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1. Introduction

Consider the action functional

A : C1(R/Z)→ R , A[x] :=
∫ 1

0

L(t, x(t), x′(t))dt , (1)

where the lagrangian L : (R/Z)×R2 → R, L = L(t, x, p), has class C0,2 and verifies
the classical Legendre condition

Lpp > 0 on (R/Z)× R2 . (2)

The critical points of A are well-known to coincide with the 1−periodic solutions
of the associated Euler-Lagrange equation

d

dt
Lp(t, x(t), x′(t)) = Lx(t, x(t), x′(t)) . (3)

A particular role is played by local periodic minimizers, which we shall simply
call periodic minimizers in what follows. Precisely, with this expression we refer
to those critical points x∗ ∈ C1(R/Z) which minimize the action functional A on
some small neighborhood Nr, defined by

Nr =
{
x ∈ C1(R/Z) : |x(t)−x∗(t)| < r, |x′(t)−x′∗(t)| < r for any t ∈ R/Z

}
. (4)

In [1], Carathéodory showed that, in case the periodic minimizer x∗ is non-
degenerate, meaning that the quadratic form A′′[x∗] is positive definite, then, x∗
is hyperbolic, and, in particular, (by Lyapunov First Method), unstable. It opened
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the question on the necessity of the nondegeneracy condition. Because it turns out
that when the local minimizer x∗ is degenerate -i.e., the quadratic form A′′[x∗]
is only semidefinite-, then it is parabolic, and Lyapunov First Method does not
apply. However, Dancer and Ortega [2] showed that any stable isolated periodic
solution of (3) has fixed point index 1 and cannot be a minimizer, thus extend-
ing Carathéodory’s Theorem on the instability of the nondegenerate case to the
(possibly degenerate) isolated case. More elementary proofs appeared subsequently
[5, 6].

In a different approach to the problem, Ortega [4] showed that fixed points of
area-preserving, analytic mappings on the plane other than the identity, are either
unstable or isolated. It means that, if the lagrangian L is analytic on the state
variables x, p, then all local minimizers are unstable. The goal of this paper is to
show a similar result without the analytic assumption:

Theorem 1.1. Let the lagrangian L : (R/Z) × R2 → R have class C0,2 and verify
(2). Then, every (local) periodic minimizer is unstable as a solution of the Euler-
Lagrange equation (3).

A remark on the meaning of the word stability. Indeed, for Hamilitonian sys-
tems -or area-preserving maps-, past and future Lyapunov stability are equivalent
concepts, and equivalent to the existence of a basis of invariant neighborhoods
of the periodic solution or fixed point under consideration. The resulting ‘perpet-
ual’ notion, and its logical negation, are respectively referred to as stability and
instability in this work.

A few words also to comment the C0,2 regularity and the Legendre condition
(2) which we assume on the lagrangian L. They guarantee, (see Lemma 2.1 of
[6]), the existence and uniqueness of solution for initial value problems associated
to (3), giving sense to the problem of stability. Observe, for instance, that the
Newtonian lagrangian L(t, x, p) = p2 − V (t, x) verifies them both provided only
that the force f(t, x) = −Vx(t, x) has class C0,1 on (R/Z)× R.

Before finishing this Introduction, I want to express my gratitude to R. Or-
tega, who first introduced me to the problem of the instability of minimizers, and
did not lose his patience after listening to several mistaken proofs which came along
before this one. My thanks also to R. Ortega and A. Chenciner for suggesting to
me the study of the Aubry-Mather theory.

2. Some aspects of the Aubry-Mather theory

Theorem 1.1 applies to general C0,2 lagrangians L : (R/Z)×R2 → R verifying the
Legendre condition (2), and to local minimizers x∗. However, our proof will be
constructed under some further global assumptions which we pass to describe:

(i) L is 1-periodic, not only on time, but also on the variable x. With symbols,

L(t, x+ 1, p) = L(t, x, p) , (t, x, p) ∈ (R/Z)× R2 .

