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Abstract. Motivated by recent experiments studying the dynamics of config-
urations bearing a small number of vortices in atomic Bose-Einstein conden-
sates (BECs), we illustrate that such systems can be accurately described by

ordinary differential equations (ODEs) incorporating the precession and inter-
action dynamics of vortices in harmonic traps. This dynamics is tackled in
detail at the ODE level, both for the simpler case of equal charge vortices,

and for the more complicated (yet also experimentally relevant) case of op-
posite charge vortices. In the former case, we identify the dynamics as being
chiefly quasi-periodic (although potentially periodic), while in the latter, irreg-
ular dynamics may ensue when suitable external drive of the BEC cloud is also

considered. Our analytical findings are corroborated by numerical computa-
tions of the reduced ODE system.

1. Introduction. The study of vortices is a ubiquitous theme of exploration within
nonlinear mathematics and physics [1]. Such topological coherent structures arise
in a wide array of physical contexts ranging from fluid mechanics [2] to nonlinear
optics [3, 4, 5] and the physics of superfluids, including Bose-Einstein condensates
(BECs) [6, 7, 8, 9, 10, 11, 12, 13]. Among the above, BECs were shown to form a
pristine setting where many of the exciting nonlinear dynamical features of single-
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and multi-charge vortices, as well as of vortex crystals and vortex lattices, can
be theoretically studied, as well as experimentally observed. In particular, after
the first experimental observation of vortices in BECs [14], numerous fundamen-
tal experiments ensued. These included the production of few vortices [15] upon
stirring the BEC [16] beyond a critical angular speed [15, 17, 18], but also the pro-
duction of robust vortex lattices [19]. Furthermore, vortices were found to result
from the interference of BEC fragments [20] (see also Refs. [21,22,23]), or to spon-
taneously occur due to the Kibble-Zurek mechanism [24]. It should also be noticed
that, apart from single charge vortices, higher charge vortices were also studied in
experiments [25, 26]. All the above important experimental achievements were ac-
companied by intense theoretical studies that have, by now, been summarized in a
large number of reviews [8, 9, 10,11,12,13].

In the present work, we will focus our attention on a topic of more recent interest,
namely the dynamical evolution of few-vortex states. This is a line of research
that was initiated theoretically by establishing the existence and robustness of the
prototypical state of a so-called vortex dipole [27]. It was then more systematically
examined for more complex states, such as vortex tripoles and quadrupoles [28,
29], while near-linear [30] and even strongly nonlinear/non-equilibrium effects [31]
were also considered. Variants of this problem, involving dynamics of vortices in
toroidal [32, 33] and anisotropic [34] traps, have been examined too. However, this
area has acquired special interest very recently, due to a large range of experimental
activities that have led to the creation of such few-vortex clusters, via a diverse
array of experimental methods. The work of [35] produced one or more vortex
dipoles by appropriate dragging of a defect through the condensate. On the other
hand, the work of [36] was successful in producing three-vortex states of different
types, through quadrupolar excitations of the BEC. It produced both 3 same-charge
vortices in equilateral triangle configurations, and aligned configurations involving
two vortices of one charge and one vortex of the opposite charge between them
(the so-called tripole state). Lastly, the very recent work of [37] enabled, through
its introduction of a minimally destructive imaging technique, the visualization of
a time-sequence of vortex dipole dynamics near- and far from equilibrium. These
recent experimental results have created a significant impetus for further theoretical
study that will elucidate the dynamical properties of such vortex clusters. Such an
effort should be conducted both at the level of partial differential equation (PDE)
dynamics, in the context of the fundamental Gross-Pitaevskii mean-field model [6,
7,8], as well as at the level of ordinary differential equations (ODEs), describing the
precessions of vortices within the confining potential, and their mutual interactions.
Our previous work [38] was a first step towards connecting the former and latter
direction. The aim of the present work is to provide a systematic analysis of the
ODE perspective (although we briefly discuss the connection of the PDE and ODE
descriptions for completeness).

In what follows, we consider the dynamics of vortices at the level of ODEs, both
for the case of same charge and for that of oppositely charged vortices. We find
that the case of same charge (two-) vortices can be analytically tackled in a closed
form, upon consideration of the relevant equations in the center of mass frame.
We find that the motion of the vortices may be periodic or quasi-periodic, but is
always analytically tractable. Notice that for both cases of same and oppositely
charged vortices, we also consider a situation where the trap frequency (and, thus,
the prefactor characterizing the precession of the vortex within the harmonic trap) is
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time-dependent. In the case of opposite topological charges, the use of the center of
mass frame is still relevant, however the dynamical picture is more complicated: in
principle, the relevant evolution may not only be periodic or quasi-periodic but, in
principle, it can also be chaotic (upon time modulation of the precession frequency).
In addition, motivated by our numerical computations, as well as the work of [28,29],
we briefly consider some settings with 3 aligned vortices, or 4-vortex quadrupolar
states.

Our presentation is structured as follows. In section 2, we give the general setup
of the vortex cluster problem. Then, in section 3, we consider the equal charge
two-vortex case. Section 4 consists of the opposite charge, two-vortex state. In
turn, section 5 briefly considers the dynamics of different numbers of topological
charges, while Section 6 summarizes our findings and presents our conclusions.

2. Setup. Throughout our analysis below, we will consider a BEC confined in a
highly flat (alias “disk-shaped”) trap, which supports stable vortex structures. This
quasi-2D regime is achieved for small in-plane trapping frequency ωr compared to
the transverse trapping frequency ωz. Defining the ratio between these frequen-
cies as Ω = ωr/ωz, and considering sufficiently low temperatures, the macroscopic
dynamics of the BEC can be well approximated by a (2 + 1)-dimensional Gross-
Pitaevskii equation (GPE), expressed in the following dimensionless form [8]:

i∂tu =

[

−1

2
∇2 + V (r) + |u|2 − µ

]

u. (1)

Here, u(x, y, t) is the (2D) macroscopic wave function normalized to the number
of atoms N =

∫

|u|2dxdy (with |u|2 being the atomic density), r2 = x2 + y2,
∇2

r = ∂2
x + ∂2

y is the in-plane Laplacian, µ is the chemical potential (or the solution
frequency), and the confining potential is given by

V (r) =
1

2
Ω2r2. (2)

In the above equation, the density |u|2, length, time and energy are respectively

measured in units of 2
√

2πaaz, az, ω−1
z and ~ωz, where a and az =

√

~/mωz denote,
respectively, the s-wave scattering length and the transverse harmonic oscillator
length (m is the atomic mass) [8].

