3. A short Review on Critical Point Theory

Let E be a Hilbert space. A functional J is a map from E to \mathbb{R} . Suppose $J \in C^1(E, \mathbb{R})$. Then the Frechet derivative dJ(u) is a linear continuous map from E to \mathbb{R} and hence we can define, by the Riesz theorem, the gradient J'(u) of J at u by setting

$$(J'(u) \mid v) = dJ(u)[v], \qquad \forall \ v \in E.$$

Example: Ω bounded domain in \mathbb{R}^n , $E = W_0^{1,2}(\Omega)$ with scalar product $\overline{(u \mid v)} = \int \nabla u \cdot \nabla v$. Let

$$J_1(u) = \frac{1}{2} \int |\nabla u|^2 = \frac{1}{2} ||u||^2$$

Clearly, $dJ_1(u)[v] = \int \nabla u \cdot \nabla v$. Hence $J'_1(u)$ is the element $w \in E$ such that $(w \mid v) = dJ_1(u)[v]$. Then

$$\int \nabla w \cdot \nabla v = \int \nabla u \cdot \nabla v \Rightarrow w = u.$$

In other words, $J_1'(u) = u$.

Consider now

$$\Phi(u) = \int F(u).$$

One finds $d\Phi(u)[v] = \int F'(u)v$.

The gradient $\Phi'(u)$ is the element of $\phi \in E$ such that $(\phi \mid v) = \int F'(u)v$, $\forall v \in E$. Since $(\phi \mid v) = \int \nabla \phi \cdot \nabla v dx$ we find that ϕ satisfies

$$\int \nabla \phi \cdot \nabla v = \int F'(u)v, \quad \forall v \in E.$$

Thus ϕ is the weak (and, by regularity) strong solutions of

$$-\Delta \phi = F'(u), \ x \in \Omega, \qquad \phi(x) = 0, \ x \in \partial \Omega$$

namely

$$\phi(=\Phi'(u))=(-\Delta)^{-1}\circ F'(u)$$

For example, if $F(u) = \frac{1}{2}\lambda u^2 \pm \frac{1}{p+1}|u|^{p+1}$, everything works provided $1 < p+1 < 2^*$. Recall that $2^* = 2n/n - 2$ if n > 2, otherwise we set $2^*0 + \infty$

A critical point of J is a $u \in E$ such that J'(u) = 0.

In our applications critical points are (weak) solutions of differential equations. For example, in the preceding case, the critical points of

$$J(u) = \frac{1}{2} \|u\|^2 - \frac{\lambda}{2} \int |u|^2 \mp \frac{1}{p+1} \int |u|^{p+1}, \quad u \in W_0^{1,2}(\Omega)$$

are solutions of

$$\begin{cases} -\Delta u = \lambda u \pm |u|^{p-1}u, \ x \in \Omega, \\ u = 0, \qquad x \in \partial \Omega \end{cases}$$

Existence of critical points

We will focus on two cases:

- Minima
- Mountain-Pass

We will check the abstract results on the model problem

$$(BVP_{\pm}) \qquad \begin{cases} -\Delta u = \lambda u \pm |u|^{p-1}u, \ x \in \Omega, \\ u = 0, \qquad x \in \partial\Omega. \end{cases}$$

We will see that the results depend on the sign of the nonlinear term.

Minima

Theorem. Suppose that $J \in C^1(E, \mathbb{R})$ is:

- coercive, i.e. $\lim_{\|u\|\to\infty} J(u) = +\infty$; - w.l.s.c., i.e. $u_n \rightharpoonup u \Rightarrow J(u) \leq \liminf J(u_n)$.

Then J (is bounded from below and) has a global minimum z.

This Theorem applies to $(BVP)_{-}$ and p > 1. Precisely:

- If $\lambda \leq \lambda_1$ (the first eigenvalue of $-\Delta$ on $W_0^{1,2}(\Omega)$), then the minimum is the trivial solution of $(BVP)_-$;
- If $\lambda > \lambda_1$, then the minimum is the positive solution of $(BVP)_{-}$.

