3. A short Review on Critical Point Theory

Let £/ be a Hilbert space. A functional J is a map from E to R. Suppose
J € CY(E,R). Then the Frechet derivative d.J(u) is a linear continuous
map from £ to R and hence we can define, by the Riesz theorem, the
gradient J'(u) of J at u by setting

(J'(u) | v) = dJ(u)v], VvekFE.

Example: 2 bounded domain in R”, E = W,*(Q) with scalar product
(u|v)=[Vu-Vu. Let

1 1
H(w) =5 [ 1Vuf = Sl

Clearly, dJy(u)[v] = [ Vu - Vv. Hence Jj(u) is the element w € E such
that (w | v) = dJy(u)[v]. Then

/Vw-Vv:/Vu-Vvéwzu.

In other words, J;(u) = u.



Consider now

One finds d®(u f F'(u

The gradient ®'(u) is the element of ¢ € E'such that (¢ | v) = [ F'(u)v, Vv ¢
E. Since (¢ | v) = [ V¢ - Vodz we find that ¢ satisfies

/ng-VU:/F’(u)v, VveE.
Thus ¢ is the weak (and, by regularity) strong solutions of
—A¢p = F'(u), © €9, o(x) =0, x € 09

namely

(= ¥'(u)) = (=A)" o F'(u)



For example, if F(u) = sAu® £ ]ﬁ\u\pﬂ, everything works provided 1 <
p+1 < 2" Recall that 2* = 2n/n — 2 if n > 2, otherwise we set 2°0 + oo

A critical point of J is a u € F such that J'(u) = 0.

In our applications critical points are (weak) solutions of differential equa-
tions. For example, in the preceding case, the critical points of

1 A 1
Tw) =gl =5 [ 1l F — [, wewE©)

+1
—Au
U

are solutions of

A\u =+ |ulPru, x e Q,
0, x € 0f).



Existence of critical points

We will focus on two cases:
e Minima

e Mountain-Pass

We will check the abstract results on the model problem

At |ulPru, x e Q,

—Au
(BVP) { e

u

We will see that the results depend on the sign of the nonlinear term.



Minima

Theorem. Suppose that J € C'(E,R) is:

— coercive, i.e. limy, | J(u) = +00;
—w.ls.c.,ie u, =~ u = J(u) <liminf J(u,).

Then J (is bounded from below and) has a global minimum .

This Theorem applies to (BV P)_ and p > 1. Precisely:

—If A < \; (the first eigenvalue of —A on W,*(€2)), then the mini-
mum is the trivial solution of (BV P)_;

— If A > Ay, then the minimum is the positive solution of (BV P)_.



The Mountain-Pass Theorem

This Theorem deals with the existence of critical points of a functional

J € CYE,R) which satisfies the following two " geometric” assump-
tions (A):

Al. J has a local strict minimum at, say, u = 0: there exist r,p > 0
such that J(u) > p for all u € E with ||u|| = 7.

A2. Jv € E, ||v|| > r, such that J(v) < 0= J(0).



In addition, one assumes the "compactness’ condition (P.S),., called
Palais-Smale condition at level ¢

Every sequence u,, such that
(a) J(u.) — ¢,

(b) J'(u,) — 0,

has a converging subsequence.

The sequences satisfying (a) — (b) are called (PS). sequences.



For example, if (PS) holds and J is bounded from below, then the
steepest descent flow, namely the solutions of the Cauchy problem

1o =-J(o)

converges to a critical point of J as ¢ — +o00. This could be false if

(PS) does not hold.

If J is bounded from below and (PS) holds, then J the infimum is

attained.

This could be false if (PS) does not hold.



Let J € C'(E,R) be a functional that satisfies the assumptions (Al-
A2). Without loss of generality, we can also assume (to simplify nota-

tion) that J(0) = 0.
Consider the class of all paths joining © = 0 and u = v:

I'={yeC(0,1],E) : (0) =0, 7(1) = v}

and set
¢ = inf max J(y(t)).

