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3. A short Review on Critical Point Theory

Let E be a Hilbert space. A functional J is a map from E to R. Suppose
J ∈ C1(E, R). Then the Frechet derivative dJ(u) is a linear continuous
map from E to R and hence we can define, by the Riesz theorem, the
gradient J ′(u) of J at u by setting

(J ′(u) | v) = dJ(u)[v], ∀ v ∈ E.

Example: Ω bounded domain in Rn, E = W 1,2
0 (Ω) with scalar product

(u | v) =
∫
∇u · ∇v. Let

J1(u) =
1

2

∫
|∇u|2 =

1

2
‖u‖2

Clearly, dJ1(u)[v] =
∫
∇u · ∇v. Hence J ′

1(u) is the element w ∈ E such
that (w | v) = dJ1(u)[v]. Then∫

∇w · ∇v =

∫
∇u · ∇v ⇒ w = u.

In other words, J ′
1(u) = u.
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Consider now

Φ(u) =

∫
F (u).

One finds dΦ(u)[v] =
∫

F ′(u)v.

The gradient Φ′(u) is the element of φ ∈ E such that (φ | v) =
∫

F ′(u)v, ∀ v ∈
E. Since (φ | v) =

∫
∇φ · ∇vdx we find that φ satisfies∫
∇φ · ∇v =

∫
F ′(u)v, ∀ v ∈ E.

Thus φ is the weak (and, by regularity) strong solutions of

−∆φ = F ′(u), x ∈ Ω, φ(x) = 0, x ∈ ∂Ω

namely
φ(= Φ′(u)) = (−∆)−1 ◦ F ′(u)
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For example, if F (u) = 1
2λu2 ± 1

p+1|u|
p+1, everything works provided 1 <

p + 1 < 2∗. Recall that 2∗ = 2n/n− 2 if n > 2, otherwise we set 2∗0 +∞

A critical point of J is a u ∈ E such that J ′(u) = 0.

In our applications critical points are (weak) solutions of differential equa-
tions. For example, in the preceding case, the critical points of

J(u) =
1

2
‖u‖2 − λ

2

∫
|u|2 ∓ 1

p + 1

∫
|u|p+1, u ∈ W 1,2

0 (Ω)

are solutions of {
−∆u = λu± |u|p−1u, x ∈ Ω,

u = 0, x ∈ ∂Ω.
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Existence of critical points

We will focus on two cases:

• Minima

• Mountain-Pass

We will check the abstract results on the model problem

(BV P±)

{
−∆u = λu± |u|p−1u, x ∈ Ω,

u = 0, x ∈ ∂Ω.

We will see that the results depend on the sign of the nonlinear term.
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Minima

Theorem. Suppose that J ∈ C1(E, R) is:

– coercive, i.e. lim‖u‖→∞ J(u) = +∞;

– w.l.s.c., i.e. un ⇀ u ⇒ J(u) ≤ lim inf J(un).

Then J (is bounded from below and) has a global minimum z.

This Theorem applies to (BV P )− and p > 1. Precisely:

– If λ ≤ λ1 (the first eigenvalue of −∆ on W 1,2
0 (Ω)), then the mini-

mum is the trivial solution of (BV P )−;

– If λ > λ1, then the minimum is the positive solution of (BV P )−.
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The Mountain-Pass Theorem

This Theorem deals with the existence of critical points of a functional
J ∈ C1(E, R) which satisfies the following two ”geometric” assump-
tions (A):

A1. J has a local strict minimum at, say, u = 0: there exist r, ρ > 0
such that J(u) ≥ ρ for all u ∈ E with ‖u‖ = r.

A2. ∃ v ∈ E, ‖v‖ > r, such that J(v) ≤ 0 = J(0).
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In addition, one assumes the ”compactness” condition (PS)c, called
Palais-Smale condition at level c

Every sequence un such that

(a) J(un) → c,

(b) J ′(un) → 0,

has a converging subsequence.

