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Abstract

We consider a relativistic particle under the action of a time-periodic
central force field in the plane. When it is attractive at a given level there
are many subharmonic and quasiperiodic motions.

1 Introduction and main results

Vector fields of the form
x 6= 0 7→ f(|x|) x

|x|
are called ‘central force fields’ and have a great importance in Mechanics from
the very beginning of this discipline in the seventeenth century. The force field
is attractive if f(r) < 0 for every r and repulsive if the opposite inequality holds.
For instance, letting f(r) = c/r2 for some constant c one obtains, if c < 0, the
gravitational force field created by a point mass fixed at the origin (known as
the Kepler problem), which is attractive. If, on the contrary, the constant c
is positive we get the Coulombian force field created by an electrical charged
particle fixed at the origin when acting on a free charged particle of the same
sign (magnetic interaction between the charges is not considered).

These force fields are autonomous, i.e., they depend on the position but not
directly on time. However, already Newton [19] in his study of Kepler’s second
law considered the motion of a particle subjected to a periodic sequence of
discrete time impulses. On the other hand, many problems involving gravitating
bodies with variable mass have been considered in Celestial Mechanics, being
the best known of them the Gylden-Meshcherskii problem, that can be regarded
as a Kepler problem with variable masses

ẍ = −M(t)
x

|x|3 ,

∗Partially supported by project MTM2011-23652, Ministerio de Economı́a e Innovación,
Spain

1



where M(t) = G(m1(t)+m2(t)), G is the gravitational constant and m1(t),m2(t)
are the masses of the bodies. Originally, the Gylden-Meshcherskii problem was
proposed to explain the secular acceleration observed in the Moon’s longitude,
but nowadays it is used to describe a variety of phenomena including the evo-
lution of binary stars, dynamics of particles around pulsating stars and many
others (see [3, 7, 20, 21] and the references therein). In a different line of re-
search, the Newtonian motion of a particle under a central force field which
may depend periodically on time has been recently studied by A. Fonda and
coworkers [10, 11, 12].

When dealing with particles moving at speed close to that of light it may
be important to take into account the relativistic effects. Relativistic Dynamics
is theoretically founded in the context of Special Relativity (see for instance
[13, Chapter 33]), and the relativistic Kepler or Coulomb problem has been
considered in previous works [1, 4, 18]. However, it seems that more general
non-autonomous central force fields in this context are rather unexplored. When
the mass of our particle at rest and the speed of light are normalized to one, we
are led to consider the following family of second-order systems in the plane:

d

dt

(
ẋ√

1− |ẋ|2

)
= f(t, |x|) x

|x| , x ∈ R2 \ {0}. (1)

Here, f : R×]0, +∞[→ R, f = f(t, r) is assumed to be continuous and T -
periodic in the time variable t. Notice however that it may be singular at
r = 0. Solutions of (1) are understood in a classical sense, i.e., a C2 function
x : R→ R2 is a solution provided that

x(t) 6= 0, |ẋ(t)| < 1 , t ∈ R,

and the equality (1) holds pointwise.
In this paper we shall be interested in a certain class of solutions including

the T -periodic ones but also some subharmonic and quasi-periodic solutions. To
introduce this class it will be convenient to use polar coordinates and rewrite
(in complex notation) every continuous function x : R → R2 \ {0} ≡ C \ {0}
as x(t) = r(t)eiθ(t), where r(t) = |x(t)| and θ : R → R is some continuous
determination of the argument function along x. We shall say that x is T -
radially periodic if r(t) is T -periodic and there exists some number ω ∈ R such
that θ(t) − ωt is T -periodic. In this case, the number ω = θ(T )−θ(0)

T can be
interpreted on the average angular speed of x and will be denoted by ω = rot x.

For instance, the T -radially periodic function x : R→ R2 \{0} is T - periodic
if and only if rotx is an integer multiple of 2π/T . If rot x = (m/n) (2π/T ) for
some relatively prime integers m 6= 0 6= n then x will be subharmonic with
minimal period nT . Particularly significant is the case in which m = 1 and
rot x = (1/n) (2π/T ); then, our particle will complete a turn around the origin
on each time interval [0, nT ]. See Figure 1.

