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1 Introduction.

An optical soliton can be described as an electromagnetic wave which is localized in
time and can propagate along an optical medium without significant distortion of its
shape [3,6,14]. In a nonlinear optical medium, this physical effect is achieved by means of
a suitable balance between the chromatic dispersion and the nonlinear refractive response.
From a practical point of view, the concept of soliton is crucial to implement efficient
optical fiber communication systems.

From a mathematical point of view, the propagation of an optical pulse in a fiber cable
with varying dispersion is governed by the equation

iΨz −
1

2
β2(z)Ψtt + σ(z) |Ψ|2 Ψ = iG(z)Ψ,

where Ψ is the complex–valued envelope function of the electric field, z is the longitudinal
coordinate of the fiber line and t is time. The functions β2, σ,G model respectively the
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dispersion, nonlinear refractive response and effective gain or loss along the fiber line.
In this paper, it is assumed that the optical fiber has a periodic structure so that the
coefficients are periodic with a common minimal period which is normalized to L = 1. As
can be seen in the cited references, this seems to be the most interesting case for practical
purposes.

It is customary to remove the right–hand side term of the latter equation by the
transformation

Ψ(z, t) = A(z, t) exp

(∫ z

G(s)ds

)
.

Then, the equation under study is the cubic Schrödinger equation with periodic coefficients

iAz + d(z)Att + c(z) |A|2A = 0. (1.1)

Now the gain–loss power term is included in the coefficient c. To find soliton–like solutions
of eq. (1.1) is a central problem not only in Nonlinear Optics but also for a variety of
physical and biological applications.

A well–known method for the analytical study of eq. (1.1) is the variational approach
described in full detail in [13] (see also the complete list of references therein). Eq. (1.1)
is rewritten in the Lagrangian form, with the action functional

S =

∫
Ldtdz =

∫
dtdz

[
i

2
(AA∗z − A∗Az)d(z) |At|2 −

c(z)

2
|A|4

]
.

The following trial function is chosen

A(z, t) =
Q(t/T (z))√

T (z)
exp

(
i
M(z)

T (z)
t2
)

(1.2)

where the shape of the input pulse Q is in principle arbitrary, being the most typical
choice a gaussian Q(x) = C0 exp(−x2/2). Inserting this ansatz into the action functional,
one obtains the system of ordinary differential equations

T ′ = 4d(z)M

M ′ =
d(z)C1

T 3
− c(z)C2

T 2
,

(1.3)

with fixed constants

C1 =

∫
|Q′(x)|2 dx∫
x2 |Q(x)|2 dx

, C2 =

∫
|Q(x)|4 dx

4
∫
x2 |Q(x)|2 dx

. (1.4)

The functions T (z) and M(z) describe the optical pulse width and the chirp (time–
dependent phase) of the breathing central part of the optical soliton. The dynamics of
system (1.3), often known as TM–equations in the related literature, is of key importance
on this field. Then the problem is reduced to find conditions for the existence of 1–periodic
solutions of system (1.3), that is, T , M verifying T (0) = T (1),M(0) = M(1). Although
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the variational approach is approximate, it is recognized as an effective theoretical method
to gain insight on the dynamics of the system.

At this point, all the theoretical results presented in the literature assume that both
coefficients c, d are piecewise constants. This assumption makes possible to apply a
matching technique for the respective phase planes in order to find explicit existence
conditions. To have piecewise continuous coefficients is a coherent assumption in the
framework of Nonlinear Optics, but the main problem is that for a large number of pieces
computations become too hard to handle with. The paper [7] solves explicitly the case of
c constant (the so-called lossless case) and d composed by two pieces, but for more than
two pieces only numerical results are known [11]. Our approach is of a different nature.
We propose the use of a classical approach like the upper and lower functions method [1].
This technique is very known in the qualitative analysis of second order ODEs and has
been applied to equations with singularities in the recent paper [2]. We take advantage of
the techniques developed there to open a new path in the study of DM–solitons in optical
fibers. The main technical difficulty is that in the general case with arbitrary coefficients,
the system (1.3) can not be written as a second–order ODE (as in fact it is done in the
particular case considered in [7]). This has forced us to develop a specific upper and lower
function method for this framework. It will be shown that such method is the natural
extension to the first–order system of known results for the second order scalar ODE, so
in this sense from a mathematical point of view it is interesting by itself.

The structure of the paper will be as follows. In Section 2, we develop a new method
of upper and lower functions in consonance with the problem under consideration. In
Section 3, such a method is properly applied to a family of systems which include the
TM–equations.

2 The method of upper and lower functions.

2.1 Basic notation and definitions.

The following notation is used throughout:
R is a set of all real numbers, R+ = [0,+∞[ ;
C
(
[0, ω]; R

)
is a Banach space of all continuous functions u : [0, ω]→ R with the norm

‖u‖C = max
{
|u(t)| : t ∈ [0, ω]

}
;

C
(
[0, ω]; R2

)
is a Banach space of all continuous vector–valued functions (u, v) :

[0, ω]→ R2 with the norm ‖(u, v)‖C = ‖u‖C + ‖v‖C ;
AC
(
[0, ω]; R2

)
is a set of all vector–valued functions (u, v) : [0, ω]→ R2 with absolutely

continuous components;
L
(
[0, ω]; R

)
is a Banach space of all Lebesgue integrable functions p : [0, ω]→ R with

the norm ‖p‖L =
∫ ω

0
|p(s)| ds;

L
(
[0, ω]; R+

)
=
{
p ∈ L

(
[0, ω]; R

)
: p(t) ≥ 0 for a. e. t ∈ [0, ω]

}
;

L
(
[0, ω]; R2

)
is a Banach space of all vector–valued Lebesgue integrable functions

(p, q) : [0, ω]→ R2 with the norm ‖(p, q)‖L = ‖p‖L + ‖q‖L;
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K
(
[0, ω] × D; R

)
, where D ⊆ R, is the Carathéodory class, i.e., the set of functions

f : [0, ω]×D → R such that f(·, x) : [0, ω]→ R is measurable for all x ∈ D, f(t, ·) : D → R
is continuous for almost all t ∈ [0, ω], and

sup
{
|f(·, x)| : x ∈ D0

}
∈ L

(
[0, ω]; R+

)
for any compact set D0 ⊆ D.

if x ∈ R then [x]+ = max
{

0, x
}

, [x]− = max
{

0,−x
}

;
for every a ∈ [0, ω[ and b ∈ ]0, ω] such that a 6= b define

I(a, b) =

{
]a, b[ if a < b

[0, b[∪ ]a, ω] if b < a
, I[a, b) = I(a, b) ∪ {a}.

In the development of the general method of upper and lower functions we will adopt
the more classical use of t as the independent variable. Consider a system of two differ-
ential equations

u′ = p(t)v, (2.1)

v′ = f(t, u) (2.2)

with periodic boundary conditions

u(0) = u(ω), v(0) = v(ω), (2.3)

where p ∈ L
(
[0, ω]; R

)
and f ∈ K

(
[0, ω]×D; R

)
. By a solution to (2.1), (2.2) is understood

a vector–valued function (u, v) ∈ AC
(
[0, ω]; R2

)
with u(t) ∈ D for t ∈ [0, ω] satisfying

(2.1), (2.2) almost everywhere on [0, ω]. By a solution to the problem (2.1)–(2.3) is
understood a solution to (2.1), (2.2) satisfying (2.3).