The sequences satisfying (a)− (b) are called (PS)c sequences.
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For example, if (PS) holds and J is bounded from below, then the
steepest descent flow, namely the solutions of the Cauchy problem


d
dt

σ = −J ′(σ)

σ(0) = u

converges to a critical point of J as t → +∞. This could be false if
(PS) does not hold.

If J is bounded from below and (PS) holds, then J the infimum is
attained.

This could be false if (PS) does not hold.
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Let J ∈ C1(E, R) be a functional that satisfies the assumptions (A1-
A2). Without loss of generality, we can also assume (to simplify nota-
tion) that J(0) = 0.

Consider the class of all paths joining u = 0 and u = v:

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = v}
and set

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)).

Remark: c ≥ ρ > 0

Theorem (Mountain-Pass) If J ∈ C1(E, R) satisfies (A1-A2) and (PS)c

holds, then c is a positive critical level for J . Precisely, there exists
z ∈ E such that J(z) = c > 0 and J ′(z) = 0. In particular z 6= 0 and
z 6= v.
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Remarks. (a) J can be unbounded from above and from below.

(b) The M-P critical point is a saddle point: if it is non-degenerate,
then its Morse index is 1.

(c) The following example shows that, even on Rn, the geometric as-
sumptions (A1-2) alone, without the (PS) condition, do not suffice for
the existence of a M-P critical point.

Let E = R2 and J(x, y) = x2 + (1− x)3y2. It is easy to see that (0, 0)
is a strict local minimum and that J(2, 2) = J(0, 0) = 0.

•The only critical point of J is (0, 0).

•The M-P critical level is c = 1 and (PS)c does not hold for c = 1.
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The M-P Theorem applies, for example, to (BV P )+ with λ < λ1.

If 1 < p < 2∗ − 1 = n+2
n−2 (n > 2) the functional is

J(u) =
1

2
‖u‖2 − λ

2

∫
u2 − 1

p + 1

∫
|u|p+1, u ∈ E = W 1,2

0 (Ω).

Let us check the assumptions (A1-2):

(A1) The second derivative of Φ(u) = 1
p+1

∫
|u|p+1 is given by Φ′′(u)[v]2 =

p
∫
|u|p−1v2. Since p > 1 we infer Φ′′(0)[v]2 = 0. Then

J ′′(0)[v]2 = ‖v‖2 − λ

∫
v2 − Φ′′(0)[v]2 = ‖v‖2 − λ

∫
v2.

If λ < λ1 there exists b > 0 such that

J ′′(0)[v]2‖v‖2 − λ

∫
u2 ≥ b‖v‖2.
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(A2) Fix any u ∈ E with ‖u‖ = 1, and consider J(tu), t > 0. From

J(tu) =
1

2
t2 − λ

2
t2

∫
u2 − tp+1

p + 1

∫
|u|p+1

it follows that J(tu) → −∞ as t → +∞.

J(tu)

tu t u
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Finally, for the (PS) condition, let un be a (PS)c sequence.

From J(un) ≤ k we get

(*) ‖u‖2 ≤ 2k + 2Φ(un)

From J ′(un) → 0 we infer∣∣‖u‖2 − (p + 1)Φ(un)
∣∣ = |(J ′(un) | un)| ≤ ‖J ′(un)‖‖un‖ = o(1)‖un‖.

Thus

Φ(un) ≤
1

p + 1
‖u‖2 + o(1)‖un‖

Substituting in (*) we get

‖u‖2 ≤ 2k + 2Φ(un) ≤ 2k +
2

p + 1
‖u‖2 + o(1)‖un‖

and thus (
1− 2

p + 1

)
‖u‖2 ≤ 2k + o(1)‖un‖ ⇒ ‖un‖ ≤ K.
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Moreover:

(i) Since ‖un‖ ≤ K, then , up to a subsequence, un ⇀ u∗.

