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1. Introduction

: The aim of this paper is to study some relationships between the Leray-Schauder
: degree and the theory of stability. The degree is sometimes used to prove the
existence of stationary or periodic solutions of certain differential equations of
evolutionary type. Often the only information on the solution given by this method
is a rough estimate and the value of the degree of a related operator. In such case,
the standard techniques of stability theory do not seem to apply and it is natural
. to ask what can be said about the stability of the solution using degree theory. In
.. general the degree is not sufficient to characterize stability and one has to impose
- some additional conditions.

This kind of question has been considered in the context of the theory of differ-
- ential equations of periodic type [1], [12], [13], [14], in the case of positive mappings
. in [2] and in bifurcation theory [16]. A different point of view on the use of the
. degree in stability theory can be seen in [9]. In these works, excepting [2], [9]) and
[14], the principle of linearized stability is employed and the solution under study
. has to be of hyperbolic type. )

' In this paper we obtain a general result, relating the fixed point index (local
- version of the degree} and the stability of fixed points, that unifies and extends
" to the non-hyperbolic case the previous results. It can be summarized as follows:
“Let ¥ be a map acting on the phase space Z and let p € Z be a fixed point of
* I which is isolated (in an appropriate sense). Assume that all the eigenvalues of
- ¥'(p), except perhaps one, lie in the open unit disk. Then the stability properties

of p with respect to ¥ only depend on certain fixed point indexes of p.”

' The precise statements are given in Section 2. These abstract results are then
applied to the study of the stability of periodic solutions of nonautonomous ordi-
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nary differential equations in Section 3. There the map ¥ is the Poincaré-Andronov
operator associated to the equation and ¥/(p) is identified with a monodromy ma-
trix of the variational equation at the periodic solution. In practice, the Floquet
multipliers (eigenvalues of ¥/(p)) are difficult to compute and it is of interest to
find explicit conditions on the equation that guarantee the applicability of the
main result. The condition on the truncated trace of the field introduced in [17]
is useful in this context. Originally this condition was used in [17] to extend a
result in [11] on the number of periodic solutions of plane dissipative systems with
negative divergence. Some new information on this class of systems will also be
obtained from our results. Section 4 is devoted to the proof of the abstract result
of Section 2. This result has an elementary proof if Z has dimension one. In the
general case the key idea is to restrict ¥ to a locally invariant curve on which
the properties of stability and degree of the fixed point are preserved. The main
tools in the proof are some of the techniques developed in [14] and a variant of the
center manifold theorem. The center manifold was already used in [2], but there
the order-preserving character of the operator played a role in the proof. We shall
give a detailed proof valid for general operators.

2. The abstract result

In the following Z denotes a real Banach space with norm |.| and Q an open and
bounded neighborhood of the origin z = 0. Consider the map ¥ : {1 ¢ Z — 2
and assume that ¥(0) = 0. We are interested in the properties of stability of z = 0
as a fixed point of ¥; in particular, Lyapunov stability (L.s.), asymptotic stability
(a.s.} and uniform asymptotic stability (u.a.s:.). Under the general assumptions :

¥ is completely continuous and of class C* (2.1)

z=0 is an isolated fixed point of ¥ (2.2)

the fixed point is defined as i[¥,0] = deg{l — ¥, , 0] where deg refers to the
Leray-Schauder degree, I is the identity in Z and ¢ C £} is a neighborhood of the
origin containig no other fixed points of ¥. When ¥ is completely continuous, the
concepts of asymptotic stability and uniform asymptotic stability of fixed points
are equivalent (see [3]). Next result shows that the asymptotic stability of z = 0
imposes a severe restriction on the index.

Proposition 2.1. In the previous setling assume that z = 0 is asymptotically
stable. Then i{¥,0] = 1.

(The proof follows from Theorem 39.1 in [7]).

The converse of this proposition is not valid excepting in certain special cases.
In the simplest situation, Z = R, the converse is true if ¥ preserves the crienta-
tion (i.e. ¥(0) > 0). If ¥ reverses the orientation it is no longer true, as shown
by the map ¥y(z) = Az (A < —1). However ¥ = ¥ o ¥ is always orientation
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preserving and the asymptotic stability can be characterized in terms of i{¥?,0].
When dimZ > 2 a characterization of this type is not possible, unless one imposes
additional conditions on V.