In this work we are interested in the dynamics of interacting vortices trapped
in the harmonic trap V (r). The vortex dynamics is driven by density and phase
gradients of the background where the coherent structure is placed. In our case,
there are two effects that need to be taken into account:

(i) The movement induced by the gradient of the background density provided by
the harmonic trap that makes the BEC density inhomogeneous (the density
profile resembles an inverted parabola in the so-called Thomas-Fermi approx-
imation, relevant to the case of sufficiently large numbers of atoms [8]). This
background gradient is responsible for the precession of vortices about the
center of the harmonic trap [39, 40, 41, 42]. This effect is captured by the fol-
lowing ODEs, describing the effective motion of the vortex center (x(t), y(t)),
for small displacements of the vortex from the center of the trap [38,43]:

ẋ = − ωpr S y, (3)

ẏ = + ωpr S x, (4)
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where S denotes the vorticity (alias topological charge) of the vortex and ωpr

its precessional frequency. In a harmonic trap with frequency Ω the preces-
sional frequency can be well approximated by [38]

ωpr =
Ω2

2µ
log
(

Λ
µ

Ω

)

, (5)

where Λ is a numerical factor taking the (approximate) value Λ ≈ 8.88 ≈ 2
√

2π
for a vortex located infinitesimally close to the origin (as the vortex departs
from the origin the value of Λ accordingly increases [38]).

(ii) The presence of another vortex induces changes in the background (density
and phase) that, in turn, will induce dynamics of the vortex under considera-
tion. Based on the analogy with fluid vortices [2], it has been argued that BEC
vortices share similar interaction laws and dynamical equations. In particular,
two vortices sitting on a constant background and placed sufficiently far away
from each other (i.e., a few times the width of their core) at positions (xm, ym)
and (xn, yn), interact through the effective dynamical equations [10,11,43]:

ẋm = − b Sn
ym − yn

r2
mn

, (6)

ẏm = + b Sn
xm − xn

r2
mn

, (7)

where rmn =
√

(xm − xn)2 + (ym − yn)2 is the vortex separation, (Sm, Sn)
their respective vorticities such that |Sm| = |Sn| (i.e., they have the same
charge strength but might have opposite sign) and b is a numerical factor that
varies with S ≡ |Sm| = |Sn|; in the case of unit charge vortices (S = 1), the
value of b ≈ 0.975 was found to yield good agreement with results obtained
in the framework of the GP Eq. (1) [38]. For all numerical results presented
throughout this work we will consider, for simplicity of exposition, that b = 1.
The net effect of this vortex-vortex interaction is that two vortices of the
same charge will rotate around each other, with a constant angular velocity
depending on their separation, while two oppositely charged vortices will travel
parallel to each other, with a constant linear velocity depending on their
separation.

Combining now both effects, namely vortex precession (induced by the harmonic
trap) and vortex-vortex interactions, the effective dynamics of a small cluster of in-
teracting vortices (of potentially different charges) can be described by the following
system of ODEs:

ẋi = −c(t)Siyi − b
∑

k 6=i

Sk
yi − yk

rα
ik

, (8)

ẏi = +c(t)Sixi + b
∑

k 6=i

Sk
xi − xk

rα
ik

, i = 1 . . . n, (9)

where (xi, yi) and Si are, respectively, the coordinates and charge of vortex i, rik =
√

(xi − xk)2 + (yi − yk)2 the separation between vortex i and vortex k, α and b
are two positive numerical constants, and the trap coefficient c(t) is positive and
may vary with time (see below). In this work, we leave α as a parameter since
it does not affect the results that will be presented below. Furthermore, this, in
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principle, enables the consideration of more general interaction laws other than the
vortex-vortex one (which is the main motivation herein) as a function of the mutual
separation of the interacting “particles”. We will also allow the trap precession
frequency c(t) to be time dependent. In the case of a static background cloud the
precession close to the background center is given by Eqs. (3)-(4) as c(t) = ωpr =
(Ω2/(2µ)) log(Λµ/Ω). However, as it is well known, the introduction of vortices
in the BEC cloud inevitably induces dipolar (as well as higher order) excitations
of the background atomic cloud. These excitations may be incorporated within
the effective particle model as small periodic variations of the trap coefficient (or
precession rate). Therefore, we consider the general scenario of a time-varying trap
coefficient that is periodic in time with minimal period T = 2π/ω. Since one can
rescale time, let us consider, for the sake of definitiveness, a trap coefficient that in
the absence of excitations of the BEC is normalized to unity, and incorporates a
periodic perturbation that takes into account possible excitations of the cloud; in
other words, we consider that

c(t) = 1 + ǫ sin(ωt), (10)

where ǫ and ω denote, respectively, the (small) amplitude and the frequency of the
trap perturbation induced by the excitations of the atomic cloud. An example on
how the presence of a vortex alters the properties of the underlying BEC cloud is
depicted in Fig. 1. The figure shows how the width of the cloud varies periodically
in time due to the presence of the precessing vortex. This produces an effective
trapping constant that is perturbed periodically in time, that, in turn, induces a
periodic perturbation on the precession frequency2.

In the case of two vortices (which is the main focus of this work), the equations
of motion reduce to

ẋ1 = −c(t)S1 y1 − b S2
y1 − y2

rα
,

ẏ1 = +c(t)S1 x1 + b S2
x1 − x2

rα
,

ẋ2 = −c(t)S2 y2 − b S1
y2 − y1

rα
,

ẏ2 = +c(t)S2 x2 + b S1
x2 − x1

rα
,

(11)

where, for simplicity, r ≡ r12 is the distance between the two vortices and |S1,2| = S.
An example of the comparison between the results obtained in the framework of
the PDE model (1) and those obtained by this system of reduced ODEs in shown in
Fig. 2. The results presented in this figure use a constant trap coefficient determined
by the trap strength and, in turn, related to the cloud’s width before the vortices
are seeded. As it is clear from the figure, there is a very good qualitative match
between the original PDE dynamics and the reduced ODEs. A number of factors
are responsible for the absence of a detailed quantitative match between the two:
(a) the seeding of the vortices in the BEC cloud induces oscillations of the width