(ii) Lx is bounded on (R/Z)× R2.
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(iii) There are constants 0 < m < M such that m ≤ Lpp ≤M .
(iv) x∗ is not just a local, but a global minimizer of the action functional A under

periodic boundary conditions.

This, in appearance, more restrictive framework, will not mean a loss of
generality, since

Lemma 2.1. Let L and x∗ be under the framework of Theorem 1.1. Then, there
is a second lagrangian L̃ : (R/Z)× R2 → R, which coincides with L outside some
small neighborhood of x∗, and verifies assumptions (i,ii,iii,iv).

To maintain the tempo of our exposition, we postpone the proof of Lemma
2.1 to Section 4. Meanwhile, throughout Sections 2 and 3, we shall always assume
that L : (R/Z)× R2 → R is a C0,2 lagrangian verifying (i,ii,iii,iv) above.

Observe that these assumptions are not enough to make our lagrangian L
fit under the framework of the Aubry-Mather theory as described in Chapter 2
of [3], mainly because we do not assume L to be a C2 function with respect to
time. Nevertheless, there are still many well-known notions and results from this
theory which can be translated, with no or little variation, into our framework.
Some of these will play an important role in our proof, and we summarize them
in the remaining of this Section.

And our starting point will be the existence of minima for the action func-
tional under given Dirichlet boundary conditions. Indeed, assumptions (i) and
(iii), together with a simple integration argument, imply the existence of some
constant K > 0 such that

−K +mp2/4 ≤ L(t, x, p) ≤ K +Mp2 , (t, x, p) ∈ (R/Z)× R2 . (5)

In particular, for any real numbers a, b, u, v with a < b, the action functional

x 7→
∫ b

a

L(t, x(t), x′(t))dt ,

is well defined, and coercive on the affine Sobolev space

H1
u,v(a, b) :=

{
x ∈ H1(a, b) : x(a) = u, x(b) = v

}
.

Well-known arguments, based on the boundedness of Lx (assumption (ii))
and the Legendre condition (2), show that this action functional is also weak
lower-semicontinuous, so that it attains its global minimum on H1

u,v(a, b) (see
Theorem 2.2.1 of [3]). It is usual to denote by M[a, b] to the set of those H1(a, b)
functions x which minimize the action functional on H1

x(a),x(b)(a, b); they are said
to be minimal on [a, b], and turn out to be C1 extremals, i.e., solutions of the
Euler-Lagrange equation (3). We summarize the discussions above in following
result:

Lemma 2.2. M[a, b] 6= ∅. Moreover, for any u, v ∈ R there exists some x ∈M[a, b]
with x(a) = u and x(b) = v.
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Observe that, in general, this minimal x may not be unique, i.e., two elements
x, y ∈ M[a, b] may cross at both endpoints a, b of the interval. This is, however,
the only possibility for two crossing points between minimal functions:

Lemma 2.3. Let x, y ∈ M[a, b] with x 6≡ y, and t1 < t2 ∈ [a, b] be given. If
x(ti) = y(ti) for i = 1, 2, then t1 = a and t2 = b.

The proof of this result follows closely that of Theorem 1.3.4 of [3], so that
we shall not repeat it in this paper. We turn now our attention to the matter of
compactness for sets of minimals. For reasons which will be clear in Section 3,
it will be convenient to consider sequences of minimals which are not necessarily
defined on the same interval. Thus, let the sequences of real numbers an → a and
bn → b with a < b be given. Assume that, for each n ∈ N, we are given some
continuous function xn : [an, bn]→ R. The sequence {xn}n is said to be uniformly
bounded if there exists some constant K > 0 such that |xn(t)| ≤ K on [an, bn] for
each n ∈ N. It is called equicontinuous if for each ε > 0 there exists some δ > 0
such that |xn(t)− xn(s)| ≤ ε for any t, s ∈ [an, bn] and any n ∈ N.