(ii) Since the embedding W 1,2
0 (Ω) in Lp+1(Ω) is compact (because p + 1 <

2∗)) (i) implies that un → u∗ strongly in Lp+1(Ω) and we deduce that

Φ(un) → Φ(u∗).

(iii) Recall that J ′(un) = un − (p + 1)Φ(un). Hence

un = J ′(un) + (p + 1)Φ(un)

Since J ′(un) → 0, (ii) and (iii) yield

un → (p + 1)Φ(u∗),

proving that (PS)c holds for every c.
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The M-P theorem can be extended to cover the case in which u = 0 is not
a minimum but a saddle.

These results are called ”linking theorems” and can be applied to (BV P )+
in the case that λ > λ1.
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4. Bifurcation for Variational Operators

Let E be a Hilbert space and consider the equation

(1) Lu + H(u) = λu, u ∈ E,

where L : E → E is linear and H ∈ C1(E, E) is such that H(0) = 0,
H ′(0) = 0. Let (· | ·) denote the scalar product in E.

Let Σ denote the closure of the set of non-trivial solutions (λ, u) ∈ R×E
of (1).

• µ ∈ R is a bifurcation point of (1) if (µ, 0) ∈ Σ.
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We suppose to be in the variational case, namely:

(A1) L ∈ L(E, E) is a symmetric Fredholm operator with index zero.

(A2) There exists a functional h ∈ Ck(E, R), for some k ≥ 3, such that
H(u) = h′(u). Moreover h(0) = h′(0) = h′′(0) = 0.

Let us define f ∈ Ck(E, R) by setting

(2) f (u) =
1

2
λ‖u‖2 − 1

2
(Lu | u)− h(u),

so that f ′(u) = λu − Lu − H(u) and Σ is the closure of the set of the
critical points u of f on E such that u 6= 0.

Since f ′(0)[v] = λv−Lv−H ′(0)[v] = λv−Lv−h′′(0)[v], the linearization
of (1) at u = 0 is given by

λv − Lv = 0.
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Let µ ∈ R be an eigenvalue of finite multiplicity of L and set Z = Ker[µI−
L], where I denotes the identity map in E.

Theorem 1 (Krasnoselski) Suppose that (A1) and (A4) hold and let µ be
an isolated eigenvalue of finite multiplicity of L. Then µ is a bifurcation
point of (1).

Other results:

• Marino-Prodi (1968): proof using Morse theory.

• Böhme (1972) who proved that if h is real analytic, then µ is a branching
point. An example shows that if h is C∞, µ can be merely a bifurcation
point.
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We will prove Theorem 1 under some further assumptions.
Suppose that there is an integer k ≥ 3 such that Djh(0) = 0, ∀ j =
1, . . . , k − 1, and Dkh(0) 6= 0. Let

αk(v) =
1

k!
Dkh(0)[v]k, v ∈ E.

αk : Z → R is homogeneous of degree k and there results

h(u) = αk(u) + o(‖u‖k) as ‖u‖ → 0.

We also assume that

(A3) ∃ z̃ ∈ Z such that αk(z̃) 6= 0.

(A4) M and m have the same sign (M ≥ m > 0 or m ≤ M < 0).

where

M := max∂BZ
αk, m := min∂BZ

αk, BZ = {z ∈ Z”‖z‖ ≤ 1}.
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Proof

Let W denote the orthogonal complement of Z in E: E = Z⊕W , and let
P denote the orthogonal projection on W , parallel to Z. Setting u = z+w,
z ∈ Z, w ∈ W and λ = µ + ε, equation (1) becomes

F (ε, z, w) := (µI − L)w + εz + εw −H(z + w) = 0.