The question of the existence of a periodic solution to the two–dimensional system of
the type (2.1), (2.2) was studied by I. Kiguradze and S. Mukhigulashvili in [5]. However,
the results obtained by them are not applicable to our system because the function p is
assumed to be sign–constant in their paper. The results dealing with general nonlinear
two–dimensional system one can find, e.g., in [4]. In [8, 9] one can find conditions guar-
anteeing the existence of a periodic solution to the n-dimensional linear system of both
ordinary and functional differential equations.

Definition 2.1. A vector–valued function (γ1, γ2) ∈ AC
(
[0, ω]; R2

)
is said to be an upper

function (resp. a lower function) to the problem (2.1)–(2.3) if γ1(t) ∈ D for t ∈ [0, ω],

γ′1(t) = p(t)γ2(t) for a. e. t ∈ [0, ω],

γ′2(t) ≤ f(t, γ1(t))
(
resp. γ′2(t) ≥ f(t, γ1(t))

)
for a. e. t ∈ [0, ω],

and the boundary conditions

γ1(0) = γ1(ω), γ2(0) ≤ γ2(ω)
(
resp. γ2(0) ≥ γ2(ω)

)
hold.
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Definition 2.2. A vector–valued function (p1, p2) ∈ L
(
[0, ω]; R2

)
is said to verify a prop-

erty (P+) if every vector–valued function (u, v) ∈ AC
(
[0, ω]; R2

)
satisfying

u′(t) = p1(t)v(t) for a. e. t ∈ [0, ω], (2.4)

v′(t) ≥ p2(t)u(t) for a. e. t ∈ [0, ω], (2.5)

u(0) = u(ω), v(0) ≥ v(ω) (2.6)

admits the inequality
u(t) ≥ 0 for t ∈ [0, ω]. (2.7)

Definition 2.3. A vector–valued function (p1, p2) ∈ L
(
[0, ω]; R2

)
is said to verify a prop-

erty (P−) if every vector–valued function (u, v) ∈ AC
(
[0, ω]; R2

)
satisfying (2.4)–(2.6)

admits the inequality
u(t) ≤ 0 for t ∈ [0, ω]. (2.8)

Remark 2.1. Note that (p1, p2) verifies a property (P+) iff (−p1,−p2) verifies a property
(P−). Indeed, let (u, v) ∈ AC

(
[0, ω]; R2

)
satisfy (2.4)–(2.6). Put w(t) = −u(t) for t ∈

[0, ω]. Then (w, v) ∈ AC
(
[0, ω]; R2

)
satisfies

w′(t) = −p1(t)v(t) for a. e. t ∈ [0, ω], (2.9)

v′(t) ≥ −p2(t)w(t) for a. e. t ∈ [0, ω], (2.10)

w(0) = w(ω), v(0) ≥ v(ω), (2.11)

and vice versa, if (w, v) ∈ AC
(
[0, ω]; R2

)
satisfies (2.9)–(2.11) then, having defined u(t) =

−w(t) for t ∈ [0, ω] we obtain that (u, v) ∈ AC
(
[0, ω]; R2

)
satisfies (2.4)–(2.6).

2.2 On the Properties (P+) and (P−).

Theorem 2.1. Let p ∈ L
(
[0, ω]; R

)
and let ϕ ∈ L

(
[0, ω]; R+

)
satisfy∫ ω

0

ϕ(s)ds 6= 0. (2.12)

If either the inequalities ∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]+ds < 1, (2.13)∫ ω

0
[p(s)]+ds

1−
∫ ω

0
ϕ(s)ds

∫ ω

0
[p(s)]+ds

≤
∫ ω

0

[p(s)]−ds (2.14)

hold or the inequalities ∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]−ds < 1, (2.15)∫ ω

0
[p(s)]−ds

1−
∫ ω

0
ϕ(s)ds

∫ ω

0
[p(s)]−ds

≤
∫ ω

0

[p(s)]+ds (2.16)

∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]+ds ≤ 2 + 2

√
1−

∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]−ds, (2.17)
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are fulfilled then a vector–valued function (p,−ϕ) verifies a property (P+).

Theorem 2.2. Let p ∈ L
(
[0, ω]; R

)
and let ϕ ∈ L

(
[0, ω]; R+

)
satisfy (2.12). If either the

inequalities ∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]−ds < 1,∫ ω

0
[p(s)]−ds

1−
∫ ω

0
ϕ(s)ds

∫ ω

0
[p(s)]−ds

≤
∫ ω

0

[p(s)]+ds

hold or the inequalities ∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]+ds < 1,∫ ω

0
[p(s)]+ds

1−
∫ ω

0
ϕ(s)ds

∫ ω

0
[p(s)]+ds

≤
∫ ω

0

[p(s)]−ds∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]−ds ≤ 2 + 2

√
1−

∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]+ds,

are fulfilled then a vector–valued function (p, ϕ) verifies a property (P−).

2.3 Existence Theorems.

Theorem 2.3. Let (β1, β2) ∈ AC
(
[0, ω]; R2

)
and (α1, α2) ∈ AC

(
[0, ω]; R2

)
be an upper

and a lower function to (2.1)–(2.3), respectively, with

β1(t) ≤ α1(t) for t ∈ [0, ω]. (2.18)

Let, moreover, there exist ϕ ∈ L
(
[0, ω]; R+

)
such that

f(t, β1(t)) + ϕ(t)β1(t) ≤ f(t, x) + ϕ(t)x ≤ f(t, α1(t)) + ϕ(t)α1(t)

for a. e. t ∈ [0, ω], β1(t) ≤ x ≤ α1(t) (2.19)

and a vector–valued function (p,−ϕ) verifies a property (P+). If, in addition,∫ ω

0

p(s)ds 6= 0,

∫ ω

0

ϕ(s)ds 6= 0 (2.20)

then the problem (2.1)–(2.3) has at least one solution (u, v) such that

β1(t) ≤ u(t) ≤ α1(t) for t ∈ [0, ω].

Theorem 2.4. Let (β1, β2) ∈ AC
(
[0, ω]; R2

)
and (α1, α2) ∈ AC

(
[0, ω]; R2

)
be an upper

and a lower function to (2.1)–(2.3), respectively, with

α1(t) ≤ β1(t) for t ∈ [0, ω]. (2.21)
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Let, moreover, there exist ϕ ∈ L
(
[0, ω]; R+

)
such that

f(t, β1(t))− ϕ(t)β1(t) ≤ f(t, x)− ϕ(t)x ≤ f(t, α1(t))− ϕ(t)α1(t)

for a. e. t ∈ [0, ω], α1(t) ≤ x ≤ β1(t) (2.22)

and a vector–valued function (p, ϕ) verifies a property (P−). If, in addition, (2.20) holds
then the problem (2.1)–(2.3) has at least one solution (u, v) such that

α1(t) ≤ u(t) ≤ β1(t) for t ∈ [0, ω].

