
On the motion of an oscillator

with a periodically time-varying mass

Daniel Núñez
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Abstract. The stability of the motion of an oscillator with a periodically time-
varying mass is under consideration. The key idea is that an adequate change of
variables leads to a newtonian equation, where classical stability techniques can
be applied: Floquet theory for the linear oscillator, KAM method in the nonli-
near case. To illustrate this general idea, first we have generalized the results
of [9] to the forced case; second, for a weakly forced Duffing’s oscillator with
variable mass, the stability in the nonlinear sense is proved by showing that the
first twist coefficient is not zero.
Keywords: time-varying mass oscillator, stability, twist

1 Introduction

The study of the dynamics of a single-degree of freedom oscillator with variable
mass is an important question for a variety of problems of Mechanical Enginee-
ring and Astronomy. In Celestial Mechanics, the problem of a variable mass is
closely connected with the planar oscillations of a satellite describing an elliptic
orbit around its mass center [2, 30] (see also [21] and the references therein). In
Solid and Fluid Mechanics, the general principle of conservation of mass may
be violated in many different mechanical systems in which material is expelled
or captured by some mechanism. The review [10] presents a complete biblio-
graphy with references to applied problems in different areas like Biomechanics,
Robotics, conveyor systems, fluid-structure interaction problems and many oth-
ers situations. In particular, the rain-wind induced vibrations of cables [9] is a
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relevant example, where the formation of a water rivulet along the upper part of
the cable may have a resonant effect. When the mass flow incoming on the cable
is different from the mass flow shaken off then the mass of raindrops attached to
the oscillator varies in time. According with the deduction made in [10, p.152],
this model can be described by the scalar differential equation

Mÿ = Ṁ(w − ẏ)− ky + F, (1)

where M = M(t) is the periodic total mass of the oscillator, y(t) is the dis-
placement of center mass measured form its rest, w(t) is the mean velocity at
which the mass flow is hitting or leaving the oscillator, k is the positive stiffness
coefficient of the linear restoring force and F = F (t, y, ẏ) is an external force.
The history of equation (1) goes back to 1890 with Painleé and Seeliger. A nice
relate of this history can be found in [10].

When the function M is a periodic piecewise-constant function, the stability
properties of this model have been studied in [9] for the linear unforced case
(F = 0 and w = 0) obtaining stability diagrams in the relevant physical pa-
rameters. We are also interested in the nonlinear and forced case. The key
idea of this paper is that by means a suitable change of variables, the equation
under study can be transformed in a Newtonian periodic equation of the form
x′′ = f(t, x). This is the aim of Section 2. With this approach, Section 3 re-
covers and generalizes the result obtained in [9]. On the other hand, regarding
the nonlinear oscillator (Section 4), we can achieve a rich theory for the dy-
namics of newtonian equations developed in recent years. Specially interesting
are the results revealing the type of dynamics arising near of an equilibrium
or a periodic response of the system by means the KAM theory: existence of
sub-harmonic with periods tending to infinity, conditionally periodic motions,
Smale’s horseshoes, and chaotic movements. This behavior appears generically
in absence of resonance and when one introduces a nonlinear external force in
the above oscillator. Regarding the stability theory there are interesting results
which are non local in the sense of non proximity to integrable situations. As a
particular case result, we will see that the stability diagrams made in [9] remain
almost unalterable when the nonlinear force in (1) is of Duffing type (a case
yet studied numerically in [8]), in others words we shall show that the linear
stability implies the stability in the nonlinear sense.

2 The reduction to a newtonian equation.

From now on, we assume that our model (1) exhibits a periodic dependence on
time with minimal period T > 0. Moreover, M(t) is assumed to be positive an
piecewise continuous. Under such conditions, the equation (1) can be rewritten
as a newtonian equation through a nonlinear scale of time.