Lemma A. There exists w = w(ε, z) defined in a neighborhood O of (0, 0)
in R × Z such that PF (ε, z, w) = 0. Moreover w ∈ Ck(O, W ) and one
has that w(ε, 0) ≡ 0, Dj

zw(0, 0) = 0 ∀ j = 1, . . . , k − 2. In particular,
∃ a > 0 such that ‖w(ε, z)‖ ≤ ‖z‖, for all (ε, z) ∈ calO. uniformly for |ε|
small.
Proof. One has that PF (0, 0, 0) = 0 as well as

PDwF (0, 0, 0)[v] = µv − Lv, (v ∈ W ).

Then PDwF (0, 0, 0) is injective and hence invertible, because L is Fred-
holm. Then the result follows from the Implicit Function Theorem.
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Let us define Φε : Z → R by setting

Φε(z) = f (z + w(ε, z)).

Lemma B. If zε ∈ Z is a critical point of Φε then uε = zε + w(ε, zε) is a
solution of (1) with λ = µ + ε. Furthermore, if zε 6= 0 and ‖zε‖ → 0 as
|ε| → 0, then uε 6= 0 and ‖uε‖ → 0.

Proof. If zε ∈ Z is a critical point of Φε there results

(f ′(uε) | ζ + Dzw(ε, zε)[ζ ]) = 0, ∀ ζ ∈ Z.

Recall that Pf ′(z + w(ε, z)) = 0 for all z ∈ Z. In particular, Pf ′(uε) = 0,
namely f ′(uε) ∈ Z. Since Dzw(ε, zε)[ζ ] ∈ W we infer

(f ′(uε) | Dzw(ε, zε)[ζ ]) = 0, ∀ ζ ∈ Z.

Thus (f ′(uε) | ζ) = 0, ∀ ζ ∈ Z. Using again the fact that Pf ′(uε) = 0
we conclude that f ′(uε) = 0.
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Let M ≥ m > 0 (if m ≤ M < 0, we simply consider ε < 0 or −Φε

with ε > 0) and let us prove that Φε has a Mountain-Pass critical point for
ε > 0 small.

Let us evaluate Φε(z). One has (for brevity we write w instead of w(ε, z))

Φε(z) =
ε

2
‖z‖2 +

1

2
(µ + ε)‖w‖2 − 1

2
(Lw | w)− h(z + w).

Since w satisfies (µI − L)w + ε(z + w) = H(z + w) it follows that

(µ + ε)‖w‖2 − (Lw | w) = (H(z + w) | w)

thus

Φε(z) =
ε

2
‖z‖2 +

1

2
(H(z + w) | w)− h(z + w).

Moreover, for some s ∈ (0, 1)

h(z + w) = h(z) + (H(z + sw) | w).
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Hence we find

(3) Φε(z) =
ε

2
‖z‖2 − h(z) +

1

2
(H(z + w) | w)− (H(z + sw) | w).

Next, let us take µ < m/(1 + 2k).

Since h′(u) = H(u) and Djh(0) = 0, ∀ j ≤ k − 1, ∃ ρ = ρµ > 0 s.t.

‖H(u)‖ ≤ µ‖u‖k−1, ∀ ‖u‖ < ρ,

and

h(z) = αk(z) + β(z), |β(z)| ≤ µ‖z‖k, ∀ ‖z‖ < ρ.
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Lemma A implies that for all r < ρ/2 there exists ε0 > 0 such that

‖w(ε, z)‖ ≤ ‖z‖, ∀ ‖z‖ < r, ∀ ε < ε0

and hence, if ‖z‖ < r and ε < ε0, one has that

‖z + w(ε, z)‖ ≤ 2‖z‖ < 2r < ρ

and this yields

‖H(z + w(ε, z))‖ ≤ µ2k−1 ‖z‖k−1, ∀ ‖z‖ < r, ∀ ε < ε0.
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Then

Φε(z) =
ε

2
‖z‖2 − h(z) +

1

2
(H(z + w) | w)− (H(z + sw) | w)

where

|(H(z+w) | w)| ≤ ‖H(z+w)‖×‖w‖ ≤ µ2k−1 ‖z‖k, ∀ ‖z‖ < r, ∀ ε < ε0.

and

h(z) = αk(z) + β(z), |β(z)| ≤ µ‖z‖k, ∀ ‖z‖ < ρ.
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In conclusion, we have found that

Φε(z) =
ε

2
‖z‖2 − αk(z) + R(ε, z)

where R(ε, z) = 1
2(H(z + w) | w)− (H(z + sw) | w) + β(z) satisfies

|R(ε, z)| ≤ µ2k ‖z‖k + µ ‖z‖k, ∀ ‖z‖ < r, ∀ ε < ε0.