~vel' t€[0,1]
Remark: ¢ > p > 0

Theorem (Mountain-Pass) If J € C'(E, R) satisfies (A1-A2) and (PS),
holds, then c is a positive critical level for J. Precisely, there exists
z € E such that J(z) = ¢ > 0 and J'(2) = 0. In particular z # 0 and

z .



Remarks. (a) J can be unbounded from above and from below.

(b) The M-P critical point is a saddle point: if it is non-degenerate,
then its Morse index is 1.

(c) The following example shows that, even on R", the geometric as-
sumptions (A1-2) alone, without the (PS) condition, do not suffice for
the existence of a M-P critical point.

Let £ =R? and J(z,y) = 2® + (1 — 2)*y>. It is easy to see that (0, 0)
is a strict local minimum and that J(2,2) = J(0,0) = 0.

e The only critical point of J is (0, 0).

eThe M-P critical level is ¢ = 1 and (P.S),. does not hold for ¢ = 1.






The M-P Theorem applies, for example, to (BV P), with A < A;.

If 1 <p<2"—1="22 (n > 2) the functional is

I =3P =5 [ === [lap?, ueB=w%@)

Let us check the assumptions (A1—2):

(A1) The second derivative of ®(u) = ﬁ [ |u|P*t is given by & (u)[v]* =
p [ |ulP~'v?. Since p > 1 we infer ®”(0)[v]* = 0. Then

ﬂmmﬁzHM”—{/*—®%®M“ﬂwW—A/¢?

If A < A\; there exists b > 0 such that

IWWMWW—{/#ZMMR



(A2) Fix any u € E with ||a|| = 1, and consider J(tu), t > 0. From

1 A ¢t
J(w):—t2——t2/ /| lan
2 2 p+1

it follows that J(tu) — —o0 as t — +00.

J(tw)




Finally, for the (PS) condition, let u, be a (P.S). sequence.

From J(u,) < k we get
(%) lull® < 2k + 20 (u,)
From J'(u,) — 0 we infer

[llull® = 0+ DP(ua)| = [(J'(wa) | wa)l < N ()l = o(1) -

Thus

O(uy) < lull® + o(L) ] u

p+1
Substituting in (*) we get

lull® < 2k + 2®(u,) < 2k + lull® + o(1) [

p+1
and thus

2
1 — —— | ||[u]|* < 2k + o(D)]|u,|| = ||u,l| < K.
(1= 27 ) Il < 28+ oWl = sl <



Moreover:
(i) Since ||u,|| < K, then , up to a subsequence, u, — u*.

(ii) Since the embedding W, () in LP**(Q) is compact (because p+ 1 <
2°)) (i) implies that u,, — u* strongly in LP*!(Q) and we deduce that

P(u,) — P(u”).

(iii) Recall that J'(u,) = u, — (p + 1)®(u,). Hence
up, = J'(u,) + (p + 1)2(u,)

Since J'(u,,) — 0, (ii) and (iii) yield
Un = (p+ 1)P(u"),

proving that (PS). holds for every c.



The M-P theorem can be extended to cover the case in which © = 0 is not
a minimum but a saddle.

These results are called " linking theorems” and can be applied to (BV P),
in the case that A > ).



4. Bifurcation for Variational Operators

Let £ be a Hilbert space and consider the equation
(1) Lu+ H(u) =Au, ué€ekFE,

where L : E — E is linear and H € C'(E, E) is such that H(0) = 0,
H'(0) = 0. Let (- | -) denote the scalar product in E.

Let 3 denote the closure of the set of non-trivial solutions (A\,u) € R X E

of (1).
e i1 € R is a bifurcation point of (1) if (u,0) € X.



We suppose to be in the variational case, namely:
(Ay) L € L(E, E) is a symmetric Fredholm operator with index zero.