The Mountain-Pass Theorem

This Theorem deals with the existence of critical points of a functional $J \in C^1(E, \mathbb{R})$ which satisfies the following two "geometric" assumptions (A):

A1. J has a local strict minimum at, say, u = 0: there exist $r, \rho > 0$ such that $J(u) \ge \rho$ for all $u \in E$ with ||u|| = r.

A2. $\exists v \in E, ||v|| > r$, such that $J(v) \le 0 = J(0)$.

🔍 🖲 First 🔍 Prev 🔍 Next 🔍 Last 🔍 Go Back 🔍 Full Screen 🔍 Close 🔍 Quit

In addition, one assumes the "compactness" condition $(PS)_{c}\text{,}$ called Palais-Smale condition at level c

Every sequence u_n such that

 $(a) J(u_n) \to c,$

 $(b) \ J'(u_n)
ightarrow 0$,

has a converging subsequence.

The sequences satisfying (a) - (b) are called $(PS)_c$ sequences.

For example, if $\left(PS\right)$ holds and J is bounded from below, then the steepest descent flow, namely the solutions of the Cauchy problem

$$\begin{cases} \frac{d}{dt}\sigma &= -J'(\sigma) \\ \sigma(0) &= u \end{cases}$$

converges to a critical point of J as $t \to +\infty$. This could be false if (PS) does not hold.

If J is bounded from below and (PS) holds, then J the infimum is attained.

This could be false if (PS) does not hold.

Let $J \in C^1(E, \mathbb{R})$ be a functional that satisfies the assumptions (A1-A2). Without loss of generality, we can also assume (to simplify notation) that J(0) = 0.

Consider the class of all paths joining u = 0 and u = v:

$$\Gamma = \{ \gamma \in C([0,1], E) : \gamma(0) = 0, \ \gamma(1) = v \}$$

and set

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} J(\gamma(t)).$$

Remark: $c \ge \rho > 0$

Theorem (Mountain-Pass) If $J \in C^1(E, \mathbb{R})$ satisfies (A1-A2) and $(PS)_c$ holds, then c is a positive critical level for J. Precisely, there exists $z \in E$ such that J(z) = c > 0 and J'(z) = 0. In particular $z \neq 0$ and $z \neq v$.

Remarks. (a) J can be unbounded from above and from below.

(b) The M-P critical point is a saddle point: if it is non-degenerate, then its Morse index is 1.

(c) The following example shows that, even on \mathbb{R}^n , the geometric assumptions (A1-2) alone, without the (PS) condition, do not suffice for the existence of a M-P critical point.

Let $E = \mathbb{R}^2$ and $J(x, y) = x^2 + (1 - x)^3 y^2$. It is easy to see that (0, 0) is a strict local minimum and that J(2, 2) = J(0, 0) = 0.

• The only critical point of J is (0,0).

• The M-P critical level is c = 1 and $(PS)_c$ does not hold for c = 1.

The M-P Theorem applies, for example, to $(BVP)_+$ with $\lambda < \lambda_1$.

If
$$1 2)$$
 the functional is
$$J(u) = \frac{1}{2} \|u\|^2 - \frac{\lambda}{2} \int u^2 - \frac{1}{p+1} \int |u|^{p+1}, \qquad u \in E = W_0^{1,2}(\Omega).$$

Let us check the assumptions (A1-2):

(A1) The second derivative of $\Phi(u) = \frac{1}{p+1} \int |u|^{p+1}$ is given by $\Phi''(u)[v]^2 = p \int |u|^{p-1}v^2$. Since p > 1 we infer $\Phi''(0)[v]^2 = 0$. Then

$$J''(0)[v]^{2} = ||v||^{2} - \lambda \int v^{2} - \Phi''(0)[v]^{2} = ||v||^{2} - \lambda \int v^{2}.$$

If $\lambda < \lambda_1$ there exists b > 0 such that

$$J''(0)[v]^2 ||v||^2 - \lambda \int u^2 \ge b ||v||^2$$

(A2) Fix any $\overline{u} \in E$ with $\|\overline{u}\| = 1$, and consider $J(t\overline{u})$, t > 0. From

$$J(t\overline{u}) = \frac{1}{2}t^2 - \frac{\lambda}{2}t^2 \int \overline{u}^2 - \frac{t^{p+1}}{p+1} \int |\overline{u}|^{p+1}$$

it follows that $J(t\overline{u}) \to -\infty$ as $t \to +\infty$.

