SELECTED TOPICS ON BIFURCATION A. Ambrosetti (S.I.S.S.A. - Trieste)

Plan of the lectures:

- 1. The Rabinowitz global bifurcation theorem
- **2.** Bifurcation for problems on \mathbb{R}^n in the presence of eigenvalues.
- 3. A short review on Critical Point theory.
- 4. Bifurcation for variational operators.
- 5. Bifurcation from the essential spectrum.
- 6. Bifurcation and perturbation.

References: • A.A. and A. Malchiodi, *Nonlinear Analysis and Semilinear Elliptic Problems*, Cambridge Studies in Adv. Math. n.104 (2007), C.U.P.

• A.A. and A. Malchiodi, *Perturbation Methods nd Semilinear Elliptic Problems on* \mathbb{R}^n , Progress in Math. n.240 (2005), Birkhäuser.

1. The Rabinowitz global bifurcation theorem

Let X be a Banach space, $A \in L(X)$ and $T \in C^1(X, X)$ be compact and such that T(0) = 0 and T'(0) = 0. We also set $S_{\lambda}(u) = u - \lambda Au - T(u)$ and denote by Σ the set

$$\Sigma = \{ (\lambda, u) \in \mathbb{R} \times X, \ u \neq 0 : S_{\lambda}(u) = 0 \}.$$

If $(\lambda^*, 0) \in \overline{\Sigma}$ then λ^* is a bifurcation point for $S_{\lambda} = 0$.

A connected component of $\overline{\Sigma}$ is a closed connected set $\mathcal{C} \subset \overline{\Sigma}$ which is maximal with respect to the inclusion.

Let me recall that the Krasnoselski bifurcation theorem says that:

if λ^* is an odd characteristic value of A, then λ^* is a bifurcation point, namely $(\lambda^*, 0) \in \overline{\Sigma}$.

Let C be the connected component of $\overline{\Sigma}$ containing $(\lambda^*, 0)$. We are going to discuss a celebrated paper by P. Rabinowitz, which improves the Krasnoselski result by showing that C is either unbounded or meets another bifurcation point of $S_{\lambda} = 0$. The set of characteristic values of A will be denoted by r(A).

Theorem. Let $A \in L(X)$ be compact and let $T \in C^1(X, X)$ be compact and such that T(0) = 0 and T'(0) = 0. Suppose that λ^* is an odd characteristic value of A. Let C be the connected component of $\overline{\Sigma}$ containing $(\lambda^*, 0)$. Then either

(a) C is unbounded; or

(b) $\exists \hat{\lambda} \in r(A) \setminus \{\lambda^*\}$ such that $(\hat{\lambda}, 0) \in \mathcal{C}$.

Although alternative (b) can arise as well, in many applications to nonlinear eigenvalue problems it is possible to rule out the alternative (b).

A case in which this is possible is when one deals with nonlinear Sturm Liouville problems, modeled by

(1)
$$\begin{cases} -u'' = \lambda u + f(x, u, u'), & x \in (0, \pi), \\ u(0) = u(\pi) = 0, \end{cases}$$

where f is Lipschitz and $f(x, u, \xi) = o(\sqrt{u^2 + |\xi|^2})$ as $(u, \xi) \to (0, 0)$, uniformly with respect to $x \in [0, \pi]$.

The numbers k^2 , $k \in \mathbb{N}$, are simple eigenvalues of the linearized problem $-u'' = \lambda u$, $u(0) = u(\pi) = 0$ and hence are bifurcation points for (1). One has:

Theorem. From each k^2 , $k \in \mathbb{N}$, bifurcates an unbounded connected components $\mathcal{C}_k \subset \Sigma$ of non-trivial solutions of (1). Moreover $\mathcal{C}_k \cap \mathcal{C}_j = \emptyset$ if $k \neq j$. PROOF. One works on $E = \{u \in C^1(0, \pi) : u(0) = u(\pi) = 0\}$ endowed with the standard norm.

First one shows that there exists a neighborhood U_k of $(k^2, 0) \in \mathbb{R} \times E$ such that if $(\lambda, u) \in \Sigma \cap U_k$, then u has exactly k - 1 simple zeroes in $(0, \pi)$.

Moreover, by the uniqueness of the Cauchy problem it follows that the non-trivial solutions of (1) have only simple zeros in $(0, \pi)$.

These two properties, together with the fact that the branch $C_k \subset \Sigma$ emanating from $(k^2, 0)$ is connected, allow us to rule out the alternative (b) and to show that $C_k \cap C_j = \emptyset$ if $k \neq j$, proving the theorem.

Concerning the global properties of the bifurcation branches, it is worth mentioning a classical global result by Leray and Schauder.

Theorem. Consider the equation $u = \lambda T(u)$, where $T \in C(X, X)$ is compact, let $\Sigma = \{(\lambda, u) \in \mathbb{R} \times X : u = \lambda T(u)\}$ and let \mathcal{C} denote the connected component of $\overline{\Sigma}$ containing (0,0). Then $\mathcal{C} = \mathcal{C}^+ \cup \mathcal{C}^-$ where $\mathcal{C}^{\pm} \subset \mathbb{R}^{\pm} \times X$ and $\mathcal{C}^+ \cap \mathcal{C}^- = \{(0,0)\}$.

The global features of the bifurcation set can also be exploited in the case in which we deal with the existence of positive solutions of a class of asymptotically linear elliptic boundary value problems like

(2)
$$\begin{cases} -\Delta u = \lambda f(u), \ x \in \Omega, \\ u = 0, \qquad x \in \partial \Omega, \end{cases}$$

where $f \in C(\mathbb{R}^+, \mathbb{R})$ is asymptotically linear.