Remark 2.2. Note that there exists ϕ satisfying (2.19), resp. (2.22), e.g. if there exists
a partial derivative ∂f

∂x
which belongs to K

(
[0, ω]×D; R

)
. Then we can put

ϕ(t) = sup

{∣∣∣∣∂f∂x (t, x)

∣∣∣∣ : γ1(t) ≤ x ≤ γ2(t)

}
for a. e. t ∈ [0, ω],

where
γ1 = min

{
α1, β1

}
, γ2 = max

{
α1, β1

}
.

2.4 Auxiliary Propositions.

Lemma 2.1. Let (u, v) ∈ AC
(
[0, ω]; R2

)
satisfy

u′(t) = p(t)v(t) for a. e. t ∈ [0, ω], (2.23)

v′(t) ≥ −ϕ(t)u(t) for a. e. t ∈ [0, ω], (2.24)

u(0) = u(ω), v(0) ≥ v(ω) (2.25)

with p ∈ L
(
[0, ω]; R

)
, ϕ ∈ L

(
[0, ω]; R+

)
. Let, moreover, u assume both positive and

negative values. If (2.13) holds then v does not vanish.

Proof. First we will show that there exists t0 ∈ [0, ω] such that

u(t0) = 0, v(t0) 6= 0. (2.26)

Assume on the contrary that if u has a zero at some point, then v has a zero at the same
point. Obviously, according to the assumptions of the lemma, there exist t1 ∈ [0, ω[ ,
t2 ∈ ]0, ω], t1 6= t2 such that

u(t1) = 0, u(t2) = 0, v(t1) = 0, v(t2) = 0, (2.27)

u(t) < 0 for t ∈ I(t1, t2), (2.28)

Then, (2.24) in view of (2.28) yields v′(t) ≥ 0 for a.e. t ∈ I(t1, t2), which together with
(2.25) and (2.27) results in

v(t) = 0 for t ∈ I(t1, t2). (2.29)
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However, (2.23) and (2.29) yield u′(t) = 0 for a.e. t ∈ I(t1, t2), which together with (2.27)
implies u(t) = 0 for t ∈ I(t1, t2). The last equality contradicts (2.28).

Let, therefore, t0 ∈ [0, ω] be such that (2.26) holds. Obviously, either

v(t0) > 0 (2.30)

or
v(t0) < 0. (2.31)

We will show that v has no zero. Assume on the contrary that v has a zero in the interval
[0, ω]. If (2.30) is satisfied then in view of (2.25) we can assume without loss of generality
that t0 6= ω and, furthermore, there exists t1 ∈ ]0, ω], t1 6= t0 such that

v(t1) = 0, v(t) > 0 for t ∈ I[t0, t1). (2.32)

The integration of (2.23) over I(t0, t) in view of (2.25), (2.26), and (2.32) yields

u(t) =

∫
I(t0,t)

p(s)v(s)ds ≤
∫

I(t0,t)

[p(s)]+v(s)ds for t ∈ I(t0, t1). (2.33)

The integration of (2.24) over I(t, t1) in view of (2.25) and (2.32), results in

−v(t) ≥ −
∫

I(t,t1)

ϕ(s)u(s)ds for t ∈ I[t0, t1). (2.34)

Using (2.33) in (2.34) we obtain

v(t) ≤
∫

I(t,t1)

ϕ(s)

∫
I(t0,s)

[p(ξ)]+v(ξ)dξds for t ∈ I[t0, t1). (2.35)

Now let t2 ∈ I[t0, t1) be such that

v(t2) = max
{
v(t) : t ∈ I[t0, t1)

}
. (2.36)

Then from (2.35) on account of (2.32) and (2.36) we get

0 < v(t2) ≤ v(t2)

∫
I(t2,t1)

ϕ(s)

∫
I(t0,s)

[p(ξ)]+dξds ≤ v(t2)

∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]+ds. (2.37)

However, by using (2.13) it follows that v(t2) < v(t2), a contradiction.
Now assume that (2.31) holds. Put

u(t) = u(ω − t) for t ∈ [0, ω], v(t) = −v(ω − t) for t ∈ [0, ω], (2.38)

p(t) = p(ω − t) for a. e. t ∈ [0, ω], ϕ(t) = ϕ(ω − t) for a. e. t ∈ [0, ω]. (2.39)

Then it can be easily verified that (u, v) ∈ AC
(
[0, ω]; R2

)
satisfy

u′(t) = p(t)v(t) for a. e. t ∈ [0, ω], (2.40)

v′(t) ≥ −ϕ(t)u(t) for a. e. t ∈ [0, ω], (2.41)

u(0) = u(ω), v(0) ≥ v(ω), (2.42)
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and ∫ ω

0

[p(s)]+ds =

∫ ω

0

[p(s)]+ds,

∫ ω

0

ϕ(s)ds =

∫ ω

0

ϕ(s)ds. (2.43)

Moreover, in view of (2.26), (2.31), and (2.38) we have

u(ω − t0) = 0, v(ω − t0) > 0,

and thus the lemma follows from the above–proven.

Lemma 2.2. Let (u, v) ∈ AC
(
[0, ω]; R2

)
satisfy (2.23)–(2.25) with p ∈ L

(
[0, ω]; R

)
, ϕ ∈

L
(
[0, ω]; R+

)
. Let, moreover, u take both positive and negative values. If (2.15) and

(2.17) hold then v does not vanish.

Proof. Assume on the contrary that v has a zero. Put

Mv = max
{
v(t) : t ∈ [0, ω]

}
, mv = max

{
− v(t) : t ∈ [0, ω]

}
, (2.44)

Mu = max
{
u(t) : t ∈ [0, ω]

}
, mu = max

{
− u(t) : t ∈ [0, ω]

}
. (2.45)

According to our assumptions,

Mu > 0, mu > 0. (2.46)

Moreover, if v ≡ 0 then from (2.23) it follows that u is a constant function, which in view
of (2.45) yields Mu = −mu. However, the latter equality contradicts (2.46). Therefore,
we have

Mv ≥ 0, mv ≥ 0, Mv +mv > 0. (2.47)

Choose t0 ∈ [0, ω[ , t1 ∈ ]0, ω] such that

v(t0) = Mv, v(t1) = −mv. (2.48)

Obviously, t0 6= t1, and the integration of (2.24) over I(t0, t1) on account of (2.25), (2.45),
and (2.48) yields

Mv +mv ≤
∫

I(t0,t1)

ϕ(s)u(s)ds ≤Mu

∫ ω

0

ϕ(s)ds. (2.49)

Now choose t2 ∈ [0, ω[ , t3 ∈ ]0, ω] such that

u(t2) = −mu, u(t3) = Mu. (2.50)

Obviously, t2 6= t3, and the integration of (2.23) over I(t2, t3) and over J
def
= [0, ω]\I(t2, t3),

respectively, in view of (2.25), (2.44), and (2.50), result in

Mu +mu =

∫
I(t2,t3)

p(s)v(s)ds ≤Mv

∫
I(t2,t3)

[p(s)]+ds+mv

∫
I(t2,t3)

[p(s)]−ds, (2.51)
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resp.

