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Abstract

We give a mechanical example concerning the fact that some reg-
ularity is necessary in KAM theory. We consider the model given by
the vertical bouncing motion of a ball on a periodically moving plate.
Denoting with f the motion of the plate, some variants of Moser in-
variant curve theorem apply if ḟ is small in norm C5 and every motion
has bounded velocity. This is not possible if the function f is only C1.
Indeed we construct a function f ∈ C1 with arbitrary small derivative
in norm C0 for which a motion with unbounded velocity exists.

1 Introduction

Moser invariant curve theorem [6] is of fundamental importance to study the
stability of the solutions of Hamiltonian systems [7, 11]. It deals with the
existence of invariant curves for some diffeomorphisms of the cylinder that
are ”close” enough to an integrable twist map. More precisely, the map

(1)

{
θ1 = θ0 + α(r0) +R1(θ0, r0)
r1 = r0 +R2(θ0, r0)

with α′ > 0 has invariant curves if it possesses the intersection property and

(2) ||R1||C333(C) + ||R2||C333(C) < ε
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for ε sufficiently small. The request on the regularity was very strong and
suddenly arose the question whether such regularity was in fact needed or
not. Takens [12] gave a first counterexample in class C1 and successively
Herman [2] improved giving another counterexample in class C3−ε where ε
is a small positive constant. Recently, Wang [13] proved a related result for
Hamiltonian with d degrees of freedom. All these results aimed the search
for optimal regularity in KAM theory and the perturbation is found between
the whole class of symplectic diffeomorphisms or Hamiltonian flows.

Our purpose is different, indeed we are going to construct an example
in class C0 that comes from a mechanical model. The model describes the
vertical motion of a bouncing ball on a moving plate. The plate is moving
in the vertical direction as a 1-periodic function f and the gravity force is
acting on the ball. Moreover we suppose that the bounces are elastic and
do not affect the movement of the plate. This is a very simple mechanical
model with interesting dynamics and has been considered by several authors.
See [4, 1, 10, 3] and references therein for an insight. The motion of the
ball can be described by an exact symplectic twist map that is close to the
integrable twist map if the velocity is small [5]. So a direct application of
Moser theorem shows that if the velocity of the plate ḟ is small in norm C333

then invariant curves exist. It means that the velocity of the ball is always
bounded. The smallness of ḟ is essential for the boundedness of the velocity.
Indeed Pustyl’nikov [9] proved that if ḟ is sufficiently large then there exist
motions of the ball with unbounded velocity. We are going to prove that
some regularity is needed as well. Precisely given δ arbitrary small, we are
going to construct a concrete function f ∈ C1(R/Z) with sup |ḟ | ≤ δ such
that the corresponding model admits a motion of the ball with unbounded
velocity. So invariant curves cannot exist and Moser’s theorem cannot hold
in this context. Our function is not C2 and this is consistent with Moser
theorem leaving open the question on the optimal regularity for this model
to have motions with bounded velocity. On this line we refer to the work of
Zharnitky [14] to see a similar result on the Fermi-Ulam ping-pong model.
Our idea of constructing the function is different to Zharnitky’s one: we start
from the result of Pustyl’nikov on the unbounded motion. He constructed
an orbit that in the torus R/Z × R/Z becomes a fixed point. Our idea will
be to look at N -cycles in the same torus. This will lead to weaker conditions
on the generation of unbounded orbits that, after some technical work, will
allow to construct the function f and the corresponding unbounded orbit.
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2 Statement of the problem

We are concerned with the problem studying the motion of a bouncing ball
on a moving plate. We assume that the impacts do not affect the motion of
the racket that is supposed to be described by a function f ∈ C1(R/Z). The
fact that both the liner momentum and the energy are preserved, allows to
describe the motions through the following map

(3) Pf :

{
t1 = t0 + 2

g
v0 − 2

g
f [t1, t0]

v1 = v0 + 2ḟ(t1)− 2f [t1, t0]

where

f [t1, t0] =
f(t1 − f(t0))

t1 − t0
.