Finally, for the (PS) condition, let u_n be a $(PS)_c$ sequence.

From $J(u_n) \leq k$ we get (*) $\|u\|^2 \leq 2k + 2\Phi(u_n)$ From $J'(u_n) \to 0$ we infer $\|\|u\|^2 - (p+1)\Phi(u_n)\| = |(J'(u_n) | | u_n)| \leq \|J'(u_n)\| \|u_n\| = o(1)\|u_n\|.$ Thus

$$\Phi(u_n) \le \frac{1}{p+1} \|u\|^2 + o(1) \|u_n\|$$

Substituting in (*) we get

$$||u||^{2} \leq 2k + 2\Phi(u_{n}) \leq 2k + \frac{2}{p+1}||u||^{2} + o(1)||u_{n}||$$

and thus

$$\left(1 - \frac{2}{p+1}\right) \|u\|^2 \le 2k + o(1)\|u_n\| \Rightarrow \|u_n\| \le K.$$

Moreover:

(i) Since $||u_n|| \leq K$, then , up to a subsequence, $u_n \rightharpoonup u^*$.

(ii) Since the embedding $W_0^{1,2}(\Omega)$ in $L^{p+1}(\Omega)$ is compact (because $p+1 < 2^*$)) (i) implies that $u_n \to u^*$ strongly in $L^{p+1}(\Omega)$ and we deduce that

$$\Phi(u_n) \to \Phi(u^*).$$

(iii) Recall that
$$J'(u_n) = u_n - (p+1)\Phi(u_n)$$
. Hence
 $u_n = J'(u_n) + (p+1)\Phi(u_n)$

Since $J'(u_n) \rightarrow 0$, (ii) and (iii) yield

$$u_n \to (p+1)\Phi(u^*),$$

proving that $(PS)_c$ holds for every c.

The M-P theorem can be extended to cover the case in which u = 0 is not a minimum but a saddle.

These results are called "linking theorems" and can be applied to $(BVP)_+$ in the case that $\lambda > \lambda_1$.

🗢 First 🔍 Prev 🔍 Next 🔍 Last 🔍 Go Back 🔍 Full Screen 🔍 Close 🔍 Quit

4. Bifurcation for Variational Operators

Let E be a Hilbert space and consider the equation

(1)
$$Lu + H(u) = \lambda u, \quad u \in E,$$

where $L: E \to E$ is linear and $H \in C^1(E, E)$ is such that H(0) = 0, H'(0) = 0. Let $(\cdot | \cdot)$ denote the scalar product in E.

Let Σ denote the closure of the set of non-trivial solutions $(\lambda, u) \in \mathbb{R} \times E$ of (1).

• $\mu \in \mathbb{R}$ is a bifurcation point of (1) if $(\mu, 0) \in \Sigma$.

🔎 First 🔍 Prev 🔍 Next 🔍 Last 🔍 Go Back 🔍 Full Screen 🔍 Close 🔍 Quit

We suppose to be in the variational case, namely:

 $\begin{array}{l} (A_1) \ L \in L(E,E) \text{ is a symmetric Fredholm operator with index zero.} \\ (A_2) \ \text{There exists a functional} \ h \in C^k(E,\mathbb{R}) \text{, for some } k \geq 3 \text{, such that} \\ H(u) = h'(u). \ \text{Moreover} \ h(0) = h'(0) = h''(0) = 0. \end{array}$

Let us define $f \in C^k(E, \mathbb{R})$ by setting

(2)
$$f(u) = \frac{1}{2}\lambda ||u||^2 - \frac{1}{2}(Lu \mid u) - h(u),$$

so that $f'(u) = \lambda u - Lu - H(u)$ and Σ is the closure of the set of the critical points u of f on E such that $u \neq 0$.