Let us take a primitive function τ = τ(t) of 1/M(t) in the interval [0, T ].
More precisely the change is given by

τ = τ(t) =
∫ t

0

1/M(s)ds (2)
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As dτ/dt is always positive then this transformation is a continuous biyection
having an inverse t = t(τ) with the same property. So

dy

dt
=

dy

dτ

dτ

dt

and
dM

dt
=

dM

dτ

dτ

dt
.

Introducing these relations in (1) we arrive to the equation

d2y

dτ2
+ a(τ)y = −w∗(τ)

dM

dτ
+ f(τ, y) (3)

where

a(τ) = kM(t(τ)), w∗(τ) = w(t(τ)), f(τ, y) = M(t(τ)))F (t(τ), y) (4)

are periodic functions with the new period

T ∗ = τ(T ) =
∫ T

0

1/M(s)ds. (5)

Clearly, the equations (1) and (3) are equivalent and the dynamical proper-
ties of the solutions remain unchanged.

On the other hand, we notice that if the function M is only piece-wise
continuous (as in [9]), the term dM

dτ in (3) produces at least locally a Dirac delta
concentrated at the discontinuity points, so the equation should be considered in
the sense of distributions (see [29] for the terminology and a general exposition).
To avoid such a formal procedure we will translate the reference system in such
a way that (3) becomes a standard differential equation.

Let H(τ), H(τ + T ∗) = H(τ) be a second primitive of −w∗(τ)dM
dτ , that is,

H ′′(τ) = −w∗ dM

dτ
,

in the sense of distributions. Of course, H is a continuous function. Then, the
T ∗-periodic change of variables

y = x + H(τ) (6)

transforms the equation (3) into the equation

x′′ + a(τ)x = −a(τ)H(τ) + f(τ, x + H(τ)). (7)

Note that when w = 0 the equation (7) coincides with (3) so this change is only
necessary when the mean velocity is not null.

In conclusion, the qualitative properties of the solutions of the original equa-
tion (1) are equivalent those of equation (7). For convenience, we will return to
the more comfortable notation of t for the independent variable and hence in
the following sections we will study the equation

x′′ + a(t)x = −a(t)H(t) + f(t, x + H(t)). (8)
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3 The linear oscillator.

In this section we consider the case F = 0. By the construction done in Section
2, the dynamics is equivalent to the complete Hill’s equation

x′′ + a(t)x = −a(t)H(t) (9)

and the standard theory for periodic linear equations applies (see for instance
the monograph [16]). We will resume the most relevant facts in two separate
subsections.

3.1 Free oscillations.

If w = 0, then H ≡ 0 and (9) is the classical Hill’s equation

x′′ + a(t)x = 0, (10)

with a(t+T ∗) = a(t) for all t. The stability analysis of this equation is a classical
topic [6, 16]. To explain it perhaps will result more convenient represent the
Hill’s equation like a periodic system

x′ = y, y′ = −a(t)y (11)

or equivalently

X ′ = A(t)X, A(t) =
(

0 1
−a(t) 0

)
with X = (x, y)T . Let Φ(t) be the fundamental matrix of the above system such
that Φ(0) = I, where I denotes the identity matrix. The matrix Φ(T ∗) is called
the monodromy matrix of the equation. It is a well known fact that the stability
properties of the Hill’s equation depends on the relative position in the complex
plane of the eigenvalues of the monodromy matrix, also called the characteristic
multipliers. This is resumed by the discriminant function ∆ = trΦ(T ∗) in the
following way: the equation is stable (all solutions are bounded) if |∆| < 2,
unstable (all non-trivial solutions are unbounded) if |∆| > 2.

For the cases ∆ = ±2 the multipliers are repeated λ1 = λ2 = 1 or λ1 = λ2 =
−1 and the equation will be stable only if the monodromy matrix is diagonal.
In such cases all solutions are periodic with the same period T ∗ (λ1,2 = 1) or
2T ∗ (λ1,2 = −1).

For a general Hill’s equation, there are many classical criteria for stability,
most of them are collected in the classical book of Cesari [6]. A more recent
Lp-norm stability criterion is proved in [11].