Lemma 2.4. Assume that xn ∈M[an, bn] for any n ∈ N and that the sequence {xn}
is uniformly bounded. Then, {x′n}n is uniformly bounded and equicontinuous.

This result is related to Lemma 2.3.4 of [3]; however, it does not exactly
follow from it, mainly because of the lower regularity of our lagrangians with
respect to time, and we give an alternative proof in Section 4. When combined
with Ascoli-Arzela Lemma, it yields the following consequence:

Corollary 2.5. Under the assumptions of Lemma 2.4, there exists some partial
subsequence {xnk

}k which converges to some element x ∈M[a, b] in the following
sense: for any converging sequence tk → t with tk ∈ [ank

, bnk
], one has that

lim
k→∞

xnk
(tk) = x(t) , lim

k→∞
x′nk

(tk) = x′(t) .

This concept of convergence might sound strange at first glance, but in case
[an, bn] ≡ [a, b] is a constant interval, it becomes the classical C1[a, b] convergence.
Observe that, under the framework of Corollary 2.5,

lim
k→∞

∫ bnk

ank

L(t, xnk
(t), x′nk

(t))dt =
∫ b

a

L(t, x(t), x′(t))dt . (6)

The notion of minimality may be easily extended to C1 functions on non-
compact intervals I ⊂ R. Namely, the extremal x is called minimal on I if it is
defined, and minimal, on any compact subinterval [a, b] ⊂ I. In case the extremal
x is minimal on the whole real line R, then it is simply said to be a global mini-
mal. For instance, global periodic minimizers, i.e., periodic functions x ∈ C1(R/Z)
where the action functional A attains its global minimum, provide a first example
of global minimals (Theorem 2.3.2 of [3]); they will be henceforth called periodic
minimals. Notice that in the usual definition of periodic minimal the period can
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be any positive integer. This makes no difference since it can be proved that global
minimizers of any period n are indeed of period 1.

The set of all periodic minimals of period 1 will be denoted as M1. Lemma
2.3 implies that any two periodic minimals cannot intersect at all (see also The-
orem 2.3.1 of [3]), so that M1 is naturally ordered. This order is total, i.e., given
x, y ∈ M1 with x 6= y, we have either x < y of x > y. This gives sense to the
following definition: the periodic minimals x 6= y are called neighboring if there
are no periodic minimals between them. When this happens, it is possible to show
that there are heteroclinic orbits linking x and y (Theorem 2.6.2 of [3]), and, in
particular, they are both unstable. This result in fact implies the instability of all
periodic minimals x∗ which are isolated in M1, since for them it is always possi-
ble to find other periodic minimals x− < x∗ < x+ such that both {x−, x∗} and
{x∗, x+} are neighboring.

However, this argumentation cannot be directly translated to nonisolated
minimizers x∗, because, in this case, x∗ could be not the limit of any asymptotic
extremal. To check this statement, it suffices to consider the example provided by
the Galilean lagrangian L(t, x, p) = p2/2; observe that each constant x∗ ≡ C is a
periodic minimal, but has no associated asymptotic solutions.

3. Nonisolated periodic minimals and quasi-asymptotic sequences

The main result of this Section will be the following:

Proposition 3.1. Let x∗ ∈ M1 be not isolated. Then, there exists some constant
c 6= x∗(0), and a sequence {zn : [0, n]→ R}n of minimals, such that

zn(0) = x∗(0), zn(n) = c for any n, lim
n→+∞

z′n(0) = x′∗(0).

Observe that the existence of such a sequence forces the instability of x∗.
Thus, the combination of Proposition 3.1 with the comments at the end of Sec-
tion 2 implies Theorem 1.1, at least when the lagrangian L verifies assumptions
(i,ii,iii,iv).

It will be convenient to prepare our proof of Proposition 3.1 by means of a
lemma. Assume that x < y are two (not necessarily neighboring) periodic minimals
with ∫ 1

0

L(t, x(t), x′(t))dt = 0 =
∫ 1

0

L(t, y(t), y′(t))dt .