Finally, if rot x
2π/T is irrational (and |x| is not constant) then x will not be

periodic of any period and instead will be quasi-periodic with two frequen-
cies ω1 = 2π

T ; ω2 = rot x. This is easy to check, since x(t) = r(t)eiθ(t) can
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rot(x) = (1/7)(2π/T )

0 t = 0
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rot(x) 6= (1/n)(2π/T )

Figure 1: The rotation number

be decomposed on the product of the T -periodic r(t)ei(θ(t)−rot(x)t) and the
2π/ rotx−periodic ei rot(x)t.

When our force field is repulsive, i.e.,

f(t, r) > 0 for (t, r) ∈ R×]0, +∞[,

then (1) does not have T -radially periodic solutions, as it can be easily checked
by integrating on the time interval [0, T ] the scalar product of both sides of (1)
with x. However, if our force field is autonomous and attractive at some level
r∗ > 0, i.e.

f(r∗) < 0 ,

then there is a solution of (1) rotating on the circumference of radius r∗ at
a constant angular speed. Indeed, straight-forward computations show that
x(t) = r∗eiωt is a solution if and only if

|ω| =
√

2

r∗

√
1 +

√
1 +

(
2

r∗f(r∗)

)2

.

Our first main result asserts that when f = f(t, r) is allowed to depend
periodically on time, this circular solution leaves its place to a radially periodic
solution.

Theorem 1 Assume the existence of r∗ > 0 such that f(t, r∗) < 0 for every
time t. Then there exists some T -radially periodic solution x∗ = x∗(t) of system
(1) with mint∈R |x∗(t)| = r∗.
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Under the conditions of Theorem 1, system (1) actually has infinitely many
T -radially periodic solutions, not only because its rotational symmetry implies
that the rotated curve eiτx(t) is a solution whenever x(t) is a solution (these
solutions may be considered geometrically equal) but also because if the contin-
uous force field is attractive at a given level then it is also attractive at other
levels nearby. Actually, our proof will show the existence of continuous branches
of geometrically different T -radially periodic solutions and it will lead us to the
second main result of this paper.

Theorem 2 Under the assumptions of Theorem 1 there exists ω∗ > 0 with the
following property: for any ω ∈]− ω∗, ω∗[\{0} there is some T -radially periodic
solution xω = xω(t) of (1) with mint∈R |xω(t)| ≥ r∗ and rot(xω) = ω.

In particular, taking ω = 2π
nT for some big natural number n we find the

existence of subharmonic solutions having a large multiple of T as its minimal
period. On the other hand, letting ω = 2π

T s for some irrational s we deduce the
existence of an infinite number of quasi-periodic orbits of our equation.

We point out that Theorems 1-2 apply, for instance, to the relativistic version
of the Gylden-Meshcherskii problem

d

dt

(
ẋ√

1− |ẋ|2

)
= −M(t)

x

|x|3 , x ∈ R2 \ {0},

provided that the continuous function M : R → R is periodic and positive.
Under this condition Theorem 1 ensures the existence, for every r∗ > 0, of a
T -radially periodic solution x = x(t) with mint∈R |x(t)| = r∗.

Theorems 1-2 resemble the results in [10, 11, 12] for the Newtonian case.
However, there are also important differences between them. For instance, in
[12, Theorem 1.1] the force field was assumed to be sublinear (and attractive)
at infinity in order to avoid resonance, requirements which are not needed in
this paper. On the other hand, in [12] the T -radially periodic solutions could
be continued, not only over the region where the force fields is attractive, but
all the way up to the origin. This property cannot be directly translated to the
relativistic problem which occupies us here because the speed of light imposes
bounds on the oscillation of solutions, and T -radially periodic solutions may not
exist on some region where we do not have any assumption on f .