−mu −Mu =

∫
J

p(s)v(s)ds ≥ −mv

∫
J

[p(s)]+ds−Mv

∫
J

[p(s)]−ds. (2.52)

Now from (2.51) and (2.52), with respect to (2.46), we obtain

Mu < Mv

∫
I(t2,t3)

[p(s)]+ds+mv

∫
I(t2,t3)

[p(s)]−ds, (2.53)

and

Mu < mv

∫
J

[p(s)]+ds+Mv

∫
J

[p(s)]−ds. (2.54)

Note that from (2.47) and (2.49) it follows that∫ ω

0

ϕ(s)ds > 0. (2.55)

Thus if we multiply both sides of (2.53), resp. (2.54), by
∫ ω

0
ϕ(s)ds, on account of (2.55)

we get

Mu

∫ ω

0

ϕ(s)ds < Mv

∫ ω

0

ϕ(s)ds

∫
I(t2,t3)

[p(s)]+ds+mv

∫ ω

0

ϕ(s)ds

∫
I(t2,t3)

[p(s)]−ds, (2.56)

resp.

Mu

∫ ω

0

ϕ(s)ds < mv

∫ ω

0

ϕ(s)ds

∫
J

[p(s)]+ds+Mv

∫ ω

0

ϕ(s)ds

∫
J

[p(s)]−ds. (2.57)

Now (2.49), (2.56), and (2.57) result in

mv

(
1−

∫ ω

0

ϕ(s)ds

∫
I(t2,t3)

[p(s)]−ds

)
< Mv

(∫ ω

0

ϕ(s)ds

∫
I(t2,t3)

[p(s)]+ds− 1

)
, (2.58)

Mv

(
1−

∫ ω

0

ϕ(s)ds

∫
J

[p(s)]−ds

)
< mv

(∫ ω

0

ϕ(s)ds

∫
J

[p(s)]+ds− 1

)
. (2.59)

Note that (2.58) and (2.59) in view of (2.15) and (2.47) yields Mv > 0, mv > 0. Therefore,
multiplying the corresponding sides of (2.58) and (2.59) we obtain(

1−
∫ ω

0

ϕ(s)ds

∫
I(t2,t3)

[p(s)]−ds

)(
1−

∫ ω

0

ϕ(s)ds

∫
J

[p(s)]−ds

)
<

(∫ ω

0

ϕ(s)ds

∫
I(t2,t3)

[p(s)]+ds− 1

)(∫ ω

0

ϕ(s)ds

∫
J

[p(s)]+ds− 1

)
. (2.60)

Note that(
1−

∫ ω

0

ϕ(s)ds

∫
I(t2,t3)

[p(s)]−ds

)(
1−

∫ ω

0

ϕ(s)ds

∫
J

[p(s)]−ds

)
≥ 1−

∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]−ds (2.61)
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and, in view of the inequality AB ≤ 1
4
(A+B)2,(∫ ω

0

ϕ(s)ds

∫
I(t2,t3)

[p(s)]+ds− 1

)(∫ ω

0

ϕ(s)ds

∫
J

[p(s)]+ds− 1

)
≤ 1

4

(∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]+ds− 2

)2

. (2.62)

Therefore, using (2.61) and (2.62) in (2.60) we obtain

1−
∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]−ds <
1

4

(∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]+ds− 2

)2

. (2.63)

Note also, that from (2.58) and (2.59) it follows that∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]+ds > 2. (2.64)

Thus from (2.63), in view of (2.15) and (2.64) we get

2 + 2

√
1−

∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]−ds <

∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]+ds,

which contradicts (2.17).

Lemma 2.3. Let (u, v) ∈ AC
(
[0, ω]; R2

)
satisfy (2.23)–(2.25) with p ∈ L

(
[0, ω]; R

)
, ϕ ∈

L
(
[0, ω]; R+

)
, and let (2.12) hold. Let, moreover, u assume both positive and negative

values. If either (2.13) and (2.14) hold or (2.15) and (2.16) are fulfilled, then v has a
zero.

Proof. We will prove the lemma in the case when (2.13) and (2.14) are fulfilled. The case
when (2.15) and (2.16) are satisfied can be proven analogously.

Let, therefore, (2.13) and (2.14) hold and assume to the contrary that v has no zero.
First assume that v is a positive function. Put

Mv = max
{
v(t) : t ∈ [0, ω]

}
, mv = min

{
v(t) : t ∈ [0, ω]

}
, (2.65)

and define numbers Mu and mu by (2.45). Then, according to our assumptions, we have
(2.46) and

Mv > 0, mv > 0. (2.66)

Choose t0, t2 ∈ [0, ω[ , t1, t3 ∈ ]0, ω] such that (2.50) holds and

v(t0) = Mv, v(t1) = mv. (2.67)

Now the integration of (2.24) over I(t0, t1), on account of (2.25), (2.45), and (2.67), yields

Mv −mv ≤
∫

I(t0,t1)

ϕ(s)u(s)ds ≤Mu

∫ ω

0

ϕ(s)ds. (2.68)
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Further, the integration of (2.23) over I(t2, t3), in view of (2.25), (2.50), (2.65), and (2.66),
results in

Mu +mu =

∫
I(t2,t3)

p(s)v(s)ds ≤Mv

∫ ω

0

[p(s)]+ds. (2.69)

From (2.69), with respect to (2.46) and (2.12), we obtain

Mu

∫ ω

0

ϕ(s)ds < Mv

∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]+ds. (2.70)

Now (2.68) and (2.70) imply

Mv < mv +Mv

∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]+ds. (2.71)

On the other hand, the integration of (2.23) from 0 to ω, in view of (2.25) and (2.65),
yields

0 =

∫ ω

0

p(s)v(s)ds ≤Mv

∫ ω

0

[p(s)]+ds−mv

∫ ω

0

[p(s)]−ds,

i.e.,

mv

∫ ω

0

[p(s)]−ds ≤Mv

∫ ω

0

[p(s)]+ds. (2.72)

Note that having assumed u not to be a constant function we find p 6≡ 0. Therefore, from
(2.14) it follows that ∫ ω

0

[p(s)]−ds > 0. (2.73)

Thus if we multiply both sides of (2.71) by
∫ ω

0
[p(s)]−ds, then, in view of (2.66), (2.72),

and (2.73) we obtain∫ ω

0

[p(s)]−ds <

∫ ω

0

[p(s)]+ds+

∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]+ds

∫ ω

0

[p(s)]−ds. (2.74)

However, (2.74) contradicts (2.14).
Now assume that v is a negative function. Define u, v, p, and ϕ by (2.38) and

(2.39). Then it can be easily verified that (u, v) ∈ AC
(
[0, ω]; R2

)
satisfies (2.40)–(2.42).

Furthermore, (2.43) is fulfilled and, in addition, also∫ ω

0

[p(s)]−ds =

∫ ω

0

[p(s)]−ds.

Moreover, v is a positive function, and thus the lemma follows from the above-proven.

Lemma 2.4. Let a vector–valued function (p,−ϕ) verify the property (P+) with p ∈
L
(
[0, ω]; R

)
, ϕ ∈ L

(
[0, ω]; R+

)
. Let, moreover, (2.20) holds. Then the problem

u′(t) = p(t)v(t) + h(t) for a. e. t ∈ [0, ω], (2.75)

v′(t) = −ϕ(t)u(t) + q(t) for a. e. t ∈ [0, ω], (2.76)

u(0) = u(ω), v(0) = v(ω) (2.77)
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has a unique solution (u, v) for each (h, q) ∈ L
(
[0, ω]; R2

)
. Moreover, there exists ρ0 > 0

independent on h and q such that the estimate

‖(u, v)‖C ≤ ρ0 ‖(h, q)‖L (2.78)

holds.