It follows from (2.1) that the linear operator ¥'(0) is compact. The nonzero
eigenvalues can be arranged in an ordered (and sometimes finite) sequence,

{’\H}HZH !’\1 |Z| '\2 122|'\n |Z
where each eigenvalue A;, has algebraic multiplicity ;. Our last condition on ¥ is
M20, =1, |A|<l Y= 2 (2.3)

Roughly speaking, this condition says that the unstable manifold of z = 0 has at
most dimension one and ¥ preserves the orientation on it. The main result of this
section is

Theorem 2.2. Assume that (2.1), (2.2) and (2.3) hold. The following statements
are equivalent:

(i) z =0 is asymptotically stable
(ii) z =0 is Lyapunov stable
(iii) [¥,0] = 1.

(A proof is given in Section 4).

Remarks.

1. The implication (i) = (¢} proves that, in our setting, a stable fized point
which is isolated is automatically asymptotically stable. This kind of result
is classical in the theory of scalar first order periodic equations (see [15} and
also [18] for an extension to certain systems).

2. It will follow from the proof of the theorem that if (2.1}, (2.2) and (2.3)
hold then | i[¥,0] |< 1. Therefore the instability corresponds to the indexes
i=-1,0.

3. The assumption (2.1} can be probably weakened using more general degree
theories (see [8]).

4. The result in [2] assumed that Z was an ordered Banach space and replaced
(2.3) by an assumption of monotonicity of ¥ that in particular implied (2.3).
In the context of [2] the asymptotic stability of z = 0 is also equivalent to
the existence of ordered upper and lower solutions arbitrarily close to the
origin from above and below respectively. This conclusion is not valid for
operators that do not preserve the order (see Lemma 3.2 in [14]).

The map ¥? = ¥o¥ is well defined in some neighborhood of the origin (remark

that ¥(0) = 0). The application of the previous result to ¥2, instead of ¥, will
lead to a corollary of interest. Assumptions (2.2} and (2.3) need to be modified to

z=0 is an isolated fixed point of W2 (2.4)

m=1, |Aul<l Yn>2 (2.5)
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Note that (2.4) is stronger than (2.2) while (2.5) is weaker than (2.3). In par-
ticular, (2.5) implies that periodic points of ¥ of period 2 do not exist in some
neighborhood of z = 0.

Corollary 2.3. Assume that (2.1), (2.4) and (2.5) hold. The following statements
are equivalent:

(i} z =0 is asymptotically stable
(ii) z =0 is Lyapunov stable
(iii) i[¥2,0] =1.

Remark. In this setting, a combination of Proposition 2.1 with this corollary leads
to the implication i[¥?,0) =1 = i[¥,0] = 1.

3. The index of a periodic solution

Consider the differential equation
' = f(t, ) (3.1}

where f : R x 8§ — R¥, N > 1, and § ¢ R¥ is open. It is assumed that f
is continuous, T-periodic with respect to t and such that f,(¢,2) is defined and
continuous on R x §. Given p € § let ¢(t, p) denote the solution of (3.1) satisfying
#(0, p) = p. The Poincaré-Andronov map is defined on some open subset of S by
P(p) = ¢(T, p). Let # be a T-periodic solution of (3.1). It is well known that the
stability properties of @ as a solution of the differential equation are those of #(0)
considered as a fixed point of P. The solution 8 is called isolated (period kT"} with
k > 1 if 8(0) is isolated as a fixed point of P*. In such case the index of period kT
is defined as

ver(8) = i|P¥, 8(0)].

The map P is C! and the jacobian matrix P'(#(0)) is a monodromy matrix of the
variational equation

y’ = f::(t: g(t))y' (32)

In consequence, the eigenvalues of P/(8(0)} are precisely the Floquet multipliers of
{3.2). (See for instance [6]). To verify condition (1.3) or (1.5) when the multipliers
are not explicitly known one needs some conditions on f. For example, conditions
{1.2) in {12] and (H-1) in {14] imply (1.3). (See Lemma 1.4 of [12] and Lemma 4.4
of {14]). In this paper we shall use a condition employed in [17] that implies {1.5).
Let (¢, x) 2 m2(t,z} > ... > Tn(t, z) be the eigenvalues of the symmetric matrix
(1/2)[fz(t, ) + fz(t,z)"], where * denotes the transpose matrix. Then T (t,z) +
72(t, ) + ... + 74 (t, z) coincides with the trace of fz{t,z) (the divergence of f)
and a partial sum 71 (L, ) +72(t, T) +... +7k(t, ), 1 < k < N is called a truncated
trace. :
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Theorem 3.1. In the previous notations assume that
n{t, ) + 2(t, ) < 0,¥{t,z) e R x §, (3.3)
and let 8 be a T-periodic solution of (3.1) which is isolated (period 2T ). Then
6 is asymptotically stable [resp. unstable] <> vor(8) = 1 [resp. £ 1].