We also point out that Theorems 1-2 do not hold for Newtonian systems
ẍ = f(t, |x|) x

|x| , and therefore we are identifying a genuine relativistic effect. An
example is provided by the Mathieu equation in the plane,

ẍ = (cos t− λ)x , x ∈ R2 ,

where λ ∈ R is a parameter. Then x = x(t) is a solution if and only if each of
its components solves the corresponding one-dimensional Mathieu equation. It
is well-known (see Theorems 1.3.1, 2.3.1 and 2.5.1 of [8]) that there exists an
infinite sequence I1, I2, I3, ... of pairwise disjoint open intervals (usually called
intervals of instability), none of which is empty, and such that all solutions
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of the Mathieu equation are unbounded whenever λ belongs to any of these
intervals. This sequence of intervals is divergent in the sense that sup In → +∞
as n → +∞; in particular there are numbers λ > 1 in the set ∪nIn. For
such values λ the force field is attractive but there are no T -radially periodic
solutions.

Finally, we notice that Theorems 1-2 also become false if our particle is
restricted to move on a line instead of the plane. In this case, (1) becomes

d

dt

(
ṙ√

1− |ṙ|2

)
= f(t, r) , r > 0 .

If the force field is globally attractive, integration of both sides of the equation
shows that no solution can be periodic.

This paper is structured as follows. In Section 2 the second order system is
written as a suitable first order system with a more convenient structure. Section
3 takes advantage of such structure to find a-priori bounds for the eventual
solutions. That, in turn, will enable us to construct a modified problem sharing
some solutions with the original one and use Leray-Schauder degree continuation
arguments; this will be done in Section 4. We refer to [6, 15] for the definition
and fundamental properties of Leray-Schauder topological degree.

2 From a second order system to a first order
system in the plane

Through this paper the function f : R×]0, +∞[→ R will always be assumed T -
periodic in time and continuous. We start with the following observation: the
radial symmetry of equation (1) can be exploited to reduce its order. Indeed,
introducing polar coordinates x(t) = r(t)eiθ(t) in (1) we arrive to the first order
system 




d
dt

(
ṙ√

1−ṙ2−r2θ̇2

)
− rθ̇2√

1−ṙ2−r2θ̇2
= f(t, r),

ṙθ̇√
1−ṙ2−r2θ̇2

+ d
dt

(
rθ̇√

1−ṙ2−r2θ̇2

)
= 0.

(2)

Multiplying the second equation by r we see that

d

dt

(
r2θ̇√

1− ṙ2 − r2θ̇2

)
= 0 .

This is a conservation law: if x(t) = r(t)eiθ(t) is a solution of (1), then

µ =
r2θ̇√

1− ṙ2 − r2θ̇2
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does not depend on t. We can get a physical insight of this quantity by identi-
fying R2 with the coordinate plane {z = 0} of R3 and observing that

(
1√

1− |ẋ(t)|2

)
x(t) ∧ ẋ(t) =




0
0
µ


 .

The scalar factor 1/
√

1− |ẋ(t)|2 being the relativistic mass of our particle, we
may call µ the angular momentum of the solution x(t). At this moment it is
convenient to introduce the relativistic linear momentum as a new dependent
variable:

p =
〈x, ẋ〉√
1− |ẋ|2 =

ṙ√
1− ṙ2 − r2θ̇2

.

The (nonlinear algebraic) system

r2θ̇√
1− ṙ2 − r2θ̇2

= µ,
ṙ√

1− ṙ2 − r2θ̇2
= p ,

can be easily solved in the variables ṙ, θ̇, to get

ṙ =
rp√

µ2 + r2 + r2p2
, θ̇ =

µ

r
√

µ2 + r2 + r2p2
. (3)

Thus, the second term on the left side of the first equation of (2) reads

rθ̇2

√
1− ṙ2 − r2θ̇2

=

(
θ̇

r

)
µ =

µ2

r2
√

µ2 + r2 + r2p2
.