Proof. According to the well-known Fredholm alternative principle, it is sufficient to show
that the corresponding homogeneous system

u′(t) = p(t)v(t) for a. e. t ∈ [0, ω], (2.79)

v′(t) = −ϕ(t)u(t) for a. e. t ∈ [0, ω], (2.80)

with boundary conditions (2.77) has only the trivial solution. Let, therefore, (u, v) ∈
AC
(
[0, ω]; R2

)
satisfy (2.77), (2.79), and (2.80). By Definition 2.2, u is non–negative,

which together with (2.80) results in v′(t) ≤ 0 for a. e. t ∈ [0, ω]. Then, the periodicity
condition (2.77) implies that v is a constant function. Having in mind this fact, the
integration of (2.79) from 0 to ω, in view of (2.77) gives

0 = v(0)

∫ ω

0

p(s)ds. (2.81)

Now (2.81) on account of (2.20) results in

v(t) = 0 for t ∈ [0, ω]. (2.82)

Using (2.82) in (2.79) we get that u is a constant function. Therefore, the integration of
(2.80) from 0 to ω in view of (2.77) yields

0 = u(0)

∫ ω

0

ϕ(s)ds. (2.83)

By (2.20), we have
u(t) = 0 for t ∈ [0, ω]. (2.84)

Thus (2.82) and (2.84) ensure that the only solution to (2.77), (2.79), (2.80) is the trivial
one.

Now we will show the estimate (2.78). Let Ω : L
(
[0, ω]; R2

)
→ C

(
[0, ω]; R2

)
be the

operator assigning to every (h, q) ∈ L
(
[0, ω]; R2

)
the unique solution (u, v) of (2.75)–

(2.77). Thus, Ω is a linear continuous operator. Then, (2.78) obviously holds with

ρ0 = sup
{
‖Ω(x, y)‖C : ‖(x, y)‖L = 1

}
.
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2.5 Proofs of Main Results.

Proof of Theorem 2.1. Let (u, v) ∈ AC
(
[0, ω]; R2

)
satisfy (2.23)–(2.25). According to

Definition 2.2 it is sufficient to show that (2.7) holds. Assume on the contrary that there
exists t0 ∈ [0, ω] such that

u(t0) < 0. (2.85)

First note that if p ≡ 0 then from (2.23) it follows that u is a constant function. Conse-
quently, the integration of (2.24) from 0 to ω in view of (2.25) yields

0 ≥ −u(t0)

∫ ω

0

ϕ(s)ds (2.86)

which together with (2.12) contradicts (2.85). Therefore, in what follows we can assume
that

p 6≡ 0. (2.87)

According to Lemmas 2.1, 2.2, and 2.3 it follows that u does not assume positive values.
Therefore,

u(t) ≤ 0 for t ∈ [0, ω]. (2.88)

However, from (2.24), (2.25), and (2.88) it follows that v is a constant function. Thus the
integration of (2.23) from 0 to ω, on account of (2.25) results in

0 = v(0)

∫ ω

0

p(s)ds. (2.89)

On the other hand, from (2.12), (2.87) and (2.14), resp. (2.16), it follows that
∫ ω

0
p(s)ds 6=

0. Therefore, from (2.89) we obtain v ≡ 0. Thus from (2.23) we get that u is a constant
function which is, according to (2.85), negative. Now the integration of (2.24) from 0
to ω, in view of (2.25), results in (2.86). However, (2.86) in view of (2.12) contradicts
(2.85).

Proof of Theorem 2.2. It immediately follows from Theorem 2.1 and Remark 2.1.

Proof of Theorem 2.3. Let ρ0 be a number appearing in Lemma 2.4. Put

ρ(t) = sup
{
|f(t, x)| : β1(t) ≤ x ≤ α1(t)

}
for a. e. t ∈ [0, ω] (2.90)

and
ρ1 = ρ0

(
‖ϕ‖L ‖(α1, β1)‖C + ‖ρ‖L

)
. (2.91)

Let, moreover,

U1 =
{
y ∈ C

(
[0, ω]; R

)
: β1(t) ≤ y(t) ≤ α1(t) for t ∈ [0, ω]

}
, (2.92)

U2 =
{
z ∈ C

(
[0, ω]; R

)
: ‖z‖C ≤ ρ1

}
, (2.93)
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and let Ω : U1×U2 → C
(
[0, ω]; R2

)
be an operator which to every (y, z) assigns the unique

solution of

u′ = p(t)v (2.94)

v′ = −ϕ(t)u+ ϕ(t)y + f(t, y), (2.95)

u(0) = u(ω), v(0) = v(ω). (2.96)

According to Lemma 2.4, the operator Ω is defined correctly. Furthermore, the operator Ω
is continuous. We will show that Ω transforms U1×U2 into itself. According to Lemma 2.4
we have

‖Ω(y, z)‖C = ‖(u, v)‖C ≤ ρ0 ‖(0, ϕy + f(·, y))‖L . (2.97)

From (2.97), in view of (2.90)–(2.92) and the inclusion y ∈ U1, we obtain

‖v‖C ≤ ‖(u, v)‖C ≤ ρ1. (2.98)

Consequently, v ∈ U2. On the other hand, in view of (2.19), (2.94)–(2.96),

u′(t)− β′1(t) = p(t)
(
v(t)− β2(t)

)
for a. e. t ∈ [0, ω], (2.99)

v′(t)− β′2(t) ≥ −ϕ(t)
(
u(t)− β1(t)

)
for a. e. t ∈ [0, ω], (2.100)

u(0)− β1(0) = u(ω)− β1(ω), v(0)− β2(0) ≥ v(ω)− β2(ω). (2.101)

However, a pair (p,−ϕ) verifies a property (P+), and therefore from (2.99)–(2.101) we get

u(t) ≥ β1(t) for t ∈ [0, ω]. (2.102)

Analogously, we find
u(t) ≤ α1(t) for t ∈ [0, ω]. (2.103)

Now (2.102) and (2.103) imply u ∈ U1. Thus we have shown that Ω transforms a set
U1 × U2 into itself. Furthermore, on account of (2.90), (2.98), (2.102), (2.103), and the
inclusion y ∈ U1, from (2.94) and (2.95) it follows

|u′(t)| ≤ ρ1 |p(t)| for a. e. t ∈ [0, ω],

|v′(t)| ≤ 2 |ϕ(t)| ‖(α1, β1)‖C + ρ(t) for a. e. t ∈ [0, ω].

Consequently, Ω transforms U1 × U2 into its relatively compact subset. According to
Schauder fixed point theorem, there exists (u0, v0) ∈ U1 × U2 such that

(u0, v0) = Ω(u0, v0). (2.104)

However, in view of (2.94)–(2.96), from (2.104) it follows that (u0, v0) is a solution to
(2.1)–(2.3).

Proof of Theorem 2.4. It immediately follows from Theorem 2.3 and Remark 2.1.
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3 Applications to the optical problem.