Let us start with an abstract setting. Let X be a Banach space and consider a map $S(\lambda, u) = u - \lambda T(u)$, with $T \in C(X, X)$ compact. We set $\Sigma = \{(\lambda, u) \in \mathbb{R} \times X \setminus \{0\} : S(\lambda, u) = 0\}.$

To investigate the asymptotic behavior of Σ , it is convenient to introduce the definition of bifurcation from infinity.

Definition. We say that $\lambda_{\infty} \in \mathbb{R}$ is a bifurcation from infinity for S = 0 if there exist $\lambda_j \to \lambda_{\infty}$ and $u_j \in X$, such that $||u_j|| \to \infty$ and $(\lambda_j, u_j) \in \Sigma$.

Let us now assume that T = A + G, with A linear and G bounded. Let us set $z = ||u||^{-1}u$, and

(3)
$$\Psi(\lambda, z) = \begin{cases} z - \lambda \|z\|^2 T\left(\frac{z}{\|z\|^2}\right), & \text{if } z \neq 0, \\ 0 & \text{if } z = 0. \end{cases}$$

For $z \neq 0$ one has that

$$\Psi(\lambda,z) = z - \lambda A z - \lambda \|z\|^2 G\left(\frac{z}{\|z\|^2}\right).$$

Since G is bounded, then Ψ is continuous at z = 0.

Moreover, setting

$$\Gamma = \{(\lambda, z) : z \neq 0, \ \Psi(\lambda, z) = 0\},\$$

there holds

(4) $(\lambda, u) \in \Sigma \iff (\lambda, z) \in \Gamma.$

In addition, $||u_j|| \to \infty$ if and only if $||z_j|| = ||u_j||^{-1} \to 0$. This and (4) immediately imply

Lemma. λ_{∞} is a bifurcation from infinity for S = 0 if and only if λ_{∞} is a bifurcation from the trivial solution for $\Psi = 0$. In such a case we will say that Σ bifurcates from $(\lambda_{\infty}, \infty)$.

🔎 First 🔍 Prev 🔍 Next 🔍 Last 🔍 Go Back 🔍 Full Screen 🔍 Close 🔍 Quit

Let $g \in C^{0,\alpha}(\mathbb{R}^+,\mathbb{R})$ be such that

(5)
$$f(u) = mu + g(u), \quad m > 0, \quad |g(u)| \le \text{Const.}, \quad g(0) \ge 0.$$

Theorem. Let (5) hold. Then $\lambda_{\infty} := \lambda_1/m$ is a bifurcation from infinity for S, and the only one. More precisely, there exists a connected component Σ_{∞} of Σ bifurcating from $(\lambda_{\infty}, \infty)$ which corresponds to an unbounded connected component $\Gamma_{\infty} \subset \Gamma$ bifurcating from the trivial solution of $\Psi_{\lambda}(u) = 0$ at $(\lambda_{\infty}, 0)$.

🗢 First 🔍 Prev 🔍 Next 🔍 Last 🔍 Go Back 🔍 Full Screen 🔍 Close 🔍 Quit

Using similar arguments one can study the bifurcation from the trivial solution for $S_{\lambda} = 0$, yielding

Theorem. Let (5) hold. Then

- (a) If f(0) > 0 there exists an unbounded connected component $\Sigma_0 \subset \Sigma$, with $\Sigma_0 \subset]0, \infty) \times X$, such that $(0,0) \in \overline{\Sigma}_0$. Moreover, $(\lambda,0) \in \overline{\Sigma}_0 \Rightarrow \lambda = 0$.
- (b) If f(0) = 0 and the right-derivative $f'_+(0)$ exists and is positive, then letting

$$\lambda_0 := \frac{\lambda_1}{f'_+(0)},$$

there exists an unbounded connected component $\Sigma_0 \subset \Sigma$ such that $(\lambda_0, 0) \in \overline{\Sigma}_0$ and $(\lambda, 0) \in \overline{\Sigma}_0 \Rightarrow \lambda = \lambda_0$.

The next theorem studies the relationships between Σ_{∞} and Σ_0 .

Theorem. Suppose that the same assumptions made in the previous Theorems hold. Then

- (a) If $\exists \alpha > 0$ such that $f(u) \ge \alpha u$, $\forall u \ge 0$, then setting $\Lambda = \lambda_1/\alpha$ one has that $\Sigma_0 \subset]0, \Lambda]$. As a consequence, $\Sigma_0 = \Sigma_\infty$.
- (b) If $\exists s_0 > 0$ such that $f(s_0) \leq 0$, then $S_{\lambda}(u) \neq 0$ for all $u \in X$ with $\|u\|_{\infty} = s_0$. As a consequence, $\Sigma_0 \cap \Sigma_{\infty} = \emptyset$.

Figure 1: Bifurcation diagram in case (a), with f(0) > 0 and $\Lambda = \lambda_{\infty}$.

Figure 2: Bifurcation diagram in case (b), with f(0) > 0. The interval [A, B] is such that $f(u) \leq 0$ if and only if $u \in [A, B]$.

Finally, it is possible to give conditions that allow us to describe in a precise way the behavior of the branch bifurcating from infinity. They are the counterparts of the conditions that provide a sub-critical or a super-critical bifurcation from the trivial solution.

Precisely, suppose that either

(6)
$$\gamma' := \liminf_{u \to +\infty} g(u) > 0,$$

or

(7)
$$\gamma'' := \limsup_{u \to +\infty} g(u) < 0.$$

Then Σ_{∞} bifurcates to the left, respectively to the right, of $(\lambda_{\infty}, \infty)$.

Figure 3: Bifurcation diagram when f(0) > 0 and $\gamma'' < 0$