Here the coordinate t represents the impact time. The coordinate v represents
the velocity of the ball immediately after the impact. This is the formulation
considered by Pustil’nikov in [9]. Another approach based on differential
equations was considered by Kunze and Ortega [4] and leads to a map that
is equivalent to (3) [5]. The map is implicit and is well defined for v > v̄ for
some v̄ sufficiently large. Moreover, by the periodicity of the function f , the
coordinate t can be seen as an angle. So the map Pf is defined on the half
cylinder T× (v̄,+∞), where T = R/Z. If f ∈ C6, one can consider the strip
Σa = T × [a, a + k] with a > v̄ and k sufficiently large, and notice that a
simple application of Moser invariant curve theorem [6] in the form [8] gives
the existence of an invariant curve of Pf in Σa if

(4) ||ḟ ||C5[0,1] ≤ δ

for some δ sufficiently small. Invariant curves act as barriers so that repeating
the argument for a → +∞ one can prove that if condition (4) is satisfied
then every orbit (t∗n, v

∗
n) of Pf is such that

sup
n∈Z

v∗n <∞.

This result depends on the regularity of f . More precisely we shall prove the
following result

Theorem 1. For every 0 < δ < g
4

there exist f ∈ C1(R/Z) and an initial
condition (t∗0, v

∗
0) such that:
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1. ||ḟ ||C0[0,1] ≤ δ,

2. the orbit of Pf with initial condition (t∗0, v
∗
0) satisfies

t∗n+N = t∗n + σn, σn ∈ N

v∗n+N = v∗n +
g

2
V for some V ∈ N \ {0}

for every n ∈ N.

3 Unbounded orbits

In this section we are going to construct unbounded orbits for the map Pf .
We will obtain some intricate conditions that generalize Pustil’nikov result.
The fundamental observation is that the map Pf shares some obits with a
generalized standard map. More precisely, if (t∗n, v

∗
n)n∈Z is a complete orbit

satisfying

(5) f(t∗n) = f(t∗0) for every n ∈ Z

then f [t∗n, t
∗
n−1] = 0 for every n ∈ Z and (t∗n, v

∗
n)n∈Z becomes a complete orbit

for the generalized standard map

(6) GS :

{
t1 = t0 + 2

g
v0

v1 = v0 + 2ḟ(t1)

Clearly the converse is also true, if (t∗n, v
∗
n)n∈Z is a complete orbit of GS with

vn > v̄ for every n and satisfying condition (5) then it is also an orbit for P .
This fact will be crucial in the following. We start constructing unbounded
orbits for GS.

Lemma 1. Let t∗0 < t∗1 be real numbers and let (t∗n, v
∗
n)n∈Z be the orbit of the

map GS with initial conditions t0 = t∗0, v0 = v∗0 = g(t∗1 − t∗0)/2. Suppose that
there exist N,W, V ∈ N \ {0} such that

1. N(t∗1 − t∗0) + 4
g

∑N−1
k=1 (N − k)ḟ(t∗k) = W ,

2. 4
g

∑N−1
k=0 ḟ(t∗k) = V ,
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Then
t∗n+N = t∗n + σn, σn ∈ N

v∗n+N = v∗n +
g

2
V.

Moreover, there exists T > 0 such that if t∗1 − t∗0 > T then v∗n > v̄ for every
n ≥ 0.

Proof. Notice that from (6) we obtain the following expression for the n-th
iterate:

(7) vn = v0 + 2
n∑

k=1

ḟ(tk)

(8) tn = t0 +
2

g
nv0 +

4

g

n−1∑
k=1

(n− k)ḟ(tk).

We claim that for every j ∈ N, there exists σj ∈ N such that

(9) t∗N+j = t∗j + σj.