In this section we will consider the system

u′ = p(t)v, (3.1)

v′ =
h(t)

u3
+
g(t)

u2
, (3.2)

together with the boundary conditions

u(0) = u(ω), v(0) = v(ω). (3.3)

Here p, h, g ∈ L
(
[0, ω]; R

)
. We establish conditions for the existence of a solution (u, v)

to (3.1)–(3.3) with u(t) > 0 for t ∈ [0, ω].
For the sake of brevity we will use the following notation:

H+ =

∫ ω

0

[h(s)]+ds, H− =

∫ ω

0

[h(s)]−ds,

G+ =

∫ ω

0

[g(s)]+ds, G− =

∫ ω

0

[g(s)]−ds.

The main results of this section are the following ones.

Theorem 3.1. Let ∫ ω

0

p(s)ds 6= 0, (3.4)

H+ >
(

9
8

)3
H−, G− > G+, and let

(∫ ω

0
|p(s)| ds

)2
4
∣∣∫ ω

0
p(s)ds

∣∣
(
G−H+ −

9

8
G+H−

)
≤

88
(
H+ −

(
9
8

)3
H−

)4

99
(
G− −

(
8
9

)2
G+

)3 . (3.5)

Then the problem (3.1)–(3.3) has at least one solution (u, v) with u(t) > 0 for t ∈ [0, ω].

Theorem 3.2. Let (3.4) hold, H− >
(

9
8

)3
H+, G+ > G−, and let

(∫ ω

0
|p(s)| ds

)2
4
∣∣∫ ω

0
p(s)ds

∣∣
(
G+H− −

9

8
G−H+

)
≤

88
(
H− −

(
9
8

)3
H+

)4

99
(
G+ −

(
8
9

)2
G−

)3 . (3.6)

Then the problem (3.1)–(3.3) has at least one solution (u, v) with u(t) > 0 for t ∈ [0, ω].

Such results are directly applicable to the TM–equations (1.3), giving some interesting
corollaries.
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Corollary 3.1. Let us consider the ansatz (1.2) with a general input pulse profile Q(x).
Assume that c, d ∈ L

(
[0, 1]; R

)
verify∫ 1

0

[d(s)]+ds >

(
9

8

)3 ∫ 1

0

[d(s)]−ds,

∫ 1

0

[c(s)]+ds >

∫ 1

0

[c(s)]−ds (3.7)

Then, there exists a constant K ≡ K(d, C1, C2) (where C1, C2 are defined by (1.4)), such
that the TM–equations (1.3) have a 1–periodic solution provided that∫ 1

0

[c(s)]+ds < K(d, C1, C2).

Corollary 3.2. Let us consider the ansatz (1.2) with a gaussian input pulse profile Q(x) =
C0 exp(−x2/2). Assume that c, d ∈ L

(
[0, 1]; R

)
verify (3.7). Then, there exists a constant

H ≡ H(c, d) such that the TM–equations (1.3) have a 1–periodic solution provided that

C0 < H(c, d).

Both corollaries are direct applications of Theorem 3.1, taking into account in the
second corollary that for a gaussian profile Q(x) = C0 exp(−x2/2), we can compute C1 =

1, C2 =
C2

0

2
√

2
. Of course, explicit expressions of constant K, H are easily derived. We omit

further details.
The following two corollaries can be directly derived from Theorem 3.2.

Corollary 3.3. Let us consider the ansatz (1.2) with a general input pulse profile Q(x).
Assume that c, d ∈ L

(
[0, 1]; R

)
verify∫ 1

0

[d(s)]−ds >

(
9

8

)3 ∫ 1

0

[d(s)]+ds,

∫ 1

0

[c(s)]−ds >

∫ 1

0

[c(s)]+ds (3.8)

Then, there exists a constant K ≡ K(d, C1, C2) (where C1, C2 are defined by (1.4)), such
that the TM–equations (1.3) have a 1–periodic solution provided that∫ 1

0

[c(s)]−ds < K(d, C1, C2).

Corollary 3.4. Let us consider the ansatz (1.2) with a gaussian input pulse profile Q(x) =
C0 exp(−x2/2). Assume that c, d ∈ L

(
[0, 1]; R

)
verify (3.8). Then, there exists a constant

H ≡ H(c, d) such that the TM–equations (1.3) have a 1–periodic solution provided that

C0 < H(c, d).

The proofs of Theorem 3.1 and Theorem 3.2 require the construction of adequate upper
and lower functions. For brevity, we will only give the complete proof of Theorem 3.1,
since Theorem 3.2 can be proven analogously. Some lemmas are needed.
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Lemma 3.1. Let p, q ∈ L
(
[0, ω]; R

)
be such that∫ ω

0

p(s)ds 6= 0,

∫ ω

0

q(s)ds = 0. (3.9)

Then every solution to the problem

u′ = p(t)v, (3.10)

v′ = q(t), (3.11)

u(0) = u(ω), v(0) = v(ω) (3.12)

is given by

u(t) = c− 1∫ ω

0
p(s)ds

(∫ ω

t

p(s)ds

∫ t

0

q(s)

∫ s

0

p(ξ)dξds

+

∫ t

0

p(s)ds

∫ ω

t

q(s)

∫ ω

s

p(ξ)dξds

)
for t ∈ [0, ω], (3.13)

v(t) =
1∫ ω

0
p(s)ds

(∫ t

0

q(s)

∫ s

0

p(ξ)dξds−
∫ ω

t

q(s)

∫ ω

s

p(ξ)dξds

)
for t ∈ [0, ω], (3.14)

where c ∈ R.

Proof. If u and v are given by (3.13) and (3.14) then, obviously, they satisfy (3.10) and
(3.11), and in view of (3.9), also (3.12) is fulfilled.

Let (u, v) ∈ AC
(
[0, ω]; R2

)
satisfy (3.10)–(3.12). Then the integration of (3.10) from

0 to t and from t to ω, respectively, gives

u(t) = u(0) +

∫ t

0

p(s)v(s)ds (3.15)

and

u(t) = u(ω)−
∫ ω

t

p(s)v(s)ds. (3.16)

The integration by parts of (3.15) and (3.16), in view of (3.11) and the periodicity of u,
results in

u(t) = u(0) + v(t)

∫ t

0

p(s)ds−
∫ t

0

q(s)

∫ s

0

p(ξ)dξds, (3.17)

u(t) = u(0)− v(t)

∫ ω

t

p(s)ds−
∫ ω

t

q(s)

∫ ω

s

p(ξ)dξds. (3.18)

If we multiply both sides of (3.17) by
∫ ω

t
p(s)ds and both sides of (3.18) by

∫ t

0
p(s)ds, we

arrive at

u(t)

∫ ω

t

p(s)ds = u(0)

∫ ω

t

p(s)ds+ v(t)

∫ ω

t

p(s)ds

∫ t

0

p(s)ds

−
∫ ω

t

p(s)ds

∫ t

0

q(s)

∫ s

0

p(ξ)dξds, (3.19)
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u(t)

∫ t

0

p(s)ds = u(0)

∫ t

0

p(s)ds− v(t)

∫ ω

t

p(s)ds

∫ t

0

p(s)ds

−
∫ t

0

p(s)ds

∫ ω

t

q(s)

∫ ω

s

p(ξ)dξds. (3.20)

Now if we sum the corresponding sides of (3.19) and (3.20) we find that (3.13) holds true.
The equality (3.14) follows from (3.17) and (3.18).