Since $f'(0)[v] = \lambda v - Lv - H'(0)[v] = \lambda v - Lv - h''(0)[v]$, the linearization of (1) at u = 0 is given by

$$\lambda v - Lv = 0.$$

Let $\mu \in \mathbb{R}$ be an eigenvalue of finite multiplicity of L and set $Z = \text{Ker}[\mu I - L]$, where I denotes the identity map in E.

Theorem 1 (Krasnoselski) Suppose that (A_1) and (A_4) hold and let μ be an isolated eigenvalue of finite multiplicity of L. Then μ is a bifurcation point of (1).

Other results:

• Marino-Prodi (1968): proof using Morse theory.

• Böhme (1972) who proved that if h is real analytic, then μ is a branching point. An example shows that if h is C^{∞} , μ can be merely a bifurcation point.

We will prove Theorem 1 under some further assumptions. Suppose that there is an integer $k \geq 3$ such that $D^j h(0) = 0$, $\forall j = 1, \ldots, k-1$, and $D^k h(0) \neq 0$. Let

$$\alpha_k(v) = \frac{1}{k!} D^k h(0)[v]^k, \qquad v \in E.$$

 $\alpha_k: Z \to \mathbb{R}$ is homogeneous of degree k and there results

$$h(u) = \alpha_k(u) + o(||u||^k) \text{ as } ||u|| \to 0.$$

We also assume that

 $\begin{array}{l} (A_3) \exists \hspace{0.1cm} \tilde{z} \in Z \hspace{0.1cm} \text{such that} \hspace{0.1cm} \alpha_k(\tilde{z}) \neq 0. \\ (A_4) \hspace{0.1cm} M \hspace{0.1cm} \text{and} \hspace{0.1cm} m \hspace{0.1cm} \text{have the same sign} \hspace{0.1cm} \big(M \geq m > 0 \hspace{0.1cm} \text{or} \hspace{0.1cm} m \leq M < 0 \big). \\ \text{where} \end{array}$

 $M := \max_{\partial B_Z} \alpha_k, \quad m := \min_{\partial B_Z} \alpha_k, \quad B_Z = \{ z \in Z^* ||z|| \le 1 \}.$

Proof

Let W denote the orthogonal complement of Z in $E: E = Z \oplus W$, and let P denote the orthogonal projection on W, parallel to Z. Setting u = z + w, $z \in Z$, $w \in W$ and $\lambda = \mu + \epsilon$, equation (1) becomes

$$F(\epsilon, z, w) := (\mu I - L)w + \epsilon z + \epsilon w - H(z + w) = 0.$$

Lemma A. There exists $w = w(\epsilon, z)$ defined in a neighborhood \mathcal{O} of (0, 0)in $\mathbb{R} \times Z$ such that $PF(\epsilon, z, w) = 0$. Moreover $w \in C^k(\mathcal{O}, W)$ and one has that $w(\epsilon, 0) \equiv 0$, $D_z^j w(0, 0) = 0 \forall j = 1, \ldots, k - 2$. In particular, $\exists a > 0$ such that $||w(\epsilon, z)|| \leq ||z||$, for all $(\varepsilon, z) \in calO$. uniformly for $|\epsilon|$ small.

PROOF. One has that PF(0,0,0) = 0 as well as

$$PD_wF(0,0,0)[v] = \mu v - Lv, \quad (v \in W).$$

Then $PD_wF(0,0,0)$ is injective and hence invertible, because L is Fredholm. Then the result follows from the Implicit Function Theorem.

