Quasilinear singular elliptic equations

LUIGI ORSINA

Dpto. di Matematica, "Sapienza", Università di Roma

orsina@mat.uniroma1.it

Resumen

We are going to deal with following quasilinear singular (model) problem, studied in [1] and in [2]:

$$\begin{cases} -\Delta u + \frac{|\nabla u|^2}{u^{\gamma}} = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

Here Ω is a bounded open subset of \mathbb{R}^N , $N \ge 2$, $\gamma > 0$, and $f \ge 0$ belongs to some Lebesgue space. We will give existence and nonexistence results (depending on the values of γ). Links with critical points for functionals like

$$J(v) = \frac{1}{2} \int_{\Omega} [a(x) + |v|^{\theta}] |\nabla v|^{2} - \int_{\Omega} f v ,$$

with $\theta > 0$, and $0 < \alpha \le a(x) \le \beta$, will also be discussed. Sección en el CEDYA 2011: EDP

Bibliography

- D. Arcoya, J. Carmona, T. Leonori, P. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations, J. Diff. Eq. 246 (2009), 4006–4042.
- [2] L. Boccardo, Dirichlet problems with singular and quadratic gradient lower order terms, ESAIM Control Optim. Calc. Var. 14 (2008), 411–426.