Using Lemma 2.2 we choose, for each positive number a > 0, some function
za ∈ M[0, a] with za(0) = x(0) and za(a) = y(a). Lemma 2.3 implies that za

cannot intersect x or y on ]0, a[, and thus, must verify

x(t) < za(t) < y(t) , t ∈]0, a[ . (7)
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Consider now the function Γ :]0,+∞[→ R defined by Γ(a) :=
∫ a

0
L(t, za(t), z′a(t))dt.

The minimality property of za implies that

Γ(a) = min
{∫ a

0

L(t, z(t), z′(t))dt : z ∈ H1
x(0),y(a)(0, a)

}
,

for each a > 0. In particular, Γ(a) does not depend on the particular choice of the
minimal za, even in case several possibilities coexist for a same value of a. The
following lemma collects some relevant properties of the function Γ.

Lemma 3.2. The following hold:
1. Γ :]0,+∞[→ R is continuous.
2. Γ(a+ 1) < Γ(a) for any a > 0.
3. There exists some constant C > 0, (depending on the periodic minimals x, y

and the lagrangian L, but not on a), such that

Γ(a+ 2) < Γ(a)− C , 0 < a < 1 .

4. Γ is bounded from below.

Proof. 1. Let an → a > 0 be given. For each n, (7) implies that zn := zan

lies between the periodic minimals x and y, and thus, this sequence is uniformly
bounded. Corollary 2.5 then states that there exists some subsequence {znk

} which
converges, in the sense described there, to some element z∗ ∈M[0, a]. Now, in view
of (6),

Γ(ank
) =

∫ ank

0

L(t, znk
(t), z′nk

(t))dt→
∫ a

0

L(t, z∗(t), z′∗(t))dt = Γ(a) ,

as k → +∞.

2. Choose some point a > 0. The curve β : [0, a+ 1]→ R defined by

β(t) :=

{
za(t) if 0 ≤ t ≤ a ,
y(t) if a ≤ t ≤ a+ 1 ,

is only piecewise C1, so that it is not minimal on [0, a+ 1], and we deduce that∫ a+1

0

L(t, za+1(t), z′a+1(t))dt <
∫ a+1

0

L(t, β(t), β′(t))dt =
∫ a

0

L(t, za(t), z′a(t))dt ,

since, by assumption,
∫ a+1

a

L(t, y(t), y′(t))dt =
∫ 1

0

L(t, y(t), y′(t))dt = 0.

3. We consider the mapping h : [0, 1]→ R defined by

h(a) := Γ(a+ 1)− Γ(a+ 2) .

It follows from (i) that h is continuous, while (ii) implies that h is positive. It
implies the existence of some constant C > 0 such that h(a) > C for any a ∈ [0, 1],
and we deduce that:

Γ(a+ 2) = Γ(a+ 1)− h(a) < Γ(a+ 1)− C < Γ(a)− C , 0 < a < 1 .
6



4. We define

K :=
∫ 1

0

|L(t, y(t), y′(t))| dt+
∫ 1

0

|L(t, r(t), r′(t))| dt ,

where r(t) := (1−t)y(0)+tx(0) denotes the straight line joining the points (0, y(0))
and (1, x(0)). Now, given a > 0, choose some integer n with n − 1 < a ≤ n, and
define the piecewise C1 function β : [0, n+ 1]→ R by the rule

β(t) :=


za(t) if 0 ≤ t ≤ a ,
y(t) if a ≤ t ≤ n ,
r(t− n) if n ≤ t ≤ n+ 1 ,

Observe that β(0) = x(0) and β(n + 1) = x(0) = x(n + 1). The minimality
property of x yields∫ n+1