Remark. When NV = 2 (3.3) reduces to div,f < 0 in R x S. In this case the
conclusion of Theorem 3.1 was obtained in [13] when & is hyperbolic.

Proof. To apply corollary 2.3 with ¥ = P it is enough to prove that (2.5} holds
when {),} is the sequence of multipliers of (3.2). Let y1(t), y2(¢) be linearly inde-
pendent solutions of {3.2). Define A(2) =| 31 (t) 2] g2t} [ — {3 (£)?, y2(t})* where
{.,.) is the usual inner product in R" and | . | is the Euclidean norm. It follows
from Theorem 1 in [17] that A(T) < A(0) exp{2 f;‘{n(t, 8(t)) + 72{t, 8(t))]dt} and
from (3.3), A(T)} < A(0). Since y;,y2 can be chosen arbitrarily, it is now easy to
show that only one multiplier can be greater or equal to 1 in absolute value. This
proves that (2.5} holds.

Remark. It is interesting to notice the geometrical meaning of this proof. The
quantity A(¢)1/2 is the area of the parallelogram determined by 0,1 (t), y2(£). The
inequality A(T"} < A(0) says that the low determined by (3.2) contracts this area
after one period. A classical result when N = 2.

The condition (3.3) was introduced in [17] together with
S =RY and the system (3.1) is analytic and dissipative. (34)

The system (3.1) is said to be analytic when f is a real analytic function of the
coordinates (t,z). Also, it is said that the system is dissipative if there exists a
constant b > 0 such that every solution z(t) of (3.1} is defined up to 400 and
satisfies limsup;_. 400 | £(2) |< b. It was proved in [17], and previously in [11] for
N = 2, that the number of T-periodic solutions is finite when (3.3} and (3.4) hold.

A periodic solution with minimal period kT, k > 1, is called a subharmonic
solution of k*Morder. The set of all subharmonic solutions of (3.1) is nonempty and
countable if (3.3) and (3.4) are assumed. Next resuits give sufficient conditions for
the existence of stable harmonic and subharmonic solutions.

Corollary 3.2. Assume that (3.3) and (3.4) hold. If the system (3.1} has not
subharmonic solutions of the 2™ order, then it has at least one asymptotically stable
T-periodic solution.

Proof. It follows from [17] that the number of fixed points of P is finite. Also, from
the assumption on nonexistence of subharmonics, the fixed points of P and P? are
the same. Since the system is dissipative it is possible to find a ball B ¢ R¥ such
that every periodic point of P lies in B and P*(B) C B,k > ko (see [15]). From
Theorem 39.1 in [7], deg[ — P?, B,0] = 1. The excision property of degree and
remark 2 after Theorem 2.2 imply the existence of p € B, isolated fixed point of P,
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such that i[P%,p] = 1. Then 8{t) = ¢(t,p) is a T-periodic solution with Yor(8) =1
and it only remains to apply Theorem 3.1.

Corollary 3.3. Assume that (3.3), (3.4) hold and that the system (3.1) has a
finite number of subharmonic solutions. Then at least one of them is asymptotically
stable.

Proof. Let n > 0 be an integer such that the order of each subharmonic solution
of (3.1) divides m. Then every subharmonic solution admits the period mT and
the previous corollary can be applied with initial period mT.

4. Proofs

We divide this section in three parts, In the first part, we collect some facts on the
theory of center manifolds that will be used later. Next we present a perturbation
of ¥ that is of interest when 2 = 0 is not hyperbolic. Finally all the pieces are put
together and Theorem 2.2 is proved.

4.1 Remarks on center manifolds

Let X and Y be Banach spaces with dimY < oo and assume that Z is the product
space Z = X x Y with norm | z j=max{| z [,| ¥ [}, z = (z,¥). Let F : dom(F) C
Z — Z be a map such that dom(F’) contains a neighborhood of the origin and
F(0) = 0. It is assumed that F is Lipschitz-continuous. We shall also consider
maps of the kind

u:{yeY/|yl<6} — X (5> 0) (4.1)
satisfying
u is Lipschitz — continuous and %(0) = 0. (4.2)

Denote by X the corresponding graph ¥ = {(u(y),¥)/ | v |< 6}. The following
definitions concern this manifold.