2We should note in passing that experimental protocols may render important the consideration
of alternative functional forms of c(t) as well; in particular, in the work of [37], a minimally
destructive imaging technique was introduced that periodically eliminated a small atomic fraction

from the condensate in order to image it. A byproduct of this is the reduction of the atomic
density and hence of the chemical potential which should lead to an increase of the precession
frequency. Hence, non-oscillatory variations of c(t) may be relevant to consider, although we will

not pursue this aspect in further detail herein.
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Figure 1. (Color online) Variations of the BEC cloud in the
presence of a precessing vortex of charge S = 1 initially placed
at (x1(0), y1(0)) = (1, 0), as they result from the full nu-
merical integration of Eq. (1). The corresponding value in
the x- and y-direction is plotted with solid (blue) and dashed
(green) lines, respectively for all panels. At each time the
cloud was fitted to a Thomas-Fermi profile u2

TF(x, y) = µ −
1
2

(

Ω2
x(x − xTF)2 + Ω2

y(y − yTF)2)
)

by least-square fitting the pa-
rameters (Ωx,Ωy, xTF, yTF). (a) Time series of the effective trap-
ping strengths (Ωx,Ωy). (b) Time series of the x and y Thomas-
Fermi radii (i.e., width of the BEC cloud) defined by Ri =

√
2µ/Ωi.

(c) The corresponding center of the BEC cloud (xTF, yTF). (d) The
position of the vortex as it precesses around the BEC cloud. The
trap strength is Ω = 0.2 and the chemical potential µ = 1. The
period of oscillation of the BEC cloud width corresponds to a mea-
sured breathing mode with a frequency 2Ω while the cloud center
oscillates with frequency Ω. The measured frequency of the pre-
cessing vortex is ωpr = 0.0801 while its estimation from Eq. (5) is
ωpr = 0.0759. The estimation is slightly lower that the measured
value due to the fact that the value for the parameter Λ = 8.88 in
Eq. (5) is valid for a vortex located in the immediate vicinity of
the trap center, while here the vortex is macroscopically displaced
from the center.

and center of the BEC cloud (cf. Fig. 1) that, in turn, change the effective trap
coefficient c(t); and (b) the value of the parameter Λ in Eq. (5) should be adjusted
(increased) for vortices that are not infinitesimally close to the trap’s center [38].

3. The case S1 = S2. In this section we will study the case of S1 = S2 = S, namely
the dynamics of two equal charge vortices. In fact, with a simple time rescaling we
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Figure 2. (Color online) Trajectories for two vortices of charges
S1 = 1 and S2 = −1 in a BEC with chemical potential µ = 1
trapped inside a harmonic trap of strength Ω = 0.05. The vortices
are initially placed at (x1(0), y1(0)) = (1, 0) and (x2(0), y2(0)) =
(4, 0). The trajectories corresponding to the full PDE (1) are de-
picted by the (blue) crosses and (green) circles while the trajectories
corresponding to the reduced ODE system (11) are depicted by the
(blue) solid line and (green) dashed line, respectively.

can consider, without loss of generality, S = S1 = S2 = 1. Then, the system reads

ẋ1 = −c(t) y1 − b
y1 − y2

rα
,

ẏ1 = +c(t)x1 + b
x1 − x2

rα
,

ẋ2 = −c(t) y2 − b
y2 − y1

rα
,

ẏ2 = +c(t)x2 + b
x2 − x1

rα
.

(12)

We will seek the general solution of this system (which is, generally, a hopeless task
for most nonlinear systems). As a first step, upon considering the new variables,

s1 = x1 + x2, s2 = y1 + y2, d1 = x1 − x2, d2 = y1 − y2, (13)

we can readily obtain the following equations for s1 and s2:

ṡ1 = −c(t) s2,

ṡ2 = +c(t) s1.
(14)
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Figure 3. (Color online) Periodic orbit, from the reduced ODE
system (12), corresponding to two vortices of charges S1 = 1 (see
solid [blue] line) and S2 = 1 (see dashed [green] line) with con-
stant trapping coefficient c(t) = 0.1, vortex-vortex interaction co-
efficient b = 1 and α = 2. The vortices are initially placed at
(x1(0), y1(0)) = (2, 0) (see [blue] square) and (x2(0), y2(0)) = (4, 0)
(see [green] circle). The top left panel depicts the actual orbit in
(xi, yi) coordinates, while the top right panel depicts the orbits
in the transformed variables (s1, s2) (see outer [blue] circle) and
(d1, d2) (see inner [green] circle). The middle and bottom panels
depict the time series of the original and rescaled variables, respec-
tively. Note that for clarity of exposition the orbit is only shown
for half of its period, namely, when the first (second) vortex reaches
the initial condition of the second (first) vortex.

By direct inspection, such a linear system has the general solution

s1 = A cos[C(t) + B],

s2 = A sin[C(t) + B],
(15)
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Figure 4. (Color online) Same as in Fig. 3 but for a quasi-periodic
orbit for a constant trapping coefficient c(t) = π/20.

where C(t) =
∫ t

0
c(s)ds and A,B ∈ R. This way, we have reduced the problem to

two dimensions. For d1 and d2, the equations of motion read

ḋ1 = −c(t) d2 −
2bd2

(d2
1 + d2

2)
α/2

,

ḋ2 = +c(t) d1 +
2bd1

(d2
1 + d2

2)
α/2

.

(16)

Here, we introduce polar coordinates:

d1 = r cos ϕ, d2 = r sin ϕ,

with r being the same as in Eq. (11). Now, utilizing the equation r2 = d2
1 + d2

2, we
can easily prove that

rṙ = d1ḋ1 + d2ḋ2 = 0,

that is the radial component of system (16) is constant. In other words, r is a
constant of motion for our original system. For the angular variable, using ϕ =
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Figure 5. (Color online) Same as in Fig. 3 but for a quasi-periodic
orbit for c(t) = 0.1(1 + ǫ sin(ωt)) and b = 1 with ǫ = 0.25 and
ω = π/30.

arctan (d2/d1) yields

ϕ̇ =
d1ḋ2 − d2ḋ1

r2
=

2b

rα/2
+ c(t).

Since r is constant, the above equation can readily be integrated leading to the
result

ϕ(t) =
2b

rα/2
t + C(t) + D,

where D is an arbitrary constant. Thus, we have integrated the system of equations
of motion (16) for two vortices of equal charge. The general solution of this system
reads

d1 = R cos

(

2b

Rα/2
t + C(t) + D

)

,

d2 = R sin

(

2b

Rα/2
t + C(t) + D

)

,

(17)

where D and R are arbitrary constants.
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Figure 6. (Color online) Same as in Fig. 5 but for a larger pertur-
bation strength of ǫ = 2.5. The apparent complex motion displayed
in the top-left panel (in original coordinates) is nothing but a quasi-
periodic orbit that is better elucidated in transformed coordinates
in the bottom panel.