Let us define $\Phi_{\epsilon}: Z \to \mathbb{R}$ by setting

$$\Phi_{\epsilon}(z) = f(z + w(\epsilon, z)).$$

Lemma B. If $z_{\epsilon} \in Z$ is a critical point of Φ_{ϵ} then $u_{\epsilon} = z_{\epsilon} + w(\epsilon, z_{\epsilon})$ is a solution of (1) with $\lambda = \mu + \epsilon$. Furthermore, if $z_{\epsilon} \neq 0$ and $||z_{\epsilon}|| \rightarrow 0$ as $|\epsilon| \rightarrow 0$, then $u_{\epsilon} \neq 0$ and $||u_{\epsilon}|| \rightarrow 0$.

PROOF. If $z_{\epsilon} \in Z$ is a critical point of Φ_{ϵ} there results

$$(f'(u_{\epsilon}) \mid \zeta + D_z w(\epsilon, z_{\epsilon})[\zeta]) = 0, \quad \forall \zeta \in Z.$$

Recall that $Pf'(z + w(\epsilon, z)) = 0$ for all $z \in Z$. In particular, $Pf'(u_{\epsilon}) = 0$, namely $f'(u_{\epsilon}) \in Z$. Since $D_z w(\epsilon, z_{\epsilon})[\zeta] \in W$ we infer

$$(f'(u_{\epsilon}) \mid D_z w(\epsilon, z_{\epsilon})[\zeta]) = 0, \quad \forall \zeta \in Z.$$

Thus $(f'(u_{\epsilon}) \mid \zeta) = 0$, $\forall \zeta \in Z$. Using again the fact that $Pf'(u_{\epsilon}) = 0$ we conclude that $f'(u_{\epsilon}) = 0$.

Let $M \ge m > 0$ (if $m \le M < 0$, we simply consider $\varepsilon < 0$ or $-\Phi_{\varepsilon}$ with $\varepsilon > 0$) and let us prove that Φ_{ε} has a Mountain-Pass critical point for $\varepsilon > 0$ small.

Let us evaluate $\Phi_{\varepsilon}(z)$. One has (for brevity we write w instead of $w(\epsilon,z)$)

$$\Phi_{\epsilon}(z) = \frac{\epsilon}{2} \|z\|^2 + \frac{1}{2}(\mu + \epsilon) \|w\|^2 - \frac{1}{2}(Lw \mid w) - h(z + w).$$

Since w satisfies $(\mu I-L)w+\epsilon(z+w)=H(z+w)$ it follows that

$$(\mu + \epsilon) \|w\|^2 - (Lw \mid w) = (H(z + w) \mid w)$$

thus

$$\Phi_{\epsilon}(z) = \frac{\epsilon}{2} \|z\|^2 + \frac{1}{2} (H(z+w) \mid w) - h(z+w).$$

Moreover, for some $s \in (0, 1)$

$$h(z+w)=h(z)+(H(z+sw)\mid w).$$

Hence we find

(3)
$$\Phi_{\epsilon}(z) = \frac{\epsilon}{2} \|z\|^2 - h(z) + \frac{1}{2} (H(z+w) \mid w) - (H(z+sw) \mid w).$$

Next, let us take $\mu < m/(1+2^k)$.

Since h'(u) = H(u) and $D^{j}h(0) = 0$, $\forall j \le k - 1$, $\exists \rho = \rho_{\mu} > 0$ s.t. $\|H(u)\| \le \mu \|u\|^{k-1}$, $\forall \|u\| < \rho$,

and

 $h(z) = \alpha_k(z) + \beta(z), \qquad |\beta(z)| \le \mu ||z||^k, \ \forall \ ||z|| < \rho.$

Lemma A implies that for all $r < \rho/2$ there exists $\varepsilon_0 > 0$ such that

 $||w(\varepsilon, z)|| \le ||z||, \qquad \forall ||z|| < r, \ \forall \varepsilon < \varepsilon_0$

and hence, if $\|z\| < r$ and $\varepsilon < \varepsilon_0$, one has that

$$||z+w(\varepsilon,z)|| \le 2||z|| < 2r < \rho$$

and this yields

$$\|H(z+w(\varepsilon,z))\| \leq \mu 2^{k-1} \, \|z\|^{k-1}, \qquad \forall \, \|z\| < r, \ \forall \, \varepsilon < \varepsilon_0.$$