Definition 4.1. I is locally invariant if for each 2 € Z such that | F(2) |[< § then
F(z)eX.

Definition 4.2. ¥ is locally attracting if for each z € Z such that | z [< § and
| 2 |< 6 then | £ — u(f) |< a | z — u(y) |, where z = (z,y), % = F(2) = (£,9) and
a € (0,1) is a fixed constant independent of z.

Both concepts are of course relative to the map F. The definition of local
attractivity is more restrictive than those in [10] and [4, page 262]. X is said to be
a Center Manifold if it is locally invariant and attracting. The local invariance of &
allows the consideration of the restricted map Fx : &' C ¥ —— I, Fp(2) = F(z),
where L’ is a neighborhood (relative to ) of the origin. Next result shows that
the information on asymptotic stability is preserved by this reduction.
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Proposition 4.3. In the previous setting assume that T is a center manifold.
Then, if the origin is a.s. with respect to Fg, it is u.a.3. with respect to F'.

The proof of this result is proposed as an exercise in [4, page 262) and we now
give a sketch of it. Since I is locally compact, 0 is u.a.s. with respect to Fy and
one can find a Lyapunov function V as in [4, page 88]. Define

W(Z) = V(“(y)1y) +A l z-— u(y) |!z = (m$ y) €2

Using the local attractivity of £ it can be seen that W is a Lyapunov function
with respect to F' when A is large.

Later we shall need a consequence of the proof of the center manifold theo-
rem for Cl-maps. Before stating it we introduce some notation. Df denotes the
Fréchet derivative of f, L(X) denotes the Banach algebra of bounded linear en-
domorphisms of X and || . |j is the associated norm, [f]ip is the best Lipschitz
constant of f.

Proposition 4.4. Let R and S be completely continuous C'-mappings of a neigh-
borhood of the origin of Z into X and Y respectively, such that R=0,§=0,DR =
0,DS8 =0 at z=0. Let {Ap}n>1 and {Ba}n>1 be convergent sequences in L(X)
and L(Y) respectively, with A, — Ax,By — B in the uniform topology.
Assume that A, is compact end

| Anll< 1,0 A [lll Bit l< 1,1 €1 < o0 (4.3)

Define the sequence of maps Fa(z,y) = (Anz+R(z, ), Bay+5(z, y)),1 <n < oo.
Then there exist § > 0, (independent of n ), a subsequence of F, denoted by {F}}
and functions uy satisfying (4.1) and (4.2) and such that the corresponding graphs
Tk are center manifolds with respect to Fi,1 < k < co. In addition,

[uk]up < 1,1 < k < o0 (44)
i — Ueo uniformly in |y |< 8. (4.5)

Proof. Tt follows from the proof of the center manifold theorem given in [5] that
there exists 8§, > 0 (independent of n) and Lipschitz-continuous functions -

un:{y €Y/ y|€éH) — X,ua(0)=0,1<n< 00

such that [ug]rip < 1, the graphs B, = {(ua(y), ¥}/ | ¥ |< 61} are center manifolds
with respect to F,, and the constant « € (0,1) appearing in Definition 4.2 is also
independent of n. The independence with respect to n of §; and & comes from
(4.3), which keeps the quantities || A, || and || A, ||| B, || uniformly less than 1.
It also follows from the mentioned proof that there exist 6,83 € (0,61),83 < &,
independent of n, such that

a) z€2Z,|z1< 6 2| Fu(z)} |£ 61,1 S0 <0

b) Foreachy€Y,|y|< 63, and n, 1 < n < 00, there exists y, €Y, | yn |< 62,

satisfying ¥ = Bntm + S(tn(¥n), #n)-
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We now claim that for each y € Y, | y |< 83 the set H{y) = {un(y)/1 < n < 0o}
is relatively compact in X. In fact, let (y,) be the sequence obtained in b). The local
invariance of I, implies that ua(y) = Antn(¥n) + R{tn(¥n), ¥n) = Acotin(yn) +
(An — Ao)un{tn) + R(un(yn), ¥n)- Since | y, J< 83 and Ay, R are completely
continuous it is clear that H(y) has a compact closure. From [u,] Lip € 1,1u,(0) =0,
we conclude that (un) is equicontinuous and uniformly bounded in | y |< 83. The
Ascoli theorem implies the existence of a subsequence (1) converging uniformly
in | y |< 83 to a certain function t.. An argument of passage to the limit allows
us to prove that Too = {(uco(y), )/ | ¥ |< 6},6 = 63/2, is locally invariant and
locally attracting (the constant o is fixed).

