds.
2) let $k=4$ and let

$$
\int_{\Omega} \varphi_{1}^{4}=\int_{\Omega} \varphi_{2}^{4}=1, \int_{\Omega} \varphi_{1}^{2} \varphi_{2}^{2}=a, \int_{\Omega} \varphi_{1}^{3} \varphi_{2}=\int_{\Omega} \varphi_{1} \varphi_{2}^{3}=0 .
$$

Then $\left(A_{5}\right)$ holds for all a but $a=1$.