(Ay) There exists a functional h € C*(E,R), for some k > 3, such that
H(u) = h'(u). Moreover h(0) = h'(0) = h"(0) = 0.

Let us define f € C*(E,R) by setting

) () = Al = 5L [ w) — ()

so that f'(u) = Au — Lu — H(u) and Y is the closure of the set of the
critical points u of f on E such that u # 0.

Since f/(0)[v] = Av—Lv— H'(0)[v] = Av— Lv—h"(0)[v], the linearization
of (1) at u = 0 is given by

A — Lv=0.



Let 1+ € R be an eigenvalue of finite multiplicity of L and set Z = Ker|ul —
L], where I denotes the identity map in E.

Theorem 1 (Krasnoselski) Suppose that (A;) and (A4) hold and let 11 be
an isolated eigenvalue of finite multiplicity of L. Then p is a bifurcation
point of (1).

Other results:
e Marino-Prodi (1968): proof using Morse theory.
e Bohme (1972) who proved that if h is real analytic, then 1 is a branching

point. An example shows that if A is C™°, 1 can be merely a bifurcation
point.



We will prove Theorem 1 under some further assumptions.
Suppose that there is an integer k& > 3 such that D’h(0) = 0, V j =
1,...,k—1,and D*h(0) # 0. Let

() = %th(())[v]k, veE.

ay : Z — R is homogeneous of degree k£ and there results
h(u) = ax(u) + of[Jull*) as [lul] — 0.

We also assume that

(A3) 3 Z € Z such that ay,(2) # 0.

(A;) M and m have the same sign (M > m > 0 orm < M < 0).

where

M = maxyp, o, m :=mingg, ap, Bz={z¢€ Z7"|z| <1}



Proof

Let TV denote the orthogonal complement of Z in E: EE = Z® W, and let
P denote the orthogonal projection on 1V, parallel to Z. Setting u = z+w,
z € Z,weW and A = i + ¢, equation (1) becomes

F(e, z,w) = (ul — L)w+ez+ew — H(z+w) =0.

Lemma A. There exists w = w(e, z) defined in a neighborhood O of (0,0)
in R X Z such that PF(e, z,w) = 0. Moreover w € C*(O,W) and one
has that w(e,0) = 0, D/w(0,0) =0V = 1,...,k — 2. In particular,
Ja > 0 such that ||w(e, 2)|| < ||z]|, for all (¢, 2) € calO. uniformly for |e

small.
PROOF. One has that PF(0,0,0) = 0 as well as

PD,F(0,0,0)[v] = pv — Lv, (veW).

Then PD,F(0,0,0) is injective and hence invertible, because L is Fred-
holm. Then the result follows from the Implicit Function Theorem. =



Let us define . : Z — R by setting
D (2) = f(z + wle, 2)).

Lemma B. If z, € Z is a critical point of ®, then u, = 2z, + w(e, z.) is a
solution of (1) with A\ = p + €. Furthermore, if 2z, # 0 and ||z.|| — 0 as
le| — 0, then u, # 0 and ||u.|| — 0.

PRrROOF. |If z. € Z is a critical point of ®, there results

(f(w) | ¢+ Dw(e,z)[¢]) =0, V(e Z.

Recall that Pf'(z +w(e, z)) = 0 for all z € Z. In particular, Pf'(u.) = 0,
namely f'(u.) € Z. Since D,w(e, z.)[(] € W we infer

(f(u.) | Daw(e, z)[¢]) =0, V(e Z

Thus (f'(u.) | () =0, V(€ Z. Using again the fact that Pf'(u,) = 0
we conclude that f'(u,) =0. =



Let M > m > 0 (if m < M < 0, we simply consider ¢ < 0 or —,
with € > 0) and let us prove that ®. has a Mountain-Pass critical point for
e > 0 small.

Let us evaluate ®.(z). One has (for brevity we write w instead of w(e, 2))

€ 1 1
®(2) = S|l2I* + 5 (1 + Ol — 5

Since w satisfies (ul — L)w + €(z + w) = H(z + w) it follows that

(Lw | w) — h(z +w).

