Selected Topics on Bifurcation
 A. Ambrosetti (S.I.S.S.A. - Trieste)

Plan of the lectures:

1. The Rabinowitz global bifurcation theorem
2. Bifurcation for problems on \mathbb{R}^{n} in the presence of eigenvalues.
3. A short review on Critical Point theory.
4. Bifurcation for variational operators.
5. Bifurcation from the essential spectrum.
6. Bifurcation and perturbation.

References: - A.A. and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Studies in Adv. Math. n. 104 (2007), C.U.P.

- A.A. and A. Malchiodi, Perturbation Methods nd Semilinear Elliptic Problems on \mathbb{R}^{n}, Progress in Math. n. 240 (2005), Birkhäuser.

1. The Rabinowitz global bifurcation theorem

Let X be a Banach space, $A \in L(X)$ and $T \in C^{1}(X, X)$ be compact and such that $T(0)=0$ and $T^{\prime}(0)=0$.
We also set $S_{\lambda}(u)=u-\lambda A u-T(u)$ and denote by Σ the set

$$
\Sigma=\left\{(\lambda, u) \in \mathbb{R} \times X, u \neq 0: S_{\lambda}(u)=0\right\} .
$$

If $\left(\lambda^{*}, 0\right) \in \bar{\Sigma}$ then λ^{*} is a bifurcation point for $S_{\lambda}=0$.
A connected component of $\bar{\Sigma}$ is a closed connected set $\mathcal{C} \subset \bar{\Sigma}$ which is maximal with respect to the inclusion.
Let me recall that the Krasnoselski bifurcation theorem says that:
if λ^{*} is an odd characteristic value of A, then λ^{*} is a bifurcation point, namely $\left(\lambda^{*}, 0\right) \in \bar{\Sigma}$.

Let \mathcal{C} be the connected component of $\bar{\Sigma}$ containing $\left(\lambda^{*}, 0\right)$.
We are going to discuss a celebrated paper by P. Rabinowitz, which improves the Krasnoselski result by showing that \mathcal{C} is either unbounded or meets
another bifurcation point of $S_{\lambda}=0$. The set of characteristic values of A will be denoted by $r(A)$.

Theorem. Let $A \in L(X)$ be compact and let $T \in C^{1}(X, X)$ be compact and such that $T(0)=0$ and $T^{\prime}(0)=0$. Suppose that λ^{*} is an odd characteristic value of A. Let \mathcal{C} be the connected component of $\bar{\Sigma}$ containing $\left(\lambda^{*}, 0\right)$. Then either
(a) \mathcal{C} is unbounded; or
(b) $\exists \hat{\lambda} \in r(A) \backslash\left\{\lambda^{*}\right\}$ such that $(\hat{\lambda}, 0) \in \mathcal{C}$.

Although alternative (b) can arise as well, in many applications to nonlinear eigenvalue problems it is possible to rule out the alternative (b).

A case in which this is possible is when one deals with nonlinear Sturm Liouville problems, modeled by

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=\lambda u+f\left(x, u, u^{\prime}\right), \quad x \in(0, \pi) \tag{1}\\
u(0)=u(\pi)=0
\end{array}\right.
$$

where f is Lipschitz and $f(x, u, \xi)=o\left(\sqrt{u^{2}+|\xi|^{2}}\right)$ as $(u, \xi) \rightarrow(0,0)$, uniformly with respect to $x \in[0, \pi]$.

The numbers $k^{2}, k \in \mathbb{N}$, are simple eigenvalues of the linearized problem $-u^{\prime \prime}=\lambda u, u(0)=u(\pi)=0$ and hence are bifurcation points for (1). One has:

Theorem. From each $k^{2}, k \in \mathbb{N}$, bifurcates an unbounded connected components $\mathcal{C}_{k} \subset \Sigma$ of non-trivial solutions of (1). Moreover $\mathcal{C}_{k} \cap \mathcal{C}_{j}=\emptyset$ if $k \neq j$.
Proof. One works on $E=\left\{u \in C^{1}(0, \pi): u(0)=u(\pi)=0\right\}$ endowed with the standard norm.