🗉 First 🔍 Prev 🔍 Next 🔍 Last 🔍 Go Back 🔍 Full Screen 🔍 Close 🔍 Quiv

Then

$$\Phi_{\epsilon}(z) = \frac{\epsilon}{2} \|z\|^2 - h(z) + \frac{1}{2} (H(z+w) \mid w) - (H(z+sw) \mid w)$$
 where

$$\begin{split} |(H(z+w)\mid w)| &\leq \|H(z+w)\|\times\|w\| \leq \mu 2^{k-1}\,\|z\|^k, \qquad \forall \;\|z\| < r, \;\; \forall \; \varepsilon < \varepsilon_0. \end{split}$$
 and

$$h(z) = \alpha_k(z) + \beta(z), \qquad |\beta(z)| \le \mu ||z||^k, \ \forall \ ||z|| < \rho.$$

In conclusion, we have found that

$$\Phi_{\epsilon}(z) = \frac{\epsilon}{2} ||z||^2 - \alpha_k(z) + R(\varepsilon, z)$$

where $R(\varepsilon, z) = \frac{1}{2}(H(z+w) \mid w) - (H(z+sw) \mid w) + \beta(z)$ satisfies

$$|R(\varepsilon, z)| \le \mu 2^k \, \|z\|^k + \mu \, \|z\|^k, \qquad \forall \, \|z\| < r, \ \forall \, \varepsilon < \varepsilon_0.$$

• From $\Phi_{\varepsilon}(z) > 0$ we find for ||z|| < r and $\varepsilon < \varepsilon_0$:

$$\frac{\epsilon}{2} \|z\|^2 > \alpha_k(z) - R(\varepsilon, z) \ge m \|z\|^k - \mu(1+2^k) \|z\|^k = [m - \mu(1+2^k)] \|z\|^k$$

Since $m > \mu(1+2^k)$ and $k \ge 3$ it follows that the set $\{\Phi_{\varepsilon}(z) > 0\}$ is bounded and contained, for ε small, in the ball $\{z \in Z : ||z|| < \rho\}$.

- Φ_{ε} has a local strict minimum at z = 0.
- Furthermore, using (A_3) one has (for $\varepsilon > 0$ small)

$$\Phi_{\varepsilon}(t\tilde{z}) = \frac{1}{2}t^2 - t^k\alpha(\tilde{z}) + R(\varepsilon, t^k) \to -\infty, \qquad (t \to +\infty).$$

• Since the set $\{\Phi_{\varepsilon}(z) > 0\}$ is bounded, it follows that (PS) holds.

Applying the Mountain-Pass theorem to Φ_e we find a critical point z_{ε} . This completes the proof in the case that (A_4) holds.

🗢 First 🔍 Prev 🔍 Next 🔍 Last 🔍 Go Back 🔍 Full Screen 🔍 Close 🔍 Quit

 (A_4) can be substituted by a different assumption.

Let $\xi \in \partial B_Z$, resp. $\eta \in \partial B_Z$, be such that $\alpha_k(\xi) = M$, resp. $\alpha_k(\eta) = m$. We assume

 $(A_5) \ kM$ and km are not eigenvalues of the matrix $D^2 \alpha_k(\xi)$, resp. $D^2 \alpha_k(\eta)$.

To use (A_5) we consider again the auxiliary functional

$$\Phi_{\epsilon}(z) = \frac{\epsilon}{2} \|z\|^2 - \alpha_k(z) + R(\varepsilon, z).$$

Let

$$\Gamma_{\epsilon}(z) = \frac{1}{2} \epsilon ||z||^2 - \alpha_k(z), \qquad z \in \mathbb{Z}.$$

Since $\alpha_k \not\equiv 0$, either $M := \max_T \alpha_k > 0$ or $\min_T \alpha_k < 0$. Assume the former: in the other case it suffices to consider $-\varepsilon$ instead of ε .