In the case of a piecewise constant coefficient, the equation can be explicitly
integrated. As a particular example, let us analyze the case studied in [9]. In the
related literature it is customary to separate the mass M(t) = M0−m(t) > 0 in
a time invariant part M0 and a time-varying part m(t). The equation studied
in [9] is

((M0 −m(t))x′)′ + kx = 0 (12)
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where

m(t) =

{
m if 0 < t < T0

0 if T0 < t < T.
(13)

Therefore, m(t) is a piecewise constant function and m > 0 is interpreted as the
mass which is added at time T0.

The change given by (2) can be given explicitly as

τ = τ(t) =

{
t/(M0 −m) if 0 < t ≤ T0

(t− T0)/M0 + T0/(M0 −m) if T0 < t < T.
(14)

With this change the equation (12) becomes

x′′(τ) + k(M0 −m(t(τ)))x = 0. (15)

Let us rewrite this equation as

x′′(τ) + kM0(1− h(τ))x = 0 (16)

where

h(τ) =

{
ε if 0 < τ < τ0

0 if τ0 < τ < T ∗,
(17)

where ε = m/M0, T ∗ = (T − T0)/M0 + T0/(M0 − m) is the new period and
τ0 = τ(T0) = T0/(M0−m) is the new “switching time”. A Hill’s equation with a
piecewise constant coefficient is known as Meissner’s equation in the specialized
literature. The monodromy matrix Φ(T ∗) is obtained by direct integration as
follows. The fundamental matrix associated to system x′′ + kM0(1 − ε)x = 0
with initial condition X(0) = I is

Φ1(t) =
(

cos αt 1
α sinαt

−α sinαt cos αt

)
,

where α =
√

kM0(1− ε). This is the flow of the system until τ0. At this time,
the equation changes to x′′ + kM0x = 0, whose fundamental matrix with initial
condition X(τ0) = I is

Φ2(t) =
(

cos β(t− τ0) 1
β sinβ(t− τ0)

−β sinβ(t− τ0) cos β(t− τ0)

)
,

where β =
√

kM0. Finally, the monodromy matrix of equation (16) is just

Φ(T ∗) = Φ2(T ∗)Φ1(τ0).

After some elemental computations we get the discriminant

∆ = trΦ(T ∗) = 2 cos ατ0 cos β(T ∗ − τ0)−
(

α

β
+

β

α

)
sinατ0 sinβ(T ∗ − τ0).
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The discriminant results a function in the original variables k, T, T0,M0,m of
the form

∆(T, T0,M0,m) = 2 cos
√

k
M0−mT0 cos

√
k

M0
(T − T0)

− 2M0 −m√
M0(M0 −m)

sin
√

k
M0−mT0 sin

√
k

M0
(T − T0) (18)

In this context, the example analyzed in [9] is equivalent to take k = M0. Then,
our equation (12) is exactly equation (4) of the cited paper after dividing by
M0. The discriminant can be written as a function of T, T0 and the relative
mass ε = m/M0 as follows

∆(T, T0, ε) = 2 cos
T0√
1− ε

cos(T − T0)−
2− ε√
1− ε

sin
T0√
1− ε

sin(T − T0) (19)

This formula is in consonance with the one deduced in [9]. Accordingly, differ-
ent diagrams of stability for our oscillator can be easily plotted. If we fix the
parameter ε we call a vector (T, T0) for which (10) is stable and |∆(T, T0)| = 2,
a coexistence vector. One can see curves (in the plane of parameters T, T0)
joining two consecutive coexistence vectors together to its interior, these ones
are classically called instability pockets because in this zone the equation results
unstable. The global geometry of the instability pockets has been studied for
various authors [3, 4, 7] and nowadays has a renovated interest. The physical
relevance of these coexistence parameters vectors relies on its experimental ob-
servability because it seems that they are robust by perturbations, in spite of its
degenerate character. Starting from one of them one can move to four different
zones, two of them are stable and the others are unstable. The coexistence
vectors have been explicitly computed in [9]. As an example, we have drawn
in Fig. 1 the stability diagram in the plane T − T0 for ε = 0.75. Many other
possibilities are at hand, for instance fixing T0 (Fig. 2) or T (Fig. 3).