Let us prove it by induction on j. The fact that v∗0 = g(t∗1 − t∗0)/2 and the
hypothesis, together with (8) give the first step for j = 0 with σ0 = W .
Notice that by periodicity we have also ḟ(t∗N) = ḟ(t∗0).
Now suppose that t∗N+i = t∗i + σi for every i < j. Using (6) we have

t∗N+j = t∗N+j−1 +
2

g
v∗N+j−1 = t∗j−1 + σj−1 +

2

g
[v∗j−1 + 2

N−1∑
k=0

ḟ(t∗k+j)] =

(t∗j−1 +
2

g
v∗j−1) + σj−1 +

4

g

N−1∑
k=0

ḟ(t∗k+j) = t∗j + σj−1 +
4

g

N−1∑
k=0

ḟ(t∗k+j).

(10)

We just have to prove that the last term is an integer. Notice that for every
k, there exist d ∈ N and r ∈ {0, . . . , N − 1} such that k + j = Nd + r.
Moreover, the fact that k ∈ {0, . . . , N − 1} implies that N(d − 1) + r < j.
This allows to use the inductive hypothesis several times and get

t∗k+j = t∗Nd+r = t∗N+N(d−1)+r = t∗N(d−1)+r + σN(d−1)+r = · · · = t∗r + σ,
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where σ ∈ N. Moreover, from the definition, we have that r takes all the
values in {0, . . . , N − 1} as k goes from 0 to N − 1. Finally we have

4

g

N−1∑
k=0

ḟ(t∗k+j) =
4

g

N−1∑
r=0

ḟ(t∗r) = V

and we conclude by hypothesis.
This allows us to write, from (7),

v∗N+n = v∗n + 2
n+N∑
k=n+1

ḟ(t∗k) = v∗n + 2
N−1∑
k=0

ḟ(t∗k) = v∗n +
g

2
V.

Finally, once more from (7) we have the last assertion remembering that
v∗0 = g(t∗1 − t∗0)/2 and ḟ is bounded.

Remark 1. This result has a well-known geometrical interpretation. The
map GS satisfies

GS(t0 + 1, v0) = GS(t0, v0) + (1, 0)

GS(t0, v0 +
g

2
) = GS(t0, v0) + (1,

g

2
).

It means that GS induces a map on the torus R/Z × R/g
2
Z and the orbit

(t∗n, v
∗
n)n∈Z becomes an N-cycle on this torus.

We shall use this lemma to find unbounded orbit for the original map P .
This is the aim of the following

Proposition 1. Consider a function f ∈ C1(R/Z) and a sequence (t∗n)n∈N.
Suppose that there exist N,W, V ∈ N \ {0} such that

1. t∗N − t∗0 = W ,

2. 4
g
ḟ(t∗0) + (t∗N − t∗N−1)− (t∗1 − t∗0) = V ,

3. f(t∗0) = f(t∗1) = · · · = f(t∗N−1),

4. ḟ(t∗k) = g
4
(t∗k+1 − 2t∗k + t∗k−1) for 1 ≤ k ≤ N − 1.
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Then if we define v∗n+1 = vn + 2ḟ(tn+1) and v0 = g(t1−t0)
2

we have that there
exists an orbit (τ ∗n, ν

∗
n)n∈N of Pf such that (τ ∗n, ν

∗
n) = (t∗n, v

∗
n) for 0 ≤ n ≤ N

and
τ ∗n+N = τ ∗n + σn, σn ∈ N

ν∗n+N = ν∗n +
g

2
V.

Moreover, there exists T > 0 such that if t∗1 − t∗0 > T then v∗n > v̄ for every
n ≥ 0.

Proof. First of all it is not difficult to prove that condition 3. and 4. imply
that (t∗n, v

∗
n) is a partial orbit of Pf for 0 ≤ n ≤ N . Notice that we get the

case n = N using condition 1 and the periodicity of f .
So, to prove our result, it is sufficient to prove that hypothesis 1,2 and 4
allows to apply lemma 1. Indeed from hypothesis 3 and the generalized
periodicity of the sequence (tn) we have that condition (5) holds and we can
repeat the discussion of the beginning of this section.

So let us start proving that hypothesis 2 and 4 allows to recover condition
2 in lemma 1. We just have to verify that

(t∗N − t∗N−1)− (t∗1 − t∗0) =
4

g

N−1∑
k=1

ḟ(t∗k)

and, remembering hypothesis 4 is sufficient to prove that

(11) (t∗N − t∗N−1)− (t∗1 − t∗0) =
N−1∑
k=1

Tk.