The functional Γ_{ε} has the Mountain-Pass geometry.

Let $\xi \in T$ be a point where M is achieved. By homogeneity it immediately follows that $\alpha'_k(\xi) = k\alpha(\xi)\xi = kM\xi$.

Moreover, $p_{\varepsilon} = t_{\varepsilon}\xi$ is a critical point of Γ_{ε} whenever t_{ε} satisfies the equation

$$t^{k-2} = \frac{\varepsilon}{kM} \qquad (\varepsilon > 0).$$

It is easy to check that p_{ε} is the Mountain-Pass critical point of Γ_{ϵ} we were seeking. Let us explicitly point out that one has $p_{\epsilon} \to 0$ as $\epsilon \to 0^+$.

Lemma C. p_ϵ is a non-degenerate mountain-pass critical point of Γ_ϵ and there results

(4)
$$i(\Gamma'_{\epsilon}, p_{\epsilon}) = -1.$$

PROOF. Let I_Z denote the identity in Z. There results

$$D^2\Gamma_{\epsilon}(p_{\epsilon}) = \epsilon I_Z - D^2\alpha_k(p_{\epsilon}).$$

Since $p_{\epsilon} = t_{\epsilon}\xi$ one finds

$$D^{2}\Gamma_{\epsilon}(p_{\epsilon}) = \epsilon I_{Z} - t_{\epsilon}^{k-2}D^{2}\alpha_{k}(\xi) = \epsilon I_{Z} - \frac{\epsilon}{kM}D^{2}\alpha_{k}(\xi).$$

By (A_5) kM is not an eigenvalue of $D^2\alpha_k(\xi)$. Hence $D^2\Gamma_\epsilon(p_\epsilon)$ is invertible and p_ϵ is a non degenerate critical point of Γ_ϵ .

As an non degenerate mountain-pass critical point, it is well known that (4) holds.

- Lemma C
- $\Phi_{\varepsilon}(z) = \Gamma_{\varepsilon}(z) + R(\varepsilon, z)$, and
- the properties of the topological degree

imply that for $\epsilon > 0$ sufficiently small one also has

 $deg(\Phi'_{\epsilon}, B(p_{\epsilon}, \delta), 0) = -1, \quad \delta > 0 \text{ small}.$

where $B(p_{\epsilon}, \delta)$ denote a ball in Z centered in p_{ϵ} with radius δ .

In particular Φ_{ϵ} has a critical point $z_{\epsilon} \in E$ in $B(p_{\epsilon}, \delta)$.

In fact, if (A_5) holds, we can sharpen Theorem 1.

• If Σ contains a connected set S such that $(\mu, 0) \in S$ and $S \setminus \{(\mu, 0)\} \neq \emptyset$, we will say that μ is a branching point.

Theorem 2 Suppose that (A_1, A_2, A_3) and (A_5) hold and let μ be an isolated eigenvalue of finite multiplicity of L. Then μ is a branching point of (1).

Assumption (A_3) rules out a counterexample of Böhme where $h \not\equiv 0$ is C^{∞} with all the derivatives at u = 0 equal to zero and μ is not a branching point.

 (A_5) rules out, e.g. α_k such that $\alpha_k(z) \equiv c ||z||^k$ on Z. If this is violated there are examples showing that μ can be a bifurcation point but not a branching point.