3.2 Forced oscillations.

The mean velocity w(t) at which the mass flow is hitting or leaving the oscillator
acts as a external force. If w 6= 0, then the dynamics of the model is determined
by the complete second order linear equation

x′′ + a(t)x = −a(t)H(t). (20)

By the Fredholm’s alternative, if the homogeneous part has no T ∗-periodic
solutions, the equation (20) has a unique T ∗-periodic solution, and the general
solution of (20) is the sum of this particular solution with the general solution
of the homogeneous equation. Therefore, if ∆ is the discriminant of the Hill’s
equation x′′ + a(t)x = 0, the complete equation (20) has a unique T ∗-periodic
solution if |∆| 6= 2, and this solution is stable if |∆| < 2 and unstable if |∆| > 2.
In other words, the information of the stability diagrams drawn in the previous
subsection for the unforced case is directly translated to the forced case.
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Figure 1: Stability regions for the unforced linear oscillator in the plane T − T0

for ε = 0.75. Note that only the case T0 < T is physically relevant

4 The nonlinear oscillator.

Usually a linear equation is just a rough approximation to the real model, that
includes strong nonlinear effects. As a typical nonlinear model, we have selected
the Duffing oscillator with a periodically time-varying mass

(M(t)y′)′ + ky(t) + γy(t)3 = f(t), (21)

where M(t) > 0 and f(t) are T -periodic functions. This model has been studied
form the numerical point of view in [8]. Here f represents a prescribed loading,
and the others terms include linear and cubic elastic restoring forces with elastic
stiffness parameters k > 0 and γ 6= 0 respectively.

Contrary to the case of a linear equation, in a typical nonlinear equation
bounded and unbounded oscillations may coexist, so the stability analysis of a
given periodic solution is local. Next we shall show how to get a T -periodic
solution for this system at least when f is small enough. So we will focus our
attention in the following equation

(M(t)y′)′ + ky(t) + γy(t)3 = δp(t), (22)

where p is a T -periodic an continuous loading fixed and δ is a small real pa-
rameter. Notice that this model is included in (1) taking w = 0 and F =
δp(t)− γy(t)3.

The scaling t = t(τ) given by (2) produces in this case the following newto-
nian equation equivalent to (22)
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Figure 2: Stability regions for the unforced linear oscillator in the plane ε− T0

for T = 5π.

y′′ + a(τ)y + c(τ)y3 = δp∗(τ), (23)

where

a(τ) = kM(t(τ)), c(τ) = γM(t(τ)), p∗(τ) = M(τ)p(t(τ)). (24)

Note that the equation (23) is also periodic with new period T ∗ =
∫ T

0
1/M(s)ds.

Notice that when δ = 0 then one has the equilibrium y ≡ 0 for the unforced
equation

y′′ + a(τ)y + c(τ)y3 = 0. (25)

The linearized equation around of y ≡ 0 is the Hill’s equation

x′′ + a(τ)x = 0. (26)

This equation (see for instance [16]) has characteristic multipliers λ1, λ2 ∈ C
satisfying

λ1λ2 = 1.

In a classical terminology, it is said that (26) (or x = 0) is elliptic if λ2 = λ1 ∈
C \ {±1}, parabolic if λ1,2 = ±1 and hyperbolic if λ1,2R \ {±1} respectively.
Given n ∈ N we say that (26) is n-resonant if it is elliptic and the Floquet
multipliers satisfy λn

i = 1. We say that (26) is strongly resonant if it is n-
resonant for n = 3 or 4.
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Figure 3: Stability regions for the unforced linear oscillator in the plane ε − T
for T0 = 1.

Next we shall introduce a basic approach to continue the equilibrium y ≡ 0
in a small periodic solution when δ is small. This approach goes back to H.
Poincaré [26].