0

L(t, β(t), β′(t))dt ≥
∫ n+1

0

L(t, x(t), x′(t))dt = (n+1)
∫ 1

0

L(t, x(t), x′(t))dt = 0 ,

implying that Γ(a) =
∫ a

0

L(t, za(t), z′a(t))dt ≥ −K. �

At this moment we are ready to complete the proof of Proposition 3.1:

Proof of Proposition 3.1. By assumption, x∗ is not isolated in M1, implying the
existence of some sequence {xd}d → x∗ of periodic minimals. Since M1 is totally
ordered, this sequence may be chosen ordered, and after using, if necessary, the
change of variables x̃ = x∗(t)−x, it is not restrictive to assume that xd > xd+1 > x∗
for any d ∈ N. We shall also assume that

∫ 1

0
L(t, x∗(t), x′∗(t))dt = 0, since it can

be easily achieved by adding a constant to the lagrangian L. And, the sequence
{xd}d being made of periodic minimals, we deduce that∫ 1

0

L(t, xd(t), x′d(t))dt =
∫ 1

0

L(t, x∗(t), x′∗(t))dt = 0 for any d ∈ N .

Next, we define c := x1(0) > x∗(0), and we choose, for each n ∈ N, some
zn ∈M[0, n] such that zn(0) = x∗(0) and zn(n) = c.

Observe that the sequence {zn} is related with the discussions preceding
Lemma 3.2. Indeed, letting x := x∗ and y := x1 we see that, by (7),

x∗ ≤ zn ≤ x1 , n ∈ N , (8)

and, in particular, x′∗(0) ≤ z′n(0) (actually, the inequality must be strict because
of the uniqueness of solutions of initial value problems). Observe that, in order to
complete the proof of Proposition 3.1, we only have to show that

z′n(0)→ x′∗(0) as n→ +∞ .

Thus, we use a contradictions argument and assume that the statement above
did not hold; in view of (8), it means the existence of some number ε > 0 and some
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subsequence {znk
}k such that

z′nk
(0) ≥ x′∗(0) + ε , k ∈ N .

When combined the uniform continuity of {z′nk
} on the constant interval [ak, bk] ≡

[0, 1], (ensured by Lemma 2.4), it implies that, for some 0 < δ < 1,

z′nk
(t) ≥ x′∗(t) + ε/2 , t ∈ [0, δ] , k ∈ N .

Remember now that the sequence {xd}d was assumed to be decreasing and
uniformly converging to x∗; it means that, if d0 ∈ N is fixed big enough, then every
znk

crosses xd0 at some time ak ∈]0, δ[⊂]0, 1[. We use now item 3. of Lemma 3.2,
applied to x = x∗ and y = xd0 , to obtain the existence of some constant C > 0
(not depending on k), and a sequence {wk : [0, ak + 2] → R}k of minimals, such
that∫ ak+2

0

L(t, wk(t), w′k(t))dt <
∫ ak

0

L(t, znk
(t), z′nk

(t))dt− C , k ∈ N . (9)

Consider now the sequence of piecewise C1 functions {ϕk : [0, nk + 2]→ R}k
defined by

ϕk(t) :=

{
wk(t) if t ∈ [0, ak + 2] ,
znk

(t− 2) if t ∈ [ak + 2, nk + 2] ,

and observe that, for any k ∈ N,∫ nk+2

0

L(t, znk+2(t), z′nk+2(t))dt ≤
∫ nk+2

0

L(t, ϕk(t), ϕ′k(t))dt <

<

∫ nk

0

L(t, znk
(t), z′nk

(t))dt− C ,

the first inequality being a direct consequence of the minimality of znk+2, while
the second one follows from (9). It means that the sequence of real numbers

Γ(n) :=
∫ n

0

L(t, zn(t), z′n(t))dt , n ∈ N ,

verifies Γ(nk + 2) ≤ Γ(nk) − C for any k ∈ N. However, item 2. of Lemma 3.2,
(applied this time for x = x∗ and y = x1), implies that {Γ(n)}n is decreasing, and,
consequently, Γ(n)→ −∞, contradicting item 4. of the same Lemma. It completes
the proof. �

4. Two miscellaneous results from Section 2

This last Section of the paper is devoted to prove Lemmas 2.4 and 2.1, which
were stated without proof in Section 2. We shall start with Lemma 2.4, whose
role has been important to guarantee the compactness of bounded sequences of
minimals given by Corollary 2.5. Moreover, it has been used again in the proof of
Proposition 3.1. Observe that, in case the lagrangian L has class C2 in all three
variables t, x, p, then it can be seen as a consequence of Lemma 2.3.4 of [3]:
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Proof of Lemma 2.4. Choose some constant K > 0 such that bn − an ≥ 1/K and
|xn| ≤ K on [an, bn] for any n ∈ N. We remember that the extremals xn must solve
the Euler-Lagrange equation (3), which we rewrite in Moser’s integrated form (see
Theorem 1.1.1 of [3]):

yn(t) := Lp(t, xn(t), x′n(t)) = Lp(tn, xn(tn), x′n(tn)) +
∫ t

tn

Lx(s, xn(s), x′n(s))ds ,

(10)
for any t ∈ [an, bn]. Here, tn might be any point of [an, bn], but we choose it
verifying |x′n(tn)| ≤ 2K2; the existence of such a point tn is provided by Lagrange’s
Mean Value Theorem and the definition of K. We denote

K1 := sup{|Lp(t, x, p)| : t ∈ R/Z, |x| ≤ K, |p| ≤ 2K2} , K2 := sup
(R/Z)×R2

|Lx| ,

(remember that Lx was assumed to be bounded in (ii)). Taking absolute values in
both sides of (10), we obtain

|yn(t)| ≤ K3 := K1 +K2/K , t ∈ [an, bn] ∩ [tn − 1/K, tn + 1/K] .

Observe now that this argument can be repeated for every tn ∈ [an, bn] with
|x′(tn)| ≤ 2K2, and there is at least one possible choice on any subinterval of
length 1/K on [an, bn], so that

|yn(t)| ≤ K3 , t ∈ [an, bn] . (11)

On the other hand, assumption (iii) implies that for any fixed t, x, the func-
tion Lp(t, x, ·) is an homeomorphism from the real line to itself. We denote by
S(t, x, ·) to its inverse, i.e.

Lp(t, x, S(t, x, y)) = y , S(t, x, Lp(t, x, p)) = p , t, x ∈ R/Z, y, p ∈ R .

In this way, S turns out to be a continuous mapping on (R/Z)×R2, and the
definition of yn in (10) may be rewritten as

x′n(t) = S(t, xn(t), yn(t)) , t ∈ [an, bn] , (12)

an equality which, when combined with (11) yields

|x′n(t)| ≤ K ′ := max
D
|S| , t ∈ [an, bn] , n ∈ N ,

for D := (R/Z)× [−K,K]× [−K3,K3]. This proves the the uniform boundedness
of the sequence {x′n}.

So far, the continuity of S was used only to say that it is bounded on the
compact setD. We choose now some ε > 0 and use the uniform continuity of S onD
to find some δ1 > 0 such that for any (t1, x1, y1), (t2, x2, y2) ∈ D with |t2−t1| < δ1,
|x2 − x1| < δ1, and |y2 − y1| ≤ δ1, one has |S(t2, x2, y2)− S(t1, x1, y1)| ≤ ε.