• From Φε(z) > 0 we find for ‖z‖ < r and ε < ε0 :

ε

2
‖z‖2 > αk(z)−R(ε, z) ≥ m‖z‖k−µ(1+2k)‖z‖k = [m−µ(1+2k)]‖z‖k

Since m > µ(1 + 2k) and k ≥ 3 it follows that the set {Φε(z) > 0} is
bounded and contained, for ε small, in the ball {z ∈ Z : ‖z‖ < ρ}.
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• Φε has a local strict minimum at z = 0.

• Furthermore, using (A3) one has (for ε > 0 small)

Φε(tz̃) = 1
2 t2 − tkα(z̃) + R(ε, tk) → −∞, (t → +∞).

• Since the set {Φε(z) > 0} is bounded, it follows that (PS) holds.

Applying the Mountain-Pass theorem to Φe we find a critical point zε.
This completes the proof in the case that (A4) holds.
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(A4) can be substituted by a different assumption.

Let ξ ∈ ∂BZ, resp. η ∈ ∂BZ, be such that αk(ξ) = M , resp. αk(η) = m.
We assume

(A5) kM and km are not eigenvalues of the matrix D2αk(ξ), resp. D2αk(η).

To use (A5) we consider again the auxiliary functional

Φε(z) =
ε

2
‖z‖2 − αk(z) + R(ε, z).

Let

Γε(z) =
1

2
ε ‖z‖2 − αk(z), z ∈ Z.

Since αk 6≡ 0, either M := maxT αk > 0 or minT αk < 0. Assume the
former: in the other case it suffices to consider −ε instead of ε.
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The functional Γε has the Mountain-Pass geometry.

Let ξ ∈ T be a point where M is achieved. By homogeneity it immediately
follows that α′

k(ξ) = kα(ξ)ξ = kMξ.

Moreover, pε = tεξ is a critical point of Γε whenever tε satisfies the equation

tk−2 =
ε

kM
(ε > 0).

It is easy to check that pε is the Mountain-Pass critical point of Γε we were
seeking. Let us explicitely point out that one has pε → 0 as ε → 0+.
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Lemma C. pε is a non-degenerate mountain-pass critical point of Γε and
there results

(4) i(Γ′ε, pε) = −1.

Proof. Let IZ denote the identity in Z. There results

D2Γε(pε) = εIZ −D2αk(pε).

Since pε = tεξ one finds

D2Γε(pε) = εIZ − tk−2
ε D2αk(ξ) = εIZ −

ε

kM
D2αk(ξ).

By (A5) kM is not an eigenvalue of D2αk(ξ). Hence D2Γε(pε) is invertible
and pε is a non degenerate critical point of Γε.

As an non degenerate mountain-pass critical point, it is well known that (4)
holds.
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• Lemma C

• Φε(z) = Γε(z) + R(ε, z), and

• the properties of the topological degree

imply that for ε > 0 sufficiently small one also has

deg(Φ′
ε, B(pε, δ), 0) = −1, δ > 0 small.

where B(pε, δ) denote a ball in Z centered in pε with radius δ.

In particular Φε has a critical point zε ∈ E in B(pε, δ).
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In fact, if (A5) holds, we can sharpen Theorem 1.

• If Σ contains a connected set S such that (µ, 0) ∈ S and S\{(µ, 0)} 6= ∅,
we will say that µ is a branching point.