4.1 Existence of elliptic periodic solutions

Let ϕ = ϕ(τ ; y0, v0, δ) be the unique solution of (23) such that

ϕ(0) = y0, ϕ′(0) = v0,

for any initial conditions (y0, v0) ∈ R2. It is a well known fact that ϕ(τ ; y0, v0, δ)
is T ∗-periodic if and only if it verifies

ϕ(T ∗; y0, v0, δ)− y0 = 0,

ϕ′(T ∗; y0, v0, δ)− v0 = 0. (27)

In the next result, we will see how the solutions (y0, v0, δ) of system (27) yield
us to the initial conditions of the periodic solution when δ is small enough. The
proof is inspired by chapter IV of [14] and [13].

Proposition 1 Assume that (26) is elliptic. Then, there exist smooth functions
x = x(δ), y = y(δ), δ ∈ (−ε0, ε0) for certain ε0 > 0, such that the solution
of (23) ϕδ(τ) = ϕ(τ ;x(δ), v(δ)) is T ∗-periodic. In consequence the equation
(22) has at least a T -periodic solution yδ(t). Moreover, if (26) is not strongly
resonant then ϕδ do.
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Proof. The jacobian matrix of the system (27) respect to (y0, v0) at (0, 0, 0) is
of the form M − I where I is the identity matrix and M is a monodromy matrix
for the linearized equation (26)(see section 3.1). Like 1 is not a characteristic
multiplier of M then M−I is invertible. Thus we can apply the implicit function
theorem near to (0, 0, 0) for reaching the conclusion.

The variational equation for ϕδ is

y′′ + (a(τ) + 3c(τ)ϕ2
δ(τ))y = 0.

Then ϕδ will be elliptic and not strongly resonant when the above equation
will do. The Floquet multipliers of the above equation λi = λi(δ), i = 1, 2,
are continuous function of δ because the continuity of the equation respect to
the parameter δ. As λ1(0), λ2(0) coincide with the Floquet multipliers of (26)
(ϕ0 ≡ 0), a standard continuity argument finishes the proof. �

4.2 Twist coefficient and stability

To study the stability properties of the solution yδ obtained in the above propo-
sition, the classical approach of the first Lyapunov method (linearization) is
not enough because the stability in a conservative system depends strongly on
nonlinear terms. Also, generally it is difficult to identify a Lyapunov’s function,
because the dynamics near to a stable solution in a hamiltonian system is too
complicated.

An alternative approach is provided in the 60’s by the so called KAM theory
and the Twist Theorem ([27], [17], [1]). From this point of view, the nonlinear
terms of the Taylor’s expansion around a given periodic solution are taken into
account to decide the kind of dynamic rising around such solution. The basic
idea consists in to express the system in suitable geometrical coordinates as a
perturbation of a canonical system which is integrable and therefore possesses
invariant tori near to the periodic solution. These invariant tori are persistent
under perturbations and produce jails or barriers for the flux trapping the orbits
inside.

More recently these ideas have taken a renewal interest from Ortega’s works
([19, 20, 18, 21, 11, 31, 12]) and provide us some stability criteria based on the
third approximation [23, 24, 25]

y′′ + a(τ)y + b(τ)y2 + c(τ)y3 = 0. (28)

When b(t) ≡ 0, we have the following remarkable result ([23]).

Theorem 1 Let a(τ) and c(τ) periodic and real piece-wise continuous function.
We assume that c(τ) doesn’t changes sign and is not identically null. Assume
that the Hill’s equation

y′′ + a(τ)y = 0 (29)

is stable (for instance elliptic). Then the equilibrium y ≡ 0 is stable in the sense
of Lyapunov for the nonlinear equation (28). In particular if (29) is elliptic
and not strongly resonant then the first twist coefficient β 6= 0 (see definitions
bellow).
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The Poincaré mapping Pδ associated to (23) is defined near the origin by

Pδ(x, y) = ϕ(T ∗;x, y, δ), (30)

where ϕ(τ ;x, y, δ), δ ∈]− ε0, ε0[ is the unique solution of (23) with initial data
ϕ(0) = x, ϕ′(0) = y. Note that P0(0, 0) = (0, 0) because y ≡ 0 is the equilib-
rium of the unforced equation (25). More generally,

Pδ(x(δ), y(δ)) = (x(δ), y(δ)),

where x(δ) and y(δ) are the initial conditions of ϕδ, the unique periodic solution
given by the proposition 1. Therefore the stability of ϕδ is equivalent to the
stability of (x(δ), y(δ)) as fixed point of Pδ.