Examples

Consider the bvp

(5)
$$\begin{cases} -\lambda \,\Delta u = u + G'(u), & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \end{cases}$$

where Ω is a bounded domain in \mathbb{R}^n with smooth boundary $\partial\Omega$ and G satisfies, for some integer $k \geq 3$,

 $\begin{array}{l} (G_1) \ G \in C^k(\mathbb{R}) \text{,} \\ (G_2) \ G(u) = \frac{1}{k} u^k + o(|u|^k) \text{, as } u \rightarrow 0. \end{array} \end{array}$

Let $E = H_0^1(\Omega)$ be the usual Sobolev space endowed with scalar product

$$(u \mid v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx.$$

Define L and h by

$$(Lu \mid v) = \int_{\Omega} u(x)v(x) \, dx, \qquad h(u) = \int_{\Omega} G(u(x)) \, dx.$$

🔎 First 🔍 Prev 🔍 Next 🔍 Last 🔍 Go Back 🔍 Full Screen 🔍 Close 🔍 Quit

Let us point out that the bifurcating solutions of (5) have norm which is small in E and, by regularity, in $C(\Omega)$. Thus, without loss of generality, we can assume that G is, say, quadratic at infinity so that h is well defined and smooth.

Setting
$$f(u)=\frac{1}{2}\lambda\|u\|^2-\frac{1}{2}(Lu\mid u)-h(u)$$
 we get
$$f'(u)=\lambda u-Lu-h'(u)$$

Hence (f'(u)|v)=0 is equivalent to $\lambda(u|v)-(Lu|v)-(h'(u)|v)=0$ for all $v\in E,$ namely

$$\lambda \int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} u(x)v(x) \, dx + \int_{\Omega} G'(u(x))v(x) \, dx$$

Thus critical points of f are weak (and, by regularity, strong) solutions of (5).

Moreover, let μ be an eigenvalue of L with eigenfunction $\phi:\ L\phi=\mu\phi.$ From

$$(L\phi \mid v) = \mu(\phi \mid v), \qquad \forall v \in E$$

it follows that

$$\int_{\Omega} \phi v \, dx = \mu \int_{\Omega} \nabla \phi \cdot \nabla v \, dx \; \Rightarrow \; \phi = -\mu \Delta \phi.$$

Thus the μ are nothing but the characteristic value of $-\Delta$ on $H_0^1(\Omega)$.

It is immediate to verify that the assumptions (A_1) and (A_2) hold true.

🔍 🖲 First 🔍 Prev 🔍 Next 🔍 Last 🔍 Go Back 🔍 Full Screen 🔍 Close 🔍 Quit

Let $dimZ = dimKer[L - \mu I]$ be spanned by φ_1, φ_2 . Any $z \in Z = Ker[L - \mu I]$ has the form $z = z_1\varphi_1 + z_2\varphi_2$. Then we find

$$\alpha_k(z) = \frac{1}{k} \int_{\Omega} \left(z_1 \varphi_1 + z_2 \varphi_2 \right)^k dx.$$

Then (A_3) holds if $\exists (z_1, z_2) \in \mathbb{R}^2$ such that

$$\int_{\Omega} \left(z_1 \varphi_1 + z_2 \varphi_2 \right)^k dx \neq 0.$$

In particular, (A_3) is always satisfied if k is even.

If k is odd, say $k=3,\,(A_3)$ holds provided e.g. at least one of the following integrals

$$\int_{\Omega} \varphi_1^3, \quad \int_{\Omega} \varphi_1^2 \varphi_2, \quad \int_{\Omega} \varphi_1 \varphi_2^2, \quad \int_{\Omega} \varphi_2^2$$

is different from zero.

As for (A_5) , a straight calculation shows:

1) let k = 3 and let

$$\int_{\Omega} \varphi_1^3 = \int_{\Omega} \varphi_2^3 = 1, \ \int_{\Omega} \varphi_1^2 \varphi_2 = \int_{\Omega} \varphi_1 \varphi_2^2 = 0.$$

Then (A_5) holds.

2) let k = 4 and let

$$\int_{\Omega} \varphi_1^4 = \int_{\Omega} \varphi_2^4 = 1, \ \int_{\Omega} \varphi_1^2 \varphi_2^2 = a, \ \int_{\Omega} \varphi_1^3 \varphi_2 = \int_{\Omega} \varphi_1 \varphi_2^3 = 0.$$

Then (A_5) holds for all a but a = 1.