4.2 A perturbation of V.

In the sequel we follow the notation of Section 2. In this paragraph, in addition
to (2.1), (2.2) and (2.3), it is assumed that z = 0 is not hyperbolic as a fixed
point so that A; = 1. Let P be the projection onto the eigenspace of A, given by
P = (1/2mi) §(AI = L)~'d), where L = ¥'(0) and T is a small circle around A,
{with counterclockwise orientation). We also use the notations

X =KetP,Y =ImP,Q=1-P. (4.6)

Since A, is simple, Y is one-dimensional and one can find a bounded linear func-
tional IT: X — R and v € Y,| v [= 1, such that Pz = II(z)v,z € Z. Also the
hyperplane X is invariant under L and the restriction Ly : X — X satisfies

r{lx) =] l<1 4.7

where r denotes the spectral radius. In the sequel we can use the decomposition
z=zxz+&v(x,€) € X xR,Vz € Z and assume that Z has been renormed by
| z |= max{| = |, ] £ |}, where | . . is a norm in X (equivalent to the original one)
such that || Lx [l+< 1. (This is useful to remain in the framework of 4.1 whenever
needed. )

Given ¢ € R define the perturbed map

Ve(z) = ¥(z) —ePz,z € 0. (4.8)

Then ¥, also satisfies (2.1) and ¥.(0) = 0. Since ¥,(0) = L — ¢P and P and L
commute, the eigenvalues of ¥/ (0) are given by

o(W(0)) = {0} = {1 - e} U {An/n > 2}. (4.9)

If € # 0, 1 is not an eigenvalue of ¥,(0) so that z = 0 is an isolated fixed point of
¥, and, from the general properties of degree (see {7]),

i[¥,, 0] = signe. (4.10)
Next result studies the index when ¢ = Q.

Lemma 4.5. Assume that (2.1), (2.2) and (2.3) hold and in addition A\, = 1.
Then | i[¥,0] |< 1. Moreover there exists w C 1, an open neighborhood of z = 0,
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such that
i[¥,0] = l{resp. — 1] &= ¥, (2) # 2

Vzec@—{0},¥e > 0 [resp.Ve < 0].

Proof. We start with an application of the Lyapunov-Schmidt method to the equa-
tion

U{2)==z2 (4.11)

The equation is split into _
QU¥(z+&v)== (4.12)
¥z + Ev) = &. (4.13)

Since I — Lx is an isomorphism in X by (4.7) and 8:Q¥(0} = Lx, the implicit
function theoremn implies the existence of w, open subset of Z with 0 € w C 1,
and w : [-7,7] —+ X continuous {7 > 0) such that z € & solves (4.12) if and only
if # = w(£). Since (2.2) holds it is not restrictive to assume also that

P(z)#z Yzew— {0} (4.14)

Define T : [-7,7] — R, (€} = & — I¥(w(£) + &{v). Then (4.11} is equivalent
in @ to x = w(¢),I'(¢) = 0. The function T satisfies ['{0) = 0 and T'{¢) # 0 if
0 <| £ |< 7, because z = 0 is a fixed point and (4.14) holds. We distinguish four
possible cases:

1) T'(¢) > 0,¥¢ € [-7,7] — {0},
2) T'(¢) <0,V¢ € [-7,7] - {0},
3) £T(¢) > 0,¥¢ € [-7,7] - {0},
4) 6[‘(5) < Ds VE € [-TI T] - {0}

and prove the result in several claims.

Claim 1. If 1) or 2) hold then i{[¥,0] =

Assume for instance that 1) holds and cons1der the equation ¥(2) = z+Au (>
0). Applying the Lyapunov-Schmidt method to this equation one obtains (in @)
x = w(£), F(£} + A = 0. The second equation cannot have a solution if I is positive
g0 that deg[l — ¥,w, —Av] = 0if A > 0. The continuity properties of degree imply
that 0 = deg[l — ¥,w, 0] = #[¥,0].
Claim 2. If 3) [resp. 4)] holds then ¥.(2) # 2z Vz € @— {0}, Ve > 0 [resp.Ve < 0.

The equation ¥.(z) = z is equivalent in @ to z = w(f), () +e£ =0. If e is
positive and 3) holds the second equation only admits the solution £ = 0.
Claim 3. If 3) [resp. 4)] holds then i[¥,0] = 1 [resp. —1].