We define δ := min{δ1, δ1/K ′, δ1/K2}. Thus, if t1, t2 ∈ [an, bn] for some
n ∈ N and verify |t2− t1| ≤ δ, one checks that |t2− t1| < δ1, |xn(t2)−xn(t1)| < δ1,
and (by (10)), |yn(t2)− yn(t1)| ≤ δ1. When combined with (12), this implies that
|x′n(t2)− x′n(t1)| < ε, showing the equicontinuity of {x′n}. �
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To end the paper, we undertake the proof of Lemma 2.1 on the possibil-
ity of transforming the (local) periodic minimizer x∗ into a global minimizer by
modifying the lagrangian L outside some neighborhood of x∗. Observe firstly that
the problem is not completely trivial, since x∗ is assumed to locally minimize the
action functional A, while what we are allowed to modify is the lagrangian L.
And before going into the details, we observe that it is not restrictive to assume
that x∗ ≡ 0; otherwise, it would suffice to replace L by the translated lagrangian
(t, x, p) 7→ L(t, x+x∗(t), p+x′∗(t)). Also, there is no loss of generality in assuming
that

∫ 1

0
L(t, 0, 0)dt = 0; this argument was already carried out at the beginning

of the proof of Proposition 3.1. The extremal x∗ ≡ 0 being a local minimizer for
the periodic action functional A, there must exist some number r > 0 such that
A[x] ≥ 0 for any x ∈ Nr (defined as in (4)). For simplicity, we shall assume that
r = 1, i.e.,∫ 1

0

L(t, x(t), x′(t))dt ≥ 0 for any x ∈ C1(R/Z) with |x(t)|, |x′(t)| < 1 on R/Z .

(13)
Choose now C2 functions ϕ,ψ : R→ R verifying, respectively,

ϕ(s) = 1 if |s| ≤ 1/2 , ϕ(s) = 0 if |s| ≥ 1 , 0 ≤ ϕ ≤ 1 ,

and

ψ(p) = 0 if |p| ≤ 1/2 , ψ(p) = p2 if |p| ≥ 1 , ψ′′ ≥ 0 ,

and define, for each n ∈ N, the lagrangian Ln : (R/Z) × [−1/2, 1/2] × R → R as
follows:

Ln(t, x, p) := ϕ(3x)ϕ(3p)L(t, x, p)+(1−ϕ(3nx))ϕ(3p)(n+p2)+ψ(3np), |x| ≤ 1/2 .
(14)

Observe that, if 1/3 ≤ |x| ≤ 1/2, then Ln(t, x, p) = ϕ(3p)(n + p2) + ψ(3np)
does not depend on x. This allows us to extend Ln to the whole space (R/Z)×R2

by periodicity, to get a C0,2 lagrangian Ln : (R/Z) × R2 → R verifying (14) and
assumption (i) of Lemma 2.1. We want to show that, if n is big enough, then
L̃ := Ln actually verifies all conditions of the just mentioned Lemma 2.1. With
this purpose, it will be convenient to summarize first some properties of these
lagrangians:

Lemma 4.1. The following hold:

(a) Ln(t, x, p) = L(t, x, p) if |x|, |p| ≤ 1
6n

.

(b) Ln(t, x, p) ≥ L(t, x, p) if |x|, |p| ≤ 1
6

.

(c) Ln(t, x, p) = 9n2p2 if |p| ≥ 1
3

.

(d) There exists some constant K > 0 (not depending on t, x, p or n), such that

Ln(t, x, p) ≥ 9n2p2 −K , (t, x, p) ∈ (R/Z)× R2 .
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(e) There exists some constant K > 0 (not depending on t, x, p or n), such that

Ln(t, x, p) ≥ n−K ,
1

3n
≤ |x| ≤ 1

2
, |p| ≤ 1

6
.

Proof. Statements (a),(b),(c) follow directly from the definitions. Also (e) is im-
mediate; it suffices to take K := 1 + max(R/Z)×[−1/3,1/3]2 |L|. The same value of K
is suitable for (d), since ψ(p) ≥ p2 − 1 for any p ∈ R; this inequality can be easily
deduced from the set of properties under which ψ was chosen. �

There is a last property of the lagrangians Ln which deserves some attention.
It states that all of them verify the Legendre convexity condition (2) when n is
big:

Lemma 4.2. (Ln)pp > 0 if n is big enough.