Other elementary property of the Poincaré map states that P ′
δ(x(δ), y(δ)) is

a monodromy matrix for the variational equation along ϕδ

y′′ + (a(τ) + 3c(τ)ϕ2
δ(τ))y = 0. (31)

Then its Floquet multipliers λ1,2(δ) are continuous function of δ. From
Proposition 1 if (26) is elliptic and not strongly resonant then ϕδ do. So,
the Birkhoff’s normal form Theorem provides a canonical change of variables
z = Φδ(ξ), z = (x, y), such that Pδ adopts in the new coordinates the following
form

P∗
δ (ξ) = (Φ−1

δ ◦ Pδ ◦ Φδ)(ξ) = R[θ(δ) + β(δ)|ξ|2](ξ) + O4, (32)

where R[ω] denotes the rigid rotation of angle ω, λ1,2 = e±iθ(δ) (θ(δ) is a
continous selection of the argument), and O4 indicates a term that is O(|ξ|4)
when ξ → 0. The coefficient β(δ) is called the (first) twist coefficient and plays a
central role in the stability theory. A remarkable property of the twist coefficient
is its invariance under symplectic changes of variables ([25, 15]).

From the Twist Theorem it follows that if β(δ) 6= 0 then the fixed point
(x(δ), y(δ)) is stable (see Chapter 3 of [27]). On the other hand, the changes of
variables Φδ can be selected continuous in δ. Like Pδ depends continuously of
δ too, it can be proved that β(δ) is a continuous function provided that (31) is
not strongly resonant (see [28] and [15] for details ).

At this point, we are ready to prove the main result of this section.

Theorem 2 Assume that

(M(t)y′)′ + ky(t) = 0,

is elliptic and not strongly resonant (i.e. (26) is elliptic and not strongly reso-
nant). Then the equation (22) has at least a T -periodic solution yδ(t) for small
δ, which is stable in the nonlinear sense.

Proof. From Proposition 1 there is at least a T -periodic solution yδ for small
δ, i.e., a continuation of the equilibrium y ≡ 0. From the discussion above it is
sufficient to prove the stability for the corresponding elliptic and not strongly
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resonant periodic solution ϕδ. In consequence the twist coefficient β(δ) is well
defined for small δ. Note that all the hypotheses of Theorem 1 hold for the
unforced equation (25), so one gets that β(0) 6= 0. The conclusion is reached by
the continuity of β(δ). �

We come back to the two-valued variable mass M(t) = M0 −m(t) where m(t)
is defined by (13). Specifically, we are interested in the model studied in [9],
equivalent to take k = M0 in Section 3.1 . In such a case the linear stability is
analyzed by mean of discriminant function ∆(T, T0, ε) given by (19). Remember
that ε is the (adding) mass relative parameter and T0 is the switching time. We
have the following result.

Corollary 1 Assume that the discriminant function defined by (19) satisfies

0 < |∆(T, T0, ε)| < 2, ∆ 6= −1.

Then for δ small enough, the nonlinear equation (22) with M(t) = M0 −m(t)
defined by (13), has a T -periodic solution yδ(t) which is stable in the nonlinear
sense.

Note that ∆ = 0 (resp. ∆ = −1) corresponds to the fourth (resp. third)
order resonance. By excluding these values, the linear part is elliptic and not
strongly resonant and the previous theorem applies directly. In the stability
diagrams presented in Section 3, ∆ = 0 (resp. ∆ = −1) is a curve inside each
stability region.
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