If 3) holds, claim 2 proves that I -~ ¥ is homotopic in w to I — ¥, when € > 0.
Then deg{l — ¥.,w,0] = deg[l — ¥,w,0] = {[¥,0]. Applying (4.10) and claim 2
again one obtains degff — ¥, w,0] = i[¥,, 0] =1ife > 0.




392 Rafael Ortega

4.3 Conclusion.

Let us start with a preliminary result on the dynamics of one-dimensional maps.

Lemma 4.6. Let f.: {-6,6] —+ R (§ > 0) be a continuous function with £(0) = 0
and satisfying

§7(6) > 0 and £# f(£) for each ¢ € [-6,8] - {0}. (4.15)
The following statements are equivalent:

a) £ = 0 is a.5. with respect to f,
b) & =0 is L.s. with respect to f,
¢} —8 < f(—6) <0 < f(6) < 6.

This result is essentially a reformulation of Theorem 2.2 when dimZ = 1 and
the proof is elementary. We are now able to prove Theorem 2.2. The implication
i) = ii) is trivial, while i) = iii) follows from Proposition 2.1. We prove iii) = i)
and ii) = i).

i) = i),
If Ay # 1, i[¥, 0] = sign(1 — A;) and iii) imply that A; < 1. Therefore r(¥(0)) < 1
and the linearization principle proves i). From now on we assume A1 = 1. Let
€n — 0 be a sequence with 0 < ¢, < 1— || Ly |}, for each n > 1 and let L
denote the perturbation of ¥ given by (4.8). We apply Proposition 4.4 where Z
is split as in (4.6), A, = Lx,B, = {1 — e}y, F, = V., Foo = ¥. Then (4.3)
is verified and there exist § > 0, a subsequence of F, that we call again F,, and
a sequence of functions uy : [-6,8] — X,u,(0) = 0, such that (4.4), (4.5) hold
and the curve L, = {un(£) 4+ £v/ | £ |< 6} is a center manifold with respect
to Fy. Define f, : [-6,8] — R, fa(€) = IIFu(ua(€) + £v),1 < n < o0o. Then
fn is continuous and, from (4.5), fu — foo unifotmly in [-8,8]. Also, f,(£) =
(1 — €n)f + T (un(€) + £v) where T(z) = ¥(2) — ¥(0)2. It follows from (4.4)
that the asymptotic formula stated below is valid uniformly with respect to =,
falf) = (1 — €)§ + o(€) as € — 0. It is assumed that & is chosen small enough in
order to get £f(£) > 0if 0 <} £ |< 6,1 € n < oo. Using the local invariance of
L and restricting the size of 4 if needed, it can be assumed that if £ € [~8, 6]
is a fixed point of f, then u,(£) + £v is a fixed point of F,,1 < n < o0. Let w
be the open set in Z given by Lemma 4.5 and such that the only fixed point of
F, in & is the origin (again iii) has been used). It is not restrictive to assume
¥n Cw V n,1<n < oo In consequence £ = 0 is the only fixed point of f,
and (4.15) is valid for f = f. The projection II becomes a homeomorphism when
it is restricted to X,. Denote it by II, : X, — [~#§, 8]. From the definition of f,
one has f, =11, o F,, o111, so that f, and Fy |z, are conjugate maps. Therefore
the stability properties of £ = 0 with respect to f, and of z = 0 with respect to
Fyz, are the same. Now if n < oo it follows from (4.9) that r(F.(0)) < 1 so that
z = 0 is asymptotically stable with respect to F,,. Therefore £ = 0 is also a.s.
with respect to f,. From Lemma 4.6, -6 < f,(—6) < 0 < fn.{(6) < 6,Vn < oo.
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Letting n — 00, =8 € foo{—8) € 0 € foo(6) < 6. The previous inequalities must
be strict since (4.15) is valid for f,, = fo. Again Lemma 4.6 implies that £ =0 is
a.s. with respect to foo. Finally we apply Proposition 4.3 because Fi |y, and foo
are conjugate.
ity = i)

The classical linearization results say in our case that Ay < 1 if ii) holds while
i) holds if A\; < 1. Thus, we can restrict to the case Ay = 1. As in the previous
implication construct a center manifold X, with respect to ¥ and define the
function fo : [-8,8] — R which is conjugate to ¥|p_ and satisfies (4.15). From
Lemma 4.6 and ii} we conclude that £ = 0 is a.s. with respect to fo, and again use
Proposition 4.3.
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