Lemma 3.2. Let p, q ∈ L
(
[0, ω]; R

)
satisfy (3.9) and let u, v ∈ AC

(
[0, ω]; R2

)
satisfy

(3.10)–(3.12). Then

Mu −mu ≤
(∫ ω

0
|p(s)| ds

)2
4
∣∣∫ ω

0
p(s)ds

∣∣ ∫ ω

0

[q(s)]−ds, (3.21)

where
Mu = max

{
u(t) : t ∈ [0, ω]

}
, mu = min

{
u(t) : t ∈ [0, ω]

}
. (3.22)

Proof. According to (3.12) we can extend functions u, v, p, and q to the interval [0, 3ω]
periodically. Then, obviously, (3.10) and (3.11) hold for almost every t ∈ [0, 3ω], and

u(t) = u(t+ ω), v(t) = v(t+ ω) for t ∈ [0, 2ω].

Choose tm ∈ [0, ω[ and tM ∈ ]tm, tm + ω[ such that

u(tm) = mu, u(tM) = Mu. (3.23)

According to Lemma 3.1, the function u has a representation

u(t) = u(tm)− 1∫ tm+ω

tm
p(s)ds

(∫ tm+ω

t

p(s)ds

∫ t

tm

q(s)

∫ s

tm

p(ξ)dξds

+

∫ t

tm

p(s)ds

∫ tm+ω

t

q(s)

∫ tm+ω

s

p(ξ)dξds

)
for t ∈ [tm, tm + ω]. (3.24)

Now from (3.24), for t = tM , in view of (3.23) and the periodicity of p it follows that

Mu −mu = − 1∫ ω

0
p(s)ds

(∫ tm+ω

tM

p(s)ds

∫ tM

tm

q(s)

∫ s

tm

p(ξ)dξds

+

∫ tM

tm

p(s)ds

∫ tm+ω

tM

q(s)

∫ tm+ω

s

p(ξ)dξds

)
. (3.25)

On the other hand, according to Lemma 3.1 again, the function u has also a representation

u(t) = u(tM)− 1∫ tM+ω

tM
p(s)ds

(∫ tM+ω

t

p(s)ds

∫ t

tM

q(s)

∫ s

tM

p(ξ)dξds

+

∫ t

tM

p(s)ds

∫ tM+ω

t

q(s)

∫ tM+ω

s

p(ξ)dξds

)
for t ∈ [tM , tM + ω]. (3.26)
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Note that tm + ω ∈ ]tM , tM + ω[ . Therefore, from (3.26) for t = tm + ω in view of (3.23)
and the periodicity of p and q it follows that

Mu −mu =
1∫ ω

0
p(s)ds

(∫ tM

tm

p(s)ds

∫ tm+ω

tM

q(s)

∫ s

tM

p(ξ)dξds

+

∫ tm+ω

tM

p(s)ds

∫ tM

tm

q(s)

∫ tM

s

p(ξ)dξds

)
. (3.27)

Now if we sum the corresponding sides of (3.25) and (3.27) we find

2
(
Mu −mu

)
=

1∫ ω

0
p(s)ds

(∫ tM

tm

p(s)ds

∫ tm+ω

tM

q(s)

(∫ s

tM

p(ξ)dξ −
∫ tm+ω

s

p(ξ)dξ

)
ds

+

∫ tm+ω

tM

p(s)ds

∫ tM

tm

q(s)

(∫ tM

s

p(ξ)dξ −
∫ s

tm

p(ξ)dξ

)
ds

)
. (3.28)

Note that∣∣∣∣∫ s

tM

p(ξ)dξ −
∫ tm+ω

s

p(ξ)dξ

∣∣∣∣ ≤ ∫ tm+ω

tM

|p(ξ)| dξ for s ∈ [tM , tm + ω], (3.29)

and ∣∣∣∣∫ tM

s

p(ξ)dξ −
∫ s

tm

p(ξ)dξ

∣∣∣∣ ≤ ∫ tM

tm

|p(ξ)| dξ for s ∈ [tm, tM ]. (3.30)

Therefore, from (3.28), in view of (3.29), (3.30) and the periodicity of q we obtain

2
(
Mu −mu

)
≤ 1∣∣∫ ω

0
p(s)ds

∣∣ ∫ tM

tm

|p(s)| ds
∫ tm+ω

tM

|p(s)| ds
∫ ω

0

|q(s)| ds. (3.31)

Now using the inequality AB ≤ 1
4
(A+B)2 in (3.31) and the periodicity of p, we arrive at

Mu −mu ≤
(∫ ω

0
|p(s)| ds

)2
8
∣∣∫ ω

0
p(s)ds

∣∣ ∫ ω

0

|q(s)| ds. (3.32)

Note that (3.9) implies ∫ ω

0

|q(s)| ds = 2

∫ ω

0

[q(s)]−ds, (3.33)

and consequently, (3.32) and (3.33) result in (3.21).

Lemma 3.3. Let p ∈ L
(
[0, ω]; R

)
, ϕ ∈ L

(
[0, ω]; R+

)
, (2.20) holds and∫ ω

0

ϕ(s)ds ≤
4
∣∣∫ ω

0
p(s)ds

∣∣(∫ ω

0
|p(s)| ds

)2 . (3.34)

Then (p,−ϕ) verifies the property (P+).
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Proof. In the case where
∫ ω

0
p(s)ds > 0 we put

x =

∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]−ds, y =

∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]+ds, (3.35)

while if
∫ ω

0
p(s)ds < 0 then we put

x =

∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]+ds, y =

∫ ω

0

ϕ(s)ds

∫ ω

0

[p(s)]−ds. (3.36)

In both cases (3.35) and (3.36), from (3.34) it follows that

(y + x)2 ≤ 4(y − x). (3.37)

Now from (3.37) it follows that

x ≤ 1

2
, (3.38)

y ≤ 2− x+ 2
√

1− 2x ≤ 2 + 2
√

1− x, (3.39)

and, using the inequality 4AB ≤ (A+B)2, also

yx ≤ y − x. (3.40)

Therefore, if
∫ ω

0
p(s)ds > 0 then in view of (3.35) from (3.38)–(3.40) we obtain the

inequalities (2.15)–(2.17). If
∫ ω

0
p(s)ds < 0 then in view of (3.36) from (3.38) and (3.40)

we get (2.13) and (2.14). Thus the conclusion of the lemma follows from Theorem 2.1.