Proof. We distinguish several cases depending on the value of p. For instance, if
|p| ≤ 1/6, the convexity of ψ means that

(Ln)pp(t, x, p) ≥ ϕ(3x)Lpp(t, x, p) + 2(1− ϕ(3nx)) > 0 ,

for any n ∈ N. On the other hand, if |p| ≥ 1/3, item (c) of Lemma 4.1 implies
(Ln)pp(t, x, p) = 18n2 > 0. Thus, it only remains to check what happens for
1/6 < |p| < 1/3, and direct derivation on (14) leads us to the inequality

(Ln)pp(t, x, p) ≥ 18n2 − 9
(

max
R
|ϕ′′|

)
n−K ′ , 1

6
≤ |p| ≤ 1

3
, n ≥ 2 .

where K ′ > 0 is some constant (not depending on t, x, p or n). It implies that,
for big values of n, (Ln)pp(t, x, p) > 0 on the double stripe 1/6 ≤ |p| ≤ 1/3, and
concludes the proof. �

Proof of Lemma 2.1. Observe, to start, that all lagrangians Ln verify assumptions
(i) (by definition), and (ii) (as a consequence of (i) and part (c) of Lemma 4.1). On
the other hand, (iii) follows, for big values of n, from the combination of Lemma
4.2, assumption (i), and part (c) of Lemma 4.1. Moreover, item (a) of Lemma 4.1
may be read by saying that each Ln coincides with L on some neighborhood of
x∗ ≡ 0.

Thus, it only remains to show that, if n is big enough, then x∗ ≡ 0 globally
minimizes the periodic action functional

An[x] :=
∫ 1

0

Ln(t, x(t), x′(t))dt , x ∈ C1(R/Z) ,

associated to the lagrangian Ln. With this aim, we choose, for each n ∈ N, some
global minimizer xn ∈ C1(R/Z) for An. The periodicity of Ln on the variable x
means that it is not restrictive to assume

−1
2
≤ xn(0) <

1
2
, n ∈ N . (15)
11



Now, remembering part (d) of Lemma 4.1,

An[xn] ≥ 9n2

∫ 1

0

x′n(t)2dt−K , n ∈ N ,

for some constant K > 0. But, since xn is a minimizer,

An[xn] ≤ An[x∗] = 0 for any n ∈ N , (16)

and we deduce that {x′n} → 0 in L2(R/Z). In particular

xn(t)− xn(0)→ 0 as n→∞ uniformly with respect to t ∈ R/Z . (17)

At this point, items (d) and (e) of Lemma 4.1, together with the periodicity
on x of Ln, mean that, for n ≥ 4,

Ln(t, x, p) ≥ n−K ,
1

3n
≤ |x| ≤ 1− 1

3n
,

which, when combined with (15), (16) and (17), implies that xn(0)→ 0, and then,

xn(t)→ 0 as n→∞ uniformly with respect to t ∈ R/Z . (18)

On the other hand, remembering part (c) of Lemma 4.1, we observe that,
wherever |x′n| > 1/3 the Euler-Lagrange equation of Ln read x′′n = 0, making it
impossible for xn to be periodic. This means that |x′n| ≤ 1/3 for each n, and we
combine this fact with (18) to deduce that, if n is big enough,

|xn(t)| ≤ 1/6 , |x′n(t)| ≤ 1/3 , t ∈ R/Z . (19)

However, items (b) and (d) of Lemma 4.1 imply that, for big values of n, Ln(t, x, p) ≥
L(t, x, p) on (R/Z)× [−1/6, 1/6]× [−1/3, 1/3]. Consequently,

An[xn] =
∫ 1

0

Ln(t, xn(t), x′n(t))dt ≥
∫ 1

0

L(t, xn(t), x′n(t))dt ≥ 0 ,

last inequality following from (19) and (13). In view of (16) we deduce that
An[xn] = 0 = An[x∗], meaning that x∗ is also a global minimizer for An if n
is big enough. The proof is complete.

�
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