The above result shows that the solutions of the problem of the equal charge
vortices, in the new coordinate system (s1, s2) and (d1, d2), lie in between the two
circles defined by Eqs. (14) and (17). Figures 3–6 demonstrate typical examples of
the corresponding orbits for different types of forcing c(t). Now, it is straightforward
to go back to the original variables and write the initial conditions for (xi, yi) in
terms of the arbitrary constants A,B,R,D. In this way, we obtain the explicit
solution for the initial value problem of the system (12). Of course, everything is
valid if c is constant, but also for c periodic or quasi-periodic. In the two first cases,
generically one finds quasi-periodic solutions and there is a sequence of periodic
solutions that can be obtained by fine-tuning R. For example, Fig. 3 depicts a
periodic orbit for c(t) = 0.1 and b = 1. It is easy to observe that, since c(t)
and b are commensurate, the resulting orbit is 40π-periodic (the figure only shows
half of the period). Since the dynamics for (s1, s2) and (d1, d2) are uncoupled, it
is trivial to generate a quasi-periodic orbit by taking a constant c(t) that is not
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commensurate to b. An example of this quasi-periodic case is depicted in Fig. 4
for c(t) = π/20 and b = 1. Another straightforward way to obtain a quasi-periodic
orbit is to introduce a time-varying c(t) = c0(1+ǫ sin(ωt)) as introduced in Eq. (10)
for a sufficiently small perturbation amplitude ǫ with a frequency ω that is not
commensurate with b. An example of this quasi-periodic behavior is depicted in
Fig. 5 for c(t) = 0.1(1+ ǫ sin(ωt)) and b = 1 with ǫ = 0.25 and ω = π/30. Finally, if
the perturbation strength ǫ is sufficiently strong, the vortices move in an apparently
complex motion as depicted in Fig. 6 where the only change with respect to the
previous case is a tenfold increase of ǫ (from 0.25 to 2.5). It is interesting that
the apparent complex motion in the original coordinates (x1, y1, x2, y2) (see top-
right panel in the figure) is just a quasi-periodic motion that becomes clearer in the
coordinates (s1, s1, d2, d2) (see lower panel in the figure).

The case under consideration, namely that of equal charge vortices, has two
constraints as it is evident from the circular orbits existing in the transformed
coordinates (see top right panels in Figs. 3–6). Therefore, the dynamics of two
equal charge vortices has only two effective degrees of freedom, a feature which
precludes the existence of chaotic orbits (notice the differences, in this regard, to
the opposite charge vortex pair considered below). Another interesting feature for
all orbits of the equal charge case is that (in the original coordinates) they are
always contained in the annulus of inner radius Rm and outer radius RM where
Rm = min{r1(t

∗), r2(t
∗)} and RM = max{r1(t

∗), r2(t
∗)} where r1(t

∗) and r2(t
∗)

are the distances of the vortices to the origin at any time t∗ when the vortices
are aligned with the origin —a particular t∗ for all the numerics shown in this
section is t∗ = 0 since we always start with y1(0) = y2(0) = 0. This fact is a
direct consequence of the circular shape orbits in transformed coordinates given in
Eqs. (14) and (17) where s2

1 + s2
2 = A2 and d2

1 + d2
2 = R2.

4. The case S1 = −S2. In this section, we study the case of S1 = −S2, namely the
dynamics of two opposite charge vortices. In fact, with a simple time rescaling, we
can use S = S1 = −S2 = 1 without loss of generality. The first step in identifying
the relevant vortex dynamics is a reduction to a radially symmetric Newtonian
system. Let us again consider the change of variables (13). The equations of motion
for (s1, s2) and (d1, d2) yield, respectively:

ṡ1 = +2b
d2

rα
− c(t) d2,

ṡ2 = −2b
d1

rα
+ c(t) d1,

(18)

and
ḋ1 = −c(t) s2,

ḋ2 = +c(t) s1.
(19)

Using the change of time τ = C(t) ≡
∫ t

0
c(s)ds yields the equivalent system

ṡ1 = +f(τ)
d2

rα
− d2,

ṡ2 = −f(τ)
d1

rα
+ d1,

ḋ1 = −s2,

ḋ2 = +s1,

(20)
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Figure 7. (Color online) Same as in Fig. 3 but for opposite charge
vortices S1 = 1 (see solid [blue] line) and S2 = −1 (see dashed
[green] line) with constant trapping coefficient c(t) = 0.1, vortex-
vortex interaction coefficient b = 1 and α = 2. The vortices are
initially placed at (x1(0), y1(0)) = (2, 0) (see [blue] square) and
(x2(0), y2(0)) = (4, 0) (see [green] circle) . The top left panel de-
picts the actual orbit in (xi, yi) coordinates while the top right
panel depicts the orbits in the transformed variables (s1, s2) (see
outer [blue] circle) and (d1, d2) (see inner [green] circle). The mid-
dle and bottom panels depict the time series of the original and
rescaled variables, respectively.

where f(τ) ≡ 2b/c(t(τ)). This system is periodic with the same period (T ) as the
perturbation in Eq. (10) and it is equivalent to the following system of second order
ODEs:

d̈1 + d1 = f(τ)
d1

rα
,

d̈2 + d2 = f(τ)
d2

rα
.

(21)
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Figure 8. (Color online) Same as in Fig. 7 but for an irregular
orbit corresponding to c(t) = 0.1(1+ǫ sin(ωt)) and b = 1 with ǫ = 1
and ω = 0.12.

Recalling that r =
√

d2
1 + d2

2, one notes that this Newtonian system has a radial
symmetry. This type of systems plays a central role in Celestial Mechanics and
has been studied by many authors (see the review [44] and the more recent papers
[45,46,47]).

