Quasilinear singular elliptic equations

Luigi Orsina

Dpto. di Matematica, "Sapienza", Università di Roma

```
orsina@mat.uniroma1.it
```


Resumen

We are going to deal with following quasilinear singular (model) problem, studied in [1] and in [2]:

$$
\left\{\begin{array}{cl}
-\Delta u+\frac{|\nabla u|^{2}}{u^{\gamma}}=f & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega .
\end{array}\right.
$$

Here Ω is a bounded open subset of $\mathbb{R}^{N}, N \geq 2, \gamma>0$, and $f \geq 0$ belongs to some Lebesgue space. We will give existence and nonexistence results (depending on the values of γ). Links with critical points for functionals like

$$
J(v)=\frac{1}{2} \int_{\Omega}\left[a(x)+|v|^{\theta}\right]|\nabla v|^{2}-\int_{\Omega} f v,
$$

with $\theta>0$, and $0<\alpha \leq a(x) \leq \beta$, will also be discussed.
Sección en el CEDYA 2011: EDP

Bibliography

[1] D. Arcoya, J. Carmona, T. Leonori, P. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations, J. Diff. Eq. 246 (2009), 4006-4042.
[2] L. Boccardo, Dirichlet problems with singular and quadratic gradient lower order terms, ESAIM Control Optim. Calc. Var. 14 (2008), 411-426.