Here, for brevity, we have denoted

(12) Tk = t∗k+1 − 2t∗k + t∗k−1.

Let us prove (11) it by induction on N . It is easily verified the basic case
N = 1. So suppose as induction hypothesis (11) to be true. Using it we have

(13)
N∑
k=1

Tk =
N−1∑
k=1

Tk + t∗N+1 − 2t∗N + t∗N−1 = (t∗N+1 − t∗N)− (t∗1 − t∗0).
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So (11) is proved and condition 2 of lemma 1 is recovered. To get condition
1 of lemma 1 notice that, from hypothesis 1 we have

W = t∗N − t∗0 = t∗N − t∗0 +N(t∗1 − t∗0)−N(t∗1 − t∗0)

= N(t∗1 − t∗0) + (N − 1)t∗0 −Nt∗1 + t∗N .
(14)

So, once again using hypothesis 4 we are done if we can prove that

(15) (N − 1)t∗0 −Nt∗1 + t∗N =
N−1∑
k=1

[Tk(N − k)]

where Tk is defined by (12). Let us prove it by induction on N . It is easily
verified the basic case N = 1. So suppose as induction hypothesis (15) to be
true. Simple computations give

N∑
k=1

[Tk(N + 1− k)] =
N−1∑
k=1

[Tk(N + 1− k)] + TN

=
N−1∑
k=1

[Tk(N − k)] +
N−1∑
k=1

Tk + TN .

(16)

Using the inductive hypothesis and the definition of TN we get

N∑
k=1

[Tk(N + 1− k)] = (N − 1)t∗0 −Nt∗1 − t∗N + t∗N+1 + t∗N−1 +
N−1∑
k=1

Tk.

Now we can use (11) and get

N∑
k=1

[Tk(N + 1− k)] = Nt∗0 − (N + 1)t∗1 + t∗N+1.

So we can recover also condition 1 in lemma 1 and conclude the proof.

4 Proof of theorem 1

Proposition 1 says that we can decide if a finite sequence (tn, vn)0≤n<N ”gen-
erates” an unbounded orbit of P . We want to use it to produce unbounded
orbits. The idea is to first construct the sequence and then construct the
function f in such a way that proposition 1 is applicable. The next lemma
deals with the construction of such sequence.
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Lemma 2. For every δ ∈ (0, g
4
) there exist three positive integers N,W, V

and an increasing sequence (tn)0≤n≤N such that the following holds.

1. tN − t0 = W ,

2. 4
g
η + (tN − tN−1)− (t1 − t0) = V for some 0 < η ≤ δ,

3. g
4
(tn+1 − 2tn + tn−1) = δ for 1 ≤ n ≤ N − 1.

Proof. We construct the sequence (tn) for 0 ≤ n ≤ N for some N to be
fixed later. So let t0 = 0 and t1 positive to be fixed later. Define, for every
0 ≤ n ≤ N − 1 the increasing sequence

(17) tn+1 =
4

g
δ + 2tn − tn−1

so that condition 3. is satisfied with the equality. Now let us adjust the
constants t1, N,W, V and η in order to satisfy conditions 1. and 2. To do it
let us start by noticing that letting t0 = 0, the following formula holds for
every n ≥ 0 and t1 > 0:

(18) tn =
n(n− 1)

2

4

g
δ + nt1.

We use it to rewrite condition 1. as

(19) Nt1 +N(N − 1)
2δ

g
= W

and condition 2. as

(20)
4

g
η + (N − 1)

4

g
δ = V

Let us find N, V,W ∈ N \ {0}, t1 > 0 and 0 < η ≤ δ such that (19) and (20)
are satisfied. Let us start with (20). Fix V = 1 so that (20) is equivalent to

(21) η =
g

4
− (N − 1)δ.