In Figs. 7 and 8 we depict two typical scenarios for the interaction dynamics of
two opposite charge vortices. Contrary to the case of equal charge vortices that has
two constraints (see previous section), the case of opposite charge vortices only has
a single constant of motion, the angular momentum, as described below. Therefore,
the opposite charge pair allows for more complex trajectories. Figure 7 depicts
a quasi-periodic orbit in the absence of periodic perturbations (i.e., c(t) = 1) for
b = 1 and α = 2. More interesting, however, is the appearance of irregular motion
as one increases the perturbation strength ǫ; in this case, the quasi-periodic orbit
is eventually destroyed and is apparently replaced by an irregular orbit as depicted
in Fig. 8. A detailed study of the chaotic properties and the parametric regions
thereof falls outside of the scope of the present manuscript and will be reported in
a future publication.
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4.1. Analysis of the radially symmetric system. The main feature of a radially
symmetric planar system is the conservation of angular momentum. If we consider
polar coordinates

d1 = r cos(ϕ), d2 = r sin(ϕ),

the system (21) is equivalent to

r̈ + r =
ℓ2

r3
+

f(τ)

rα−1
, (22)

ϕ̇ =
ℓ

r2
, (23)

where ℓ ≡ r2ϕ̇ = d1ḋ2 − d2ḋ1 = s1d1 + s2d2 = const. is the angular momentum
of the solution (d1, d2). Note that Eq. (22) does not depend explicitly on ϕ, so ℓ
can be regarded as an independent parameter. If we find a T -periodic solution of
Eq. (22), then the angle is given by

ϕ(τ) =

∫ τ

0

ℓ

r2
ds

and we have that

r(t + T ) = r(t) ϕ(t + T ) = ϕ(t) + θ,

where θ ≡ ϕ(T ) =
∫ T

0
ℓ/r2ds is the rotation number. Coming back to the Cartesian

coordinates d = (d1, d2) and using the more convenient complex notation, we have

d(t + T ) = eiθ
d(t).

Therefore, in general we get a quasi-periodic solution of the original system. If
θ = 0 (stationary case) the solution d is T -periodic, whereas if θ = 2π/k then d is
kT -periodic (subharmonic of order k).

4.2. Constant trapping. If c(t) is a positive constant, then Eq. (22) is autonomous

r̈ + r =
ℓ2

r3
+

2b

crα−1
,

and, in fact, integrable. For any ℓ, there exists a unique equilibrium rℓ. Here,
however, we should mention the following. Since ℓ is the (constant) angular mo-
mentum, rℓ gives a true equilibrium (constant solution) of the original system only
if ℓ = 0. When ℓ 6= 0, we have an equilibrium on the amplitude or distance between
vortices (this distance is constant) coupled with a rigid rotation. Such a solution is
an equilibrium in the inertial frame; notice that it is common in Celestial Mechanics
to speak about equilibria, although in fact they are rigidly rotating.

The energy function

V (r, ṙ) =















ṙ2

2
+

r2

2
+

ℓ2

2r2
+

2b

c(α − 2)rα−2
if α 6= 2

ṙ2

2
+

r2

2
+

ℓ2

2r2
+

2b

c
ln r if α = 2

(24)

is constant along the orbits, therefore the orbits are the level sets of V , which are
closed curves surrounding the equilibrium rℓ. Such equilibrium is a minimum of
the energy function, therefore it is stable in the Lyapunov sense. Note that this
equilibrium was studied in Ref. [31]; see also Ref. [38].
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Figure 9. (Color online) Orbits generated around the neutrally
stable stationary points (see black stars) by perturbing along the
“rotating” direction (bringing vortices further apart from the cen-

ter) with eigenfrequency w0 =
√

2 (see text), i.e., with period

T0 = 2π/
√

2 ≈ 4.4429. The left panels correspond to the orbits
with coordinates (xi, yi) while the right panels corresponds to the
time series for x1(t) and y1(t). The trapping and vortex-vortex
coefficients are c(t) = 1 and b = 1 and α = 2. Notice the presence
of two timescales in the motion: the slow semi-circular oscillation
and the fast (near-vertical) motion.

In the case ℓ = 0, the equilibrium r0 = (2b/c)
1/α

can be explicitly computed.
The associated natural (angular) frequency is w0 =

√
α. For the physically relevant

case α = 2, rℓ is the positive solution of the biquadratic equation

r4 − 2b

c
r2 − ℓ2 = 0.

The solution is

rℓ =

√

b

c
+

√

b2

c2
+ ℓ2,

and the associated natural frequency is

wℓ =











1 +
3ℓ2

(

b
c +

√

b2

c2 + ℓ2
)2 +

2

1 +
√

1 + c2ℓ2

b2











1/2

.

In Fig. 9 we depict typical orbits close to the fixed points (black crosses). The

orbits correspond to initial conditions close to the equilibrium point r0 = (2b/c)
1/α

perturbed along the eigenvector with eigenfrequency w0 =
√

α that describes rotat-
ing orbits about the fixed points. The perturbation corresponds to separating the
vortices out from the fixed points. It is interesting to note that the orbits emanat-
ing from these displacements are linearly (neutrally) stable and that they generate
closed orbits. In consonance with the above eigenvalue study near the equilibrium
points, for small displacements we can observe that the orbits have a period of
T0 = 2π/ω0 ≈ 4.4429.

4.3. Periodic trapping. Here we consider the general case of c(t) = 1 + ǫ sin(ωt).
Equation (22) belongs to a larger family of scalar second order equations studied in
Ref. [48]. Using the approach therein, we can prove the following result.
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Theorem 4.1. Let us assume that ω > 2. Then, for any ℓ ≥ 0, there exists a
T -periodic solution of Eq. (22). Such a solution verifies the uniform bound

r(t) ≥ r∗ :=

(

2b

1 + ǫ

)1/α

cos
(π

ω

)

. (25)

Proof. We summarize the technique employed in Ref. [48]. First, ω > 2 implies
that the linear operator Lr := r̈ + r with T -periodic boundary conditions has a
positive Green’s function G(t, s). Moreover, G(t, s) can be computed explicitly. For
our purposes, it is enough to point out that

m := cot
(π

ω

)

≤ G(t, s) ≤ M := 1/ sin
(π

ω

)

and
∫ T

0

G(t, s)ds = 1 for all t.

A T -periodic solution of Eq. (22) is a fixed point of the operator

Ar =

∫ T

0

G(τ, s)

[

ℓ2

r3
+

f(τ)

rα−1

]

ds.

Now, it is possible to prove the existence of a fixed point of A by applying a
well-known result for completely continuous operators in Banach spaces, due to
Krasnoselskii [49]:

Theorem 4.2. Let X be a Banach space, and let P ⊂ X be a cone in X. Assume
that Ω1,Ω2 are open subsets of X with 0 ∈ Ω1,Ω1 ⊂ Ω2 and let A : P∩(Ω2\Ω1) → P
be a completely continuous operator such that

‖Au‖ 6 ‖u‖, if u ∈ P ∩ ∂Ω1

and

‖Au‖ > ‖u‖, if u ∈ P ∩ ∂Ω2.