Proof of Theorem 3.1. At first we construct an upper function. Put

A = G− −
(

8

9

)2

G+, D = H+ −
(

9

8

)3

H−, (3.41)

B =

(
9

8

)3

A, C =

(
8

9

)2

D, x =

(
9

8

)6
A2

D3
. (3.42)

Then, obviously,
AH+ −BH− + CG+ −DG− = 0,

and, therefore, according to Lemma 3.1, the problem

w′1 = p(t)w2 (3.43)

w′2 = A[h(t)]+ −B[h(t)]− + C[g(t)]+ −D[g(t)]− (3.44)

w1(0) = w1(ω), w2(0) = w2(ω) (3.45)

has a solution (w1, w2) ∈ AC
(
[0, ω]; R2

)
. Put

mw = min
{
w1(t) : t ∈ [0, ω]

}
, (3.46)

Mw = max
{
w1(t) : t ∈ [0, ω]

}
. (3.47)
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Then, according to Lemma 3.2, in view of (3.41) and (3.42) we have

Mw −mw ≤
(∫ ω

0
|p(s)| ds

)2
4
∣∣∫ ω

0
p(s)ds

∣∣
(
G−H+ −

9

8
G+H−

)
. (3.48)

Put

β1(t) =

(
1

xD

)1/2

+ x
(
w1(t)−mw

)
for t ∈ [0, ω], (3.49)

β2(t) = xw2(t) for t ∈ [0, ω]. (3.50)

Then, obviously,
β1(t) > 0 for t ∈ [0, ω] (3.51)

and, on account of (3.46), (
1

xD

)1/2

≤ β1(t) for t ∈ [0, ω]. (3.52)

Furthermore, from (3.48) in view of (3.5), (3.41), and (3.42) we obtain

x
(
Mw −mw

)
≤
(

1

xA

)1/3

−
(

1

xD

)1/2

. (3.53)

Now from (3.49) with respect to (3.53) it follows that

β1(t) ≤
(

1

xA

)1/3

for t ∈ [0, ω]. (3.54)

On the other hand, in view of (3.41) and (3.42) we have(
1

xB

)1/3

=

(
1

xD

)1/2

,

(
1

xC

)1/2

=

(
1

xA

)1/3

. (3.55)

Therefore, (3.52), (3.54), and (3.55) result in

xA ≤ 1

β3
1(t)
≤ xB for t ∈ [0, ω], (3.56)

xC ≤ 1

β2
1(t)
≤ xD for t ∈ [0, ω]. (3.57)

Thus, from (3.49) and (3.50), in view of (3.43)–(3.45), (3.56), and (3.57) we obtain

β′1(t) = p(t)β2(t) for a. e. t ∈ [0, ω],

β′2(t) ≤
h(t)

β3
1(t)

+
g(t)

β2
1(t)

for a. e. t ∈ [0, ω],

β1(0) = β1(ω), β2(0) = β2(ω).
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Therefore, (β1, β2) is an upper function to (3.1)–(3.3).
Now we construct a lower function. Let y0 ∈ ]1, G−/G+[ be such that(∫ ω

0
|p(s)| ds

)2
4
∣∣∫ ω

0
p(s)ds

∣∣ G− ≤ y4
0H

3
+

(G− − y0G+)3

(
y

1/2
0 − 1

)
(3.58)

and put

y1 =
G− − y0G+

H+

. (3.59)

Obviously,
y1H+ + y0G+ −G− = 0

and, therefore, according to Lemma 3.1, the problem

z′1 = p(t)z2 (3.60)

z′2 = y1[h(t)]+ + y0[g(t)]+ − [g(t)]− (3.61)

z1(0) = z1(ω), z2(0) = z2(ω) (3.62)

has a solution (z1, z2) ∈ AC
(
[0, ω]; R2

)
. Put

mz = min
{
z1(t) : t ∈ [0, ω]

}
, (3.63)

Mz = max
{
z1(t) : t ∈ [0, ω]

}
. (3.64)

Then, according to Lemma 3.2, we have

Mz −mz ≤
(∫ ω

0
|p(s)| ds

)2
4
∣∣∫ ω

0
p(s)ds

∣∣ G−. (3.65)

Put

α1(t) =
y0

y1

+
y2

1

y3
0

(
z1(t)−mz

)
for t ∈ [0, ω], (3.66)

α2(t) =
y2

1

y3
0

z2(t) for t ∈ [0, ω]. (3.67)

Then, obviously,
α1(t) > 0 for t ∈ [0, ω] (3.68)

and, on account of (3.63),

y0

y1

≤ α1(t) for t ∈ [0, ω]. (3.69)

Furthermore, from (3.65) in view of (3.58) and (3.59) we obtain

y2
1

y3
0

(
Mz −mz

)
≤ y0

y1

(
y

1/2
0 − 1

)
. (3.70)
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Now from (3.66) with respect to (3.64) and (3.70) it follows that

α1(t) ≤
y

3/2
0

y1

for t ∈ [0, ω]. (3.71)

Therefore, (3.69) and (3.71) result in

y2
1

y3
0

≤ 1

α2
1(t)
≤
(
y1

y0

)2

for t ∈ [0, ω], (3.72)

1

α3
1(t)
≤
(
y1

y0

)3

for t ∈ [0, ω]. (3.73)

Thus, from (3.66) and (3.67), in view of (3.60)–(3.62), (3.72), and (3.73) we obtain

α′1(t) = p(t)α2(t) for a. e. t ∈ [0, ω],

α′2(t) ≥
h(t)

α3
1(t)

+
g(t)

α2
1(t)

for a. e. t ∈ [0, ω],

α1(0) = α1(ω), α2(0) = α2(ω).

Therefore, (α1, α2) is a lower function to (3.1)–(3.3). Moreover, according to (3.41), (3.42),
(3.54), (3.59), (3.69), and y0 > 1, we have

β1(t) ≤ α1(t) for t ∈ [0, ω].

Note that functions

ψ1(t, y) =
3

β4
1(t)

y +
1

y3
, ψ2(t, y) =

2

β3
1(t)

y +
1

y2

are non–decreasing for every t ∈ [0, ω] in the second argument whenever y ≥ β1(t).
Therefore, if we put

ϕ(t) =
3[h(t)]+
β4

1(t)
+

2[g(t)]+
β3

1(t)
for a. e. t ∈ [0, ω], (3.74)

f(t, x) =
h(t)

x3
+
g(t)

x2
for a. e. t ∈ [0, ω], x > 0,

then one can easily verified that (2.19) is fulfilled. Moreover, in view of (3.41), (3.42),
(3.52), (3.55), and (3.74), we have∫ ω

0

ϕ(s)ds ≤ 3H+(xD)2 + 2G+xB

=

(
9

8

)9

(
G− −

(
8
9

)2
G+

)3

(
H+ −

(
9
8

)3
H−

)4

(
3

(
9

8

)3

G−H+ − 2

(
9

8

)3

G+H− −
11

8
G+H+

)
. (3.75)
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Now, in view of the inequality H+ >
(

9
8

)3
H− we have

−11

8
G+H+ < −11

8

(
9

8

)3

G+H−. (3.76)

Using (3.76) in (3.75) we get

∫ ω

0

ϕ(s)ds ≤ 3

(
9

8

)12

(
G− −

(
8
9

)2
G+

)3

(
H+ −

(
9
8

)3
H−

)4

(
G−H+ −

9

8
G+H−

)
. (3.77)

Now from (3.77), in view of (3.5), we obtain∫ ω

0

ϕ(s)ds ≤ 37

212
·

4
∣∣∫ ω

0
p(s)ds

∣∣(∫ ω

0
|p(s)| ds

)2 .
Thus, according to Lemma 3.3 it follows that (p,−ϕ) verifies the property (P+).

Now the conclusion follows from Theorem 2.3.
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