Let us impose 0 < g
4
− (N − 1)δ ≤ δ that is equivalent to

g

4δ
≤ N <

g

4δ
+ 1.
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It is sure that there exists N > 1 satisfying this condition. Using such N we
can define η through (21). Now we can pass to (19). We have

t1 =
W

N
−N(N − 1)

2δ

g
.

If we chose W = N2(N − 1) we can conclude as

t1 = N(N − 1)(1− 2δ

g
) > 0.

The following proposition will allow to construct the function f .

Proposition 2. Consider a pair of sequences (tk)0≤k≤N and (Dk)1≤k≤N such
that tk ≤ tk+1 and 0 ≤ Dk ≤ δ for some δ > 0. Suppose that tN − t0 = W
for some W ∈ N and D0 = DN . Then there exists f ∈ C1(R/Z) such that

1. f(t0) = f(t1) = · · · = f(tN−1)

2. ḟ(tk) = Dk for 1 ≤ k ≤ N

3. ||ḟ ||C0[0,1] ≤ δ

Proof. To fix the ideas, suppose that t0 = 0. Consider the new sequence
(t1k)0≤k≤N defined as{

t1k = tk − [tk] for 0 ≤ k ≤ N − 1
t1N = 1

where [x] represents the integer part of x. Morally, we are considering the
sequence (tk) modulo 1. Moreover, we can reorganize the sequence supposing
it to be monotone non-decreasing. To be consistent we will reorganize also
the sequence (Dk) following the permutation made on the sequence (t1k).
Now for t ∈ [0, 1] consider the function ζ(t) being piecewise linear defined
for t1k ≤ t < t1k+1, 0 ≤ k < N as in figure. With reference to the figure, the

points Ak and Bk are determined by the positive quantity Lk <
tk+1−tk

2
and

the constant Ck is such that 0 < Ck < δ. If we were able to get the signed
area between tk and tk+1 to be zero, we would get the thesis extending ζ(t)
to the whole R by periodicity and letting

f(t) =

∫ t

0

ζ(s)ds.
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tBk tk+1Ak

−Ck

tk

Lk

Dk+1

Dk

Lk

So let us see that it is possible to construct such function ζ finding suitable
Ck and Lk. Instead of giving cumbersome computations, let us think geo-
metrically with the use of the figure. The signed area between tk and tk+1 is
given by Lk(Dk +Dk+1)−Ck(tk+1 − tk − 2Lk). As we want it to be zero we
get that

Ck =
Lk(Dk +Dk+1)

tk+1 − tk − 2Lk

> 0.

Remembering that we need Ck < δ we have that if we chose Lk such that

Lk <
δ(tk+1 − tk)

Dk+1 +Dk + 2δ

we get the thesis.

We are ready for the

Proof of theorem 1. Given δ, consider the sequence (t∗k) coming from lemma
2 and the corresponding constants η and N . It comes from the proof that
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we have t0 = 0 and tN = W ∈ N. Now consider the corresponding sequence
(Dk) defined as

Dk =
g

4
(t∗k+1 − 2t∗k + t∗k−1) for 1 ≤ k ≤ N − 1

DN =D0 = η.
(22)

From condition 2 and 3 in lemma 2 we have

0 ≤ Dk ≤ δ

for every 0 ≤ k ≤ N − 1. So we can apply proposition 2 to the sequences
(t∗k)0≤k≤N−1 and (Dk)0≤k≤N to get the corresponding function f̄ . So consider
the corresponding map Pf̄

(23)

{
t1 = t0 + 2

g
v0 − 2

g
f̄ [t1, t0]

v1 = v0 + 2 ˙̄f(t1)− 2f̄ [t1, t0].

Let (τ ∗k , ν
∗
k) the orbit with initial condition

(t0, v0) = (t∗0,
g(t∗1 − t∗0)

2
).

Remembering conditions 1 and 2 of proposition 2 we have that (τk) = (t∗k) and
the corresponding sequence (t∗k, v

∗
k) is an orbit of Pf̄ satisfying the hypothesis

of proposition 1. Condition 3 of lemma 2 concludes the proof.
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