(1t Ollwl® = (Lw | w) = (H(z + w) | w)

thus
2,(2) = Slell* + 5 (H(z + ) | w) — hz + ).

Moreover, for some s € (0, 1)

h(z+w) = h(z) + (H(z + sw) | w).



Hence we find

B ue) = Slell ~ hlz) + H(H(z + w) | w) = (H(z + sw) | w)

Next, let us take 1 < m/(1+ 2F).
Since h'(u) = H(u) and D’h(0) =0, Vj<k—1, 3 p=p,>0st.

HH )| < pllull™, Y Jull < p,

and

h(z) = ay(2) + B(2),  |B(2)] < pllz|l*, Y |lz]| < p.



Lemma A implies that for all r < p/2 there exists €y > 0 such that
lw(e, 2)[| < [lzll, V2l <r, Ve<e
and hence, if ||z|| < r and € < &, one has that
Iz +w(e, 2)|| < 2f|z|| <2r <p
and this yields

| H (2 +w(e, 2)|| < p28|2]]F, Vz|| <r, Ve<e,.



Then
2.(2) = £l = h(z) + 5 (H(z +w) | w) — (H(z + sw) | w

where

(H(z+w) | w)| < [|H(z+w) || x[lw]| < p2"lz]F, V2]l <7, Ve<e

and

h(z) = al2)+Bz), 1B < =l ¥ 12l < p.



In conclusion, we have found that
€
O(2) = 5lIII° — an(z) + R(e, 2)
where R(e, z) = 3(H(z +w) | w) — (H(z + sw) | w) + B(z) satisfies
|R(e, 2)| < p2F||2||F + p||2||", Vzl| <7, Ve <eo.
e From ®_(z) > 0 we find for ||z|| < r and € < ¢ :
€
S > an(z) = R, 2) 2 ml|2]* = p(1+2°)]12]]* = [m—p(1+2°)]]12]"

Since m > u(1 + 2%) and k& > 3 it follows that the set {®.(2) > 0} is
bounded and contained, for ¢ small, in the ball {z € Z : ||z]| < p}.



e O_ has a local strict minimum at z = 0.
e Furthermore, using (A;3) one has (for ¢ > 0 small)

®.(t2) = 1 1* — t"a(Z) + R(e, t*) — —oo0, (t — +00).

e Since the set {®.(z) > 0} is bounded, it follows that (PS) holds.

Applying the Mountain-Pass theorem to ®, we find a critical point z..
This completes the proof in the case that (Ay) holds.



(A4) can be substituted by a different assumption.

Let £ € OBy, resp. n € 0Bz, be such that oy, (&) = M, resp. ay(n) = m.
We assume

(As) kM and km are not eigenvalues of the matrix D?c,(£), resp. D?ay.(n).

To use (Ajs) we consider again the auxiliary functional

b,(2) = gHzHQ — ai(2) + Rle, 2).

Let !
Te(2) =§€HZ||2—O%(Z), z€Z.

Since oy, Z 0, either M := maxra;, > 0 or miny oy < 0. Assume the
former: in the other case it suffices to consider —¢ instead of .



The functional I'; has the Mountain-Pass geometry.

Let £ € T be a point where M is achieved. By homogeneity it immediately
follows that o} (¢) = ka(£)€ = EME.

Moreover, p. = t.£ is a critical point of I'. whenever ¢, satisfies the equation

th? = kiM (e > 0).

It is easy to check that p. is the Mountain-Pass critical point of I', we were
seeking. Let us explicitely point out that one has p. — 0 as ¢ — 0.



Lemma C. p, is a non-degenerate mountain-pass critical point of I'. and
there results

PROOF. Let I; denote the identity in Z. There results
DT (p.) = el; — D*a(p,).