Then, T has at least one fixed point in P ∩ (Ω2\Ω1).

Such a theorem can be applied to A, by taking X the Banach space of the
continuous and T -periodic functions with the norm of the supremum, the cone

P =
{

u ∈ X : min
x

u ≥ m

M
‖u‖
}

,

and the sets

Ω1 =

{

u ∈ X : ‖u‖ <

(

2b

1 + ǫ

)1/α
}

, (26)

Ω2 =

{

u ∈ X : ‖u‖ <
M

m
R

}

, (27)

with R > 0 large enough. Using the arguments of Ref. [48], all the requirements
of Theorem 4.2 can be verified (we omit further technical details for the sake of
brevity). Hence, there exists a T -periodic solution r ∈ P ∩ (Ω2\Ω1). This implies
that for all t

r(t) ≥ m

M

(

2b

1 + ǫ

)1/α

= r∗,

so that Eq. (25) holds.
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The previous result gives a continuous branch of T -periodic solutions (ℓ, rℓ) of
Eq. (22). Now we analyze the stability of such solutions.

Proposition 1. Take ℓ ≥ 0. Then, there exists an explicitly computable ωℓ such
that if ω > ωℓ then rℓ is linearly stable as a T -periodic solution of Eq. (22).

Proof. For a Hill’s equation ÿ + a(t)y = 0, with a(t) being a T -periodic function,
there exists a wide variety of stability criteria [50, 51]. Perhaps the simplest one

states that if 0 < a(t) < (π/T )
2
, then the Hill’s equation is elliptic (that is, the

Floquet multipliers are complex conjugates with norm one and not real). In our
case, the linearized equation around rℓ is ÿ + a(τ)y = 0 with

a(τ) = 1 +
3ℓ2

r4
ℓ

+
(α − 1)f(τ)

rα
ℓ

.

Now, using the bound (25) yields

0 < a(τ) ≤ 1 +
3ℓ2

r4
∗

+
(α − 1)f(τ)

rα
∗

= 1 +
3ℓ2

cos4
(

π
ω

)

(

1 + ǫ

2b

)4/α

+
(1 + ǫ)(α − 1)

(1 − ǫ) cosα
(

π
ω

) .

The right-hand side is decreasing when ω tends to +∞, therefore there exists ωℓ > 0
such that

a(τ) <
( π

T

)2

=
ω2

4
,

for all ω > ωℓ, and such ωℓ can be computed numerically.
Note that we are working in a Hamiltonian framework, therefore the stability

in the sense of Lyapunov cannot be directly derived from the first approximation
because of the possible synchronized influence of higher terms leading to resonance.
After the works of Möser [52], it is well known that the stability in the nonlin-
ear sense depends generically on the third approximation of the periodic solution.
Technically, one writes the Poincaré map in the Birkhoff’s normal form, then, if its
first nonlinear coefficient (i.e., first Birkhoff number) is nonzero, the solution is said
to be of the twist type, and it is stable in the sense of Lyapunov.

From the point of view of KAM theory [53, 52, 54], the nonlinear terms of the
Taylor’s expansion around a given periodic solution are taken into account to decide
the kind of dynamics arising around such a solution. The basic idea is to express the
system in suitable geometrical coordinates as a perturbation of a canonical system
which is integrable and, therefore, possesses invariant tori near the periodic solution.
These invariant tori are persistent under perturbations and produce barriers for the
flux trapping the orbits inside. As a byproduct, one obtains the typical KAM
scenario around the periodic solution of twist type (see Ref. [52, 55]), including
chaotic behavior derived from the existence of transversal homoclinic points for the
Poincaré mapping P, which generate Smale’s horseshoe dynamics. For more details
see Refs. [55,56].

It is possible to prove analytically the presence of KAM dynamics in Eq. (22).
In fact, a very similar equation was studied in Ref. [57]. For simplicity, we will
consider only the case ℓ = 0. By performing an analysis as in Ref. [57], we get the
following result.

Theorem 4.3. Let us assume ℓ = 0, ω >
√

α, ω 6= {3√α, 4
√

α}. Then the T -
periodic solution r0 of Eq. (22) is of twist type except possibly for a finite number
of values of ǫ.
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Proof. We only sketch the proof, since it is analogous to that of the main result
in Ref. [57]. For ǫ = 0, Eq. (22) reads

r̈ + r =
2b

rα−1
.

The unique equilibrium is r = (2b)1/α, and the assumptions on the frequency ω
imply that it is elliptic and out of resonances up to fourth order. Then the twist
coefficient can be explicitly computed as in Sec. 4 of Ref. [57], obtaining that it
is different from zero. In Proposition 1 of Ref. [57], it is proved that the twist
coefficient β(ǫ) is an analytic function of ǫ up to multiplication by an adequate
polynomial. Since an analytic function in a compact interval can vanish only in a
finite number of points, the proof is complete.

4.4. Vortex-Antivortex dynamics. In this subsection we reinterpret the above
results in our original vortex dynamical system.

Theorem 4.4. Let us assume S1 = −S2 = 1 and ω > 2. Then, system (11) has a
continuum of quasi-periodic solutions. Moreover, there exists a T -periodic solution
and a NT -periodic solution for every N ≥ N0.

Proof. In Section 4 we proved the existence of a continuous branch (ℓ, rℓ) solving
Eq. (22). By defining

ϕℓ(τ) =

∫ τ

0

ℓ

r2
ℓ

ds

we have that

rℓ(t + T ) = rℓ(t) ϕℓ(t + T ) = ϕℓ(t) + θℓ,

where θℓ =
∫ T

0
ℓ/r2

ℓ ds is the rotation number. Coming back to the original variables,
we obtain a continuous branch of quasi-periodic solutions.

When ℓ = 0, the rotation number is θ0 = 0 and we obtain a T -periodic solution.
On the other hand, the quasi-periodic solution will be in fact NT -periodic when
θℓ = T/N . So the problem is to analyze the range of the function ℓ → θℓ. Since it
is continuous, its range is an interval. Note that the estimate (25) does not depend
on ℓ, therefore for every ℓ,

θℓ ≤
∫ τ

0

ℓ

r2
∗

ds ≤ ℓT

r2
∗

.

This means that limℓ→0+ θℓ = 0. Therefore, there exists N0 > 0 such that θℓ = T/N
for some ℓ when N > N0. This finishes the proof.