Theorem 2 Suppose that (A1, A2, A3) and (A5) hold and let µ be an
isolated eigenvalue of finite multiplicity of L. Then µ is a branching point
of (1).

Assumption (A3) rules out a counterexample of Böhme where h 6≡ 0 is C∞

with all the derivatives at u = 0 equal to zero and µ is not a branching
point.

(A5) rules out, e.g. αk such that αk(z) ≡ c‖z‖k on Z. If this is violated
there are examples showing that µ can be a bifurcation point but not a
branching point.
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Examples

Consider the bvp

(5)

{
−λ ∆u = u + G′(u), in Ω,

u = 0, on ∂Ω,

where Ω is a bounded domain in Rn with smooth boundary ∂Ω and G
satisfies, for some integer k ≥ 3,

(G1) G ∈ Ck(R),

(G2) G(u) = 1
k
uk + o(|u|k), as u → 0.

Let E = H1
0(Ω) be the usual Sobolev space endowed with scalar product

(u | v) =

∫
Ω
∇u · ∇v dx.

Define L and h by

(Lu | v) =

∫
Ω
u(x)v(x) dx, h(u) =

∫
Ω
G(u(x)) dx.
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Let us point out that the bifurcating solutions of (5) have norm which is
small in E and, by regularity, in C(Ω). Thus, without loss of generality, we
can assume that G is, say, quadratic at infinity so that h is well defined and
smooth.

Setting f (u) = 1
2λ‖u‖

2 − 1
2(Lu | u)− h(u) we get

f ′(u) = λu− Lu− h′(u)

Hence (f ′(u)|v) = 0 is equivalent to λ(u|v) − (Lu|v) − (h′(u)|v) = 0 for
all v ∈ E, namely

λ

∫
Ω
∇u · ∇v dx =

∫
Ω
u(x)v(x) dx +

∫
Ω
G′(u(x))v(x) dx

Thus critical points of f are weak (and, by regularity, strong) solutions of
(5).
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Moreover, let µ be an eigenvalue of L with eigenfunction φ: Lφ = µφ.
From

(Lφ | v) = µ(φ | v), ∀v ∈ E

it follows that∫
Ω
φv dx = µ

∫
Ω
∇φ · ∇v dx ⇒ φ = −µ∆φ.

Thus the µ are nothing but the characteristic value of −∆ on H1
0 (Ω).

It is immediate to verify that the assumptions (A1) and (A2) hold true.
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Let dimZ = dimKer[L− µI ] be spanned by ϕ1, ϕ2.
Any z ∈ Z = Ker[L− µI ] has the form z = z1ϕ1 + z2ϕ2. Then we find

αk(z) =
1

k

∫
Ω

(z1ϕ1 + z2ϕ2))
k
dx.

Then (A3) holds if ∃ (z1, z2) ∈ R2 such that∫
Ω

(z1ϕ1 + z2ϕ2))
k
dx 6= 0.

In particular, (A3) is always satisfied if k is even.
If k is odd, say k = 3, (A3) holds provided e.g. at least one of the following
integrals ∫

Ω
ϕ3

1,

∫
Ω
ϕ2

1ϕ2,

∫
Ω
ϕ1ϕ

2
2,

∫
Ω
ϕ3

2

is different from zero.
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As for (A5), a straight calculation shows:

1) let k = 3 and let∫
Ω
ϕ3

1 =

∫
Ω
ϕ3

2 = 1,

∫
Ω
ϕ2

1ϕ2 =

∫
Ω
ϕ1ϕ

2
2 = 0.

Then (A5) holds.

2) let k = 4 and let∫
Ω
ϕ4

1 =

∫
Ω
ϕ4

2 = 1,

∫
Ω
ϕ2

1ϕ
2
2 = a,

∫
Ω
ϕ3

1ϕ2 =

∫
Ω
ϕ1ϕ

3
2 = 0.

Then (A5) holds for all a but a = 1.