First one shows that there exists a neighborhood U_{k} of $\left(k^{2}, 0\right) \in \mathbb{R} \times E$ such that if $(\lambda, u) \in \Sigma \cap U_{k}$, then u has exactly $k-1$ simple zeroes in $(0, \pi)$.

Moreover, by the uniqueness of the Cauchy problem it follows that the non-trivial solutions of (1) have only simple zeros in $(0, \pi)$.

These two properties, together with the fact that the branch $\mathcal{C}_{k} \subset \Sigma$ emanating from $\left(k^{2}, 0\right)$ is connected, allow us to rule out the alternative (b) and to show that $\mathcal{C}_{k} \cap \mathcal{C}_{j}=\emptyset$ if $k \neq j$, proving the theorem.

Concerning the global properties of the bifurcation branches, it is worth mentioning a classical global result by Leray and Schauder.

Theorem. Consider the equation $u=\lambda T(u)$, where $T \in C(X, X)$ is compact, let $\Sigma=\{(\lambda, u) \in \mathbb{R} \times X: u=\lambda T(u)\}$ and let \mathcal{C} denote the connected component of $\bar{\Sigma}$ containing (0,0). Then $\mathcal{C}=\mathcal{C}^{+} \cup \mathcal{C}^{-}$where $\mathcal{C}^{ \pm} \subset \mathbb{R}^{ \pm} \times X$ and $\mathcal{C}^{+} \cap \mathcal{C}^{-}=\{(0,0)\}$.

The global features of the bifurcation set can also be exploited in the case in which we deal with the existence of positive solutions of a class of asymptotically linear elliptic boundary value problems like

$$
\left\{\begin{align*}
-\Delta u & =\lambda f(u), & & x \in \Omega \tag{2}\\
u & =0, & & x \in \partial \Omega
\end{align*}\right.
$$

where $f \in C\left(\mathbb{R}^{+}, \mathbb{R}\right)$ is asymptotically linear.

Let us start with an abstract setting. Let X be a Banach space and consider a map $S(\lambda, u)=u-\lambda T(u)$, with $T \in C(X, X)$ compact. We set $\Sigma=$ $\{(\lambda, u) \in \mathbb{R} \times X \backslash\{0\}: S(\lambda, u)=0\}$.

To investigate the asymptotic behavior of Σ, it is convenient to introduce the definition of bifurcation from infinity.

Definition. We say that $\lambda_{\infty} \in \mathbb{R}$ is a bifurcation from infinity for $S=0$ if there exist $\lambda_{j} \rightarrow \lambda_{\infty}$ and $u_{j} \in X$, such that $\left\|u_{j}\right\| \rightarrow \infty$ and $\left(\lambda_{j}, u_{j}\right) \in \Sigma$.

Let us now assume that $T=A+G$, with A linear and G bounded. Let us set $z=\|u\|^{-1} u$, and

$$
\Psi(\lambda, z)= \begin{cases}z-\lambda\|z\|^{2} T\left(\frac{z}{\|z\|^{2}}\right), & \text { if } z \neq 0 \tag{3}\\ 0 & \text { if } z=0\end{cases}
$$

For $z \neq 0$ one has that

$$
\Psi(\lambda, z)=z-\lambda A z-\lambda\|z\|^{2} G\left(\frac{z}{\|z\|^{2}}\right) .
$$

Since G is bounded, then Ψ is continuous at $z=0$.
Moreover, setting

$$
\Gamma=\{(\lambda, z): z \neq 0, \Psi(\lambda, z)=0\}
$$

there holds

$$
\begin{equation*}
(\lambda, u) \in \Sigma \quad \Longleftrightarrow \quad(\lambda, z) \in \Gamma . \tag{4}
\end{equation*}
$$

In addition, $\left\|u_{j}\right\| \rightarrow \infty$ if and only if $\left\|z_{j}\right\|=\left\|u_{j}\right\|^{-1} \rightarrow 0$. This and (4) immediately imply

Lemma. λ_{∞} is a bifurcation from infinity for $S=0$ if and only if λ_{∞} is a bifurcation from the trivial solution for $\Psi=0$. In such a case we will say that Σ bifurcates from $\left(\lambda_{\infty}, \infty\right)$.