Concerning the stability results, it should be observed that the presented findings
persist on the original system (11) only inside the manifold of constant angular
momentum. If the perturbation of the solution changes the angular momentum,
typical effects of higher dimensionality like Arnold diffusion may take place. On the
other hand, we have illustrated the presence of irregular dynamics on system (11),
although we cannot estimate quantitatively the size of such regions. However, this
analytic prediction has also been corroborated by our numerical results.

We finish with a different property that may be interesting.

Proposition 2. For any initial conditions of the vortices, there exists E such that

x2
1 + y2

1 = x2
2 + y2

2 + E.

That is, the vortices’ distance from the origin differs by a constant.
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Proof. It can be easily verified that d1s1 + d2s2 is a constant of motion, that is,
its derivative is identically zero. The proof is finished if we note that d1s1 + d2s2 =
x2

1 + y2
1 − x2

2 − y2
2 .

5. Multivortex dynamics. In this section, we try to briefly identify periodic
solutions of the system (8) with a higher number of vortices. To this effect, it is
convenient to rewrite the system (8) in complex variables as

i żi = −c(t)Sizi − b
∑

k 6=i

Sk
zi − zk

rα
ik

, i = 1, . . . , n. (28)

where i is the imaginary unity and zi = xi + i yi. If ‖.‖ is the Euclidean norm,
rik = ‖zi − zk‖.
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Figure 10. (Color online) Vortex trajectories, from the reduced
ODE system (28), corresponding to three vortices of charges S1 = 1
(see solid [blue] line), S2 = −1 (see dashed [green] line), and
S3 = 1 (see dashed-dotted [red] line) with constant trapping co-
efficient c(t) = 0.1, vortex-vortex interaction coefficient b = 1 and
α = 2. The vortices are initially placed at (x1(0), y1(0)) = (−3, 0)
(see [blue] square), (x2(0), y2(0)) = (0, 0) (see [green] circle), and
(x3(0), y3(0)) = (3, 0) (see [red] triangle). The left panel depicts
the actual orbit in (xi, yi) coordinates. The right panels depict the
time series of the original xi (top) and yi (bottom) variables, re-
spectively.

5.1. Three vortex dynamics. Let us begin with the case of three vortices (n = 3).

Theorem 5.1. Let us assume n = 3 and S1 = S3. Let z be a solution of the
equation

i ż = −c(t)S1z − b
(

S2 + 21−αS1

) z

‖z‖α . (29)

Then, z1 = z, z2 = 0, z3 = −z is a solution of system (28).

The proof is done by direct substitution. Interestingly, the symmetry of the
solution implies that no assumption is made over S2 —however, the rotation rate
of the orbit does depend on the different combinations of S1 and S2, see below.
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Figure 11. (Color online) Top set of panels: same as in Fig. 10 but
for equal charges S1 = S2 = S3 = 1. Bottom set of panels: same
as in Fig. 10 but with periodic trapping c(t) = 0.1(1 + ǫ sin(ωt))
with ǫ = 0.5 and ω = 0.12.
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Figure 12. (Color online) Same as in Fig. 10 but for the for asym-
metric initial positions (x1(0), y1(0)) = (−1, 0), (x2(0), y2(0)) =
(0, 0), and (x3(0), y3(0)) = (2, 0). Top set of panels: equal charges
S1 = S2 = S3 = 1. Bottom set of panels: same charges as in
Fig. 10, i.e., (S1, S2, S3) = (+1,−1,+1).

By separating real and imaginary parts (z = x + iy), Eq. (29) is equivalent to
the system

ẋ = −c(t)S1y − b̂y

(x2 + y2)
α/2

,

ẏ = +c(t)S1x +
b̂x

(x2 + y2)
α/2

,

(30)
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where b̂ = b
(

S2 + 21−αS3

)

. This system was integrated in Section 3, in fact it is
exactly the same system as given in Eq. (16). Repeating the same arguments, the
general solution is given by

x = R cos

(

b̂

Rα/2
t + C(t) + D

)

, (31)

y = R sin

(

b̂

Rα/2
t + C(t) + D

)

(32)

where D and R are arbitrary constants.
An example of the orbit described in Theorem 5.1 is depicted in Fig. 10 where

two equal charge vortices (S1 = S3 = 1) placed diagonally opposite from each other
while the remaining vortex sits at the center with opposite charge (S2 = −1). As
it can be observed from the figure, the orbit starts with a solid rigid rotation (i.e.,
the solutions described in Theorem 5.1). However, this orbit is unstable and, after
some time (t > 250), the motion of the vortices becomes irregular. If one chooses
the central vortex to have the same charge as the diagonally opposite vortices the
corresponding orbit (see top panels in Fig. 11 where S1 = S2 = S3 = 1) is also
unstable. However, the instability does not lead to an irregular orbit as in the
previous case. In fact, as it is depicted in the top row of panels in Fig. 11, the
rigid rotation is replaced by a periodic exchange of the role of the vortices where
each vortex takes cyclic turns to occupy the center of the trap while the other two
vortices remain in rigid rotation. These periodic windows are accompanied by a
fast transitional exchange of the vortices.

Similar behavior to the unstable rigid rotation is obtained when introducing a non
constant periodic trapping. For example, in the bottom panels of Fig. 11 we use the
same configuration as in Fig. 10 but with a periodic trapping c(t) = 0.1(1+ǫ sin(ωt))
with ǫ = 0.5 and ω = 0.12. As it can be noticed, the rigid rotation circular orbit is
still preserved (as it was for the case of two equal charge vortices examined earlier),
but in this case it is quasi-periodic. As for the constant trapping case, the rigid
rotation orbit is unstable and, after some time (t > 600), settles to an irregular
motion.

On the other hand, if one starts with an asymmetric initial condition we no
longer obtain orbits with rigid rotation. However, the nature of the resulting orbits
crucially depends on the relative signs of the vortex charges. For example, if one
takes all the vortices with the same charge, in analogy to the case with two vortices
studied earlier, one should expect a more regular type of behavior than when the
vortices have different charges. This is indeed the case as it is depicted in the top
row of panels in Fig. 12 where the asymmetric initial configuration of three equal
charge vortices (Si = 1) evolves into an apparent quasi-periodic orbit. However,
if one of these vortices is imprinted with a charge that is opposite from the other
two, the resulting orbit is much more complicated as it can be evidenced from the
bottom row of the panels in Fig. 12. This case has the same configuration and
parameters as the top row of panels but the charge of the vortex at the center
has been switched (S3 = −1). The resulting irregular motion has some interesting
features, for example, the two vortices with the same charge tend to “meet” each
other from time to time and quickly rotate around each other (due to the vortex-
vortex interaction) until the other vortex disturbs them. This effect can be clearly
observed in the time series for the positions of the vortices (right subpanels) where,
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in the time interval 140 < t < 180, the first (see [blue] solid line) and third (see
[red] dashed-dotted line) vortices rotate around each other. We have observed that
this bound pair repeats itself sporadically for longer times as well.