Since p. = t.£ one finds
€

DT.(p.) = el; — t* 2 D%, (&) = el ; — k—MDQak(g).

By (As) kM is not an eigenvalue of D?*«;(€). Hence D?T.(p.) is invertible
and p. is a non degenerate critical point of I'.

As an non degenerate mountain-pass critical point, it is well known that (4)

holds. =



e Lemma C
e &.(2) =T.(2)+ R(e, 2), and
e the properties of the topological degree

imply that for ¢ > 0 sufficiently small one also has
deg(®., B(p.,0),0) = —1, ¢ > 0 small.

where B(p, d) denote a ball in Z centered in p. with radius .

In particular @, has a critical point z. € E in B(p.,6). =



In fact, if (A5) holds, we can sharpen Theorem 1.

e If 3] contains a connected set S such that (i, 0) € S and S\ {(i,0)} # 0,
we will say that p is a branching point.

Theorem 2 Suppose that (Ai, Ay, A3) and (As) hold and let ;1 be an
isolated eigenvalue of finite multiplicity of L. Then i is a branching point

of (1).

Assumption (As) rules out a counterexample of Bohme where i £ 0 is C™
with all the derivatives at © = 0 equal to zero and g is not a branching
point.

(As) rules out, e.g. ;. such that oy (z) = ¢||z||" on Z. If this is violated
there are examples showing that 1 can be a bifurcation point but not a
branching point.



Examples

Consider the bvp

. —AAu = u+G'(u), in,
(5) u = 0, on 0f),

where () is a bounded domain in R"” with smooth boundary 0f) and G
satisfies, for some integer k > 3,

(G1) G € C*R),
(G2) G(u) = zu* + o(|ul*), as u — 0.
Let £ = H;(2) be the usual Sobolev space endowed with scalar product

(u|v):/Vu-Vvdx.
Q

Define L and h by

(Lu | v) = /Qu(a:)v(x) dx, h(u) = /QG(u(x))dx



Let us point out that the bifurcating solutions of (5) have norm which is
small in E and, by regularity, in C'(€2). Thus, without loss of generality, we
can assume that GG is, say, quadratic at infinity so that 5 is well defined and
smooth.

Setting f(u) = sA||ul]* — 3(Lu | u) — h(u) we get

T2

f'(u) = Mu— Lu — h'(u)

Hence (f'(u)|v) = 0 is equivalent to A(u|v) — (Lu|v) — (h'(u)|v) = 0 for
all v € E/, namely

\ /Q V- Vo ds — /Q w(@)o(z) dz + / G (u(@))o(z) dz

0
Thus critical points of f are weak (and, by regularity, strong) solutions of

(5).



Moreover, let 1 be an eigenvalue of L with eigenfunction ¢: Lo = udg.
From

(Lo |v)=pwd|v), YvekE
it follows that

/gbvda:—,u/ng-Vvda: = ¢ = —ulo.
0 0

Thus the 1 are nothing but the characteristic value of —A on Hj ().

It is immediate to verify that the assumptions (A;) and (As) hold true.



Let dimZ = dimKer[L — uI] be spanned by ¢;, ©s.
Any z € Z = Ker|L — pl| has the form z = 2101 + 2z3¢. Then we find

1
Oék(Z) — % /Q (21901 + Zg@g))k dzx.

Then (As) holds if 3 (21, 29) € R* such that

/Q (21901 + Zz@z))k dx # 0.

In particular, (A;3) is always satisfied if k is even.
If k& is odd, say k = 3, (A3) holds provided e.g. at least one of the following

integrals
/901, /9019027 /szw%, /903
Q

is different from zero.



As for (As), a straight calculation shows:

1) let k =3 and let

/¢?=/¢§=1,/¢§¢2=/s@1¢3=0-
Q Q Q Q

Then (Aj5) holds.

2) let k =4 and let

/901 /902—1 /@?903:&,/90?902:/90190320-
Q Q Q

Then (Aj5) holds for all @ but a = 1.