Let $g \in C^{0, \alpha}\left(\mathbb{R}^{+}, \mathbb{R}\right)$ be such that
(5) $\quad f(u)=m u+g(u), \quad m>0, \quad|g(u)| \leq$ Const., $\quad g(0) \geq 0$.

Theorem. Let (5) hold. Then $\lambda_{\infty}:=\lambda_{1} / m$ is a bifurcation from infinity for S, and the only one. More precisely, there exists a connected component Σ_{∞} of Σ bifurcating from $\left(\lambda_{\infty}, \infty\right)$ which corresponds to an unbounded connected component $\Gamma_{\infty} \subset \Gamma$ bifurcating from the trivial solution of $\Psi_{\lambda}(u)=0$ at $\left(\lambda_{\infty}, 0\right)$.

Using similar arguments one can study the bifurcation from the trivial solution for $S_{\lambda}=0$, yielding

Theorem. Let (5) hold. Then
(a) If $f(0)>0$ there exists an unbounded connected component $\Sigma_{0} \subset \Sigma$, with $\left.\left.\Sigma_{0} \subset\right] 0, \infty\right) \times X$, such that $(0,0) \in \bar{\Sigma}_{0}$. Moreover, $(\lambda, 0) \in \bar{\Sigma}_{0} \Rightarrow$ $\lambda=0$.
(b) If $f(0)=0$ and the right-derivative $f_{+}^{\prime}(0)$ exists and is positive, then letting

$$
\lambda_{0}:=\frac{\lambda_{1}}{f_{+}^{\prime}(0)},
$$

there exists an unbounded connected component $\Sigma_{0} \subset \Sigma$ such that $\left(\lambda_{0}, 0\right) \in \bar{\Sigma}_{0}$ and $(\lambda, 0) \in \bar{\Sigma}_{0} \Rightarrow \lambda=\lambda_{0}$.

The next theorem studies the relationships between Σ_{∞} and Σ_{0}.
Theorem. Suppose that the same assumptions made in the previous Theorems hold. Then
(a) If $\exists \alpha>0$ such that $f(u) \geq \alpha u, \forall u \geq 0$, then setting $\Lambda=\lambda_{1} / \alpha$ one has that $\left.\left.\Sigma_{0} \subset\right] 0, \Lambda\right]$. As a consequence, $\Sigma_{0}=\Sigma_{\infty}$.
(b) If $\exists s_{0}>0$ such that $f\left(s_{0}\right) \leq 0$, then $S_{\lambda}(u) \neq 0$ for all $u \in X$ with $\|u\|_{\infty}=s_{0}$. As a consequence, $\Sigma_{0} \cap \Sigma_{\infty}=\emptyset$.

Figure 1: Bifurcation diagram in case (a), with $f(0)>0$ and $\Lambda=\lambda_{\infty}$.

Figure 2: Bifurcation diagram in case (b), with $f(0)>0$. The interval $[A, B]$ is such that $f(u) \leq 0$ if and only if $u \in[A, B]$.

Finally, it is possible to give conditions that allow us to describe in a precise way the behavior of the branch bifurcating from infinity. They are the counterparts of the conditions that provide a sub-critical or a super-critical bifurcation from the trivial solution.
Precisely, suppose that either

$$
\begin{equation*}
\gamma^{\prime}:=\liminf _{u \rightarrow+\infty} g(u)>0, \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
\gamma^{\prime \prime}:=\limsup _{u \rightarrow+\infty} g(u)<0 . \tag{7}
\end{equation*}
$$

Then Σ_{∞} bifurcates to the left, respectively to the right, of $\left(\lambda_{\infty}, \infty\right)$.

Figure 3: Bifurcation diagram when $f(0)>0$ and $\gamma "<0$