−2 0 2
−2

−1

0

1

2

x
i

y i −2

0

2

x i

0 20 40 60 80 100
−2

0

2

t
y i

−5 0 5

−5

0

5

x
i

y i −5

0

5
x i

0 20 40 60 80 100
−5

0

5

t

y i

Figure 13. (Color online) Vortex trajectories, from the reduced
ODE system (33), corresponding to four vortices of charges S1 = 1
(see solid [blue] line), S2 = −1 (see dashed [green] line), S3 = 1
(see dashed-dotted [red] line), and S4 = −1 (see dotted [black] line)
with constant trapping coefficient c(t) = 0.2, vortex-vortex inter-
action coefficient b = 1 and α = 2. The vortices are initially placed
at (x1(0), y1(0)) = (2, 0) (see [blue] square), (x2(0), y2(0)) = (0, 2)
(see [green] circle), (x3(0), y3(0)) = (−2, 0) (see [red] triangle), and
(x4(0), y4(0)) = (0,−2) (see [black] diamond). The left panel de-
picts the actual orbit in (xi, yi) coordinates. The right panels depict
the time series of the original xi (top) and yi (bottom) variables,
respectively. The bottom panels show the same configuration but
with 2 replaced by 4 everywhere in the (symmetric) initial displace-
ments above.

5.2. Four vortex dynamics. In the case of four vortices, we can perform an
analogous analysis for the charge checkerboard configuration

+ −
− +

Theorem 5.2. Let us assume n = 4 and

S1 = S3, S2 = S4, and S1 = −S2.

Let z be a solution of the equation

i ż = −c(t)S1z − bS1

(

21−α/2 − 21−αS1

) z

‖z‖α . (33)

Then, (z1, z2, z3, z4) = (z, iz,−z,−iz) is a solution of system (28).
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Figure 14. (Color online) Same as in Fig. 13 but with the vor-
tices initially placed at (x1(0), y1(0)) = (−3, 0) (see [blue] square),
(x2(0), y2(0)) = (−1.5, 0) (see [green] circle), (x3(0), y3(0)) =
(1.5, 0) (see [red] triangle), and (x4(0), y4(0)) = (3, 0) (see [black]
diamond).
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Figure 15. (Color online) Same as in Fig. 14 but for charges
(S1, S2, S3, S4) = (+1,+1,+1,−1) (top set of panels) and
(S1, S2, S3, S4) = (+1,+1,−1,−1) (bottom set of panels).

As before, Eq. (33) is explicitly integrable. As in the case for two equal charge
vortices, this system also contains a fixed point with neutrally stable orbits around
it. A more detailed study of the fixed points and the periodic orbits existing around
them falls outside of the scope of the present paper. Nonetheless, in Fig. 13 we
depict a pair of examples of the orbits generated near the fixed point. The top
set of panels corresponds to a stable periodic orbit close to the fixed point and the
bottom set of panels corresponds to an unstable periodic orbit when the vortices are
initially located further away from the fixed point. The above results are pointers
towards generalizations in the case of higher numbers of vortices, which can, in turn,
possess periodic orbits upon suitable symmetric selection of the vortex locations.
For example in Fig. 14 we use the same charges as in Fig. 13 but with a different
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initial configuration with the four vortices aligned with alternating charges. The
result is an unstable quasi periodic orbit that eventually settles to a chaotic orbit.
If the same configuration as in Fig. 14 is used but the charges are not symmetrically
placed one immediately obtains an irregular orbit as it is depicted in the top panels
of Fig. 15. On the other hand, if the charges are chosen anti-symmetrically with
respect to the origin, it is possible to obtain stable periodic and quasi-periodic orbits
with bound vortex pairs of equal charge as depicted in the bottom panels of Fig. 15.

6. Discussion and Conclusions. It is evident that the problem of vortex inter-
action dynamics presents significant analogies with the classical N -body problem
of Celestial Mechanics. For instance, we have seen that the two-vortex interaction
is explicitly integrable, just as the 2-body problem. Concerning multi-vortex in-
teraction, the collinear solution found in Subsection 5.1 resembles the straight-line
solution for the 3-body problem given by Euler in 1767, whereas the four-vortex
solution found in Subsection 5.2 is an analogous of the equilateral Lagrangian so-
lution. Therefore, it is plausible to conjecture the appearance of more complicated
solutions like an analogous of the Chenciner-Montgomery figure-eight solution [58]
for the three-vortex case, among others.

Our aim in the present work was to explore some of the prototypical possibilities
within the vortex dynamics of predominantly the two-vortex case (of both same
and opposite topological charges). The same-charge case is apparently the simpler
one, since its solution can be derived in closed analytical form in the center of
mass frame of coordinates (even for time-dependent precession frequencies). The
opposite-charge case can become more complicated and the introduction of time-
dependent precession may in principle even lead to chaotic dynamics, while in the
same charge case, the dynamics can be, at most, quasi-periodic.

Naturally, a systematic examination of the higher number of charge cases (some
prototypical examples of which we have also considered herein illustrating their
potential for fixed points, periodic or quasi-periodic motions), as well as the iden-
tification of chaotic regions of the simplest two-opposite-charge case are among the
principal themes that deserve further exploration. Such studies are currently in
progress and will be reported elsewhere.

PJT is supported by Ministerio de Educación y Ciencia, Spain, project MTM2008-
02502. RCG gratefully acknowledges the hospitality of Grupo de F́ısica No Lineal
(GFNL) of Universidad de Sevilla, and support from NSF-DMS-0806762, Plan Pro-
pio de la University de Sevilla, Grant IAC09-I-4669 of Junta de Andalućıa, and
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Birkhäuser Boston, Boston, MA, 1993.
[45] A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: a

topological degree approach, J. Differential Equations, 244 (2008), 3235–3264.

[46] A. Fonda and R. Toader, Periodic orbits of radially symmetric systems with a singularity:

the repulsive case, Quaderno Matematico n. 592 (2009), Università di Trieste. Preprint
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