Combining the first equations of systems (2), (3) one arrives to a first order
system defined on the half plane {r > 0} and depending on the parameter µ:

ṙ =
rp√

µ2 + r2 + r2p2
, ṗ =

µ2

r2
√

µ2 + r2 + r2p2
+ f(t, r) . (HS)

An important aspect to notice now is that this process is reversible, i.e.,
if (r(t), p(t); µ) is a solution to (HS) and we let θ = θ(t) be any primitive of

µ

r(t)
√

µ2 + r2(t) + r2(t)p2(t)
, then x(t) = r(t)eiθ(t) is a solution of (1) with an-

gular momentum µ (different choices of this primitive correspond to the solution
x(t) being rotated). Furthermore, x(t) is T -radially periodic if and only if r(t)
and p(t) are both T -periodic, and the rotation number can be computed from
r, p and µ:

rot(r, p; µ) =
µ

T

∫ T

0

dt

r(t)
√

µ2 + r2(t) + r2(t)p2(t)
. (4)

Thus, finding T -radially periodic solutions x(t) of (1) becomes equivalent to
finding T -periodic solutions (r(t), p(t); µ) of (HS). This fact will allow us to use
system (HS) in order to study equation (1).
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3 Some a-priori bounds

In Relativistic Mechanics, particles cannot travel faster than light (which in our
model is assumed to be 1). This basic physical principle implies the existence
of bounds on the variation of T -radially periodic solutions of (1), both in the
angular and the radial components. More precisely:

Lemma 1 Let (r, p; µ) be a T -periodic solution of (HS). Then,

(a) maxt∈R r(t)−mint∈R r(t) < T .

(b) | rot(r, p; µ)| ≤ 1
mint∈R r(t)

.

Proof. The first equation of (HS) immediately implies that |ṙ(t)| < 1 for any
t ∈ R, from where (a) follows. On the other hand, (4) gives

| rot(r, p; µ)| ≤ 1
T

∫ T

0

dt

r(t)
≤ 1

mint∈R r(t)
,

showing (b).

Fix now constants 0 < a < b. It will be convenient to consider the set

Σ(a, b) :=
{

T -periodic solutions (r, p; µ) of (HS) with a ≤ r(t) ≤ b ∀t ∈ R
}

.

(5)
After identifying solutions of (HS) and (1) this is just the set of T -radially pe-
riodic solutions living on the closed annulus {x ∈ R2 : a ≤ |x| ≤ b}. The
definition immediately implies that the set {r : (r, p; µ) ∈ Σ(a, b)} is uniformly
bounded; in the result below we show the boundedness of Σ(a, b) in the remain-
ing components:

Lemma 2 There are constants P, M > 0 (depending only on f, a, b) such that

|p(t)| < P ∀t ∈ R , |µ| < M ,

for every (r, p; µ) ∈ Σ(a, b).

Proof. We first check the existence of uniform bounds for the linear momentum
p. With this aim we choose any constant

P > max
{

0,−T min
(t,r)∈R×[a,b]

f(t, r)
}

. (6)

We assume that Σ(a, b) 6= ∅ and choose some element (r, p; µ) ∈ Σ(a, b). The
second equation of (HS) implies

ṗ(t) > −P/T , t ∈ R .
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Such a one-sided estimation implies bounds for the total oscillation of p. This
can be shown by choosing times t0 < t1 < t0 +T with p(t0) = max{p(t) : t ∈ R}
and p(t1) = min{p(t) : t ∈ R}; then,

max
t∈R

p(t)−min
t∈R

p(t) = −
∫ t1

t0

ṗ(t)dt ≤ (P/T )(t1 − t0) < P .

On the other hand, r being periodic, it follows from the first equation of
(HS) that p vanishes somewhere. Thus, maxt∈R p(t) ≥ 0 ≥ mint∈R p(t) and
|maxt∈R p(t)|, |mint∈R p(t)| < P . It proves the part of the statement concerning
the uniform bounds for p.

With the aim of finding bounds for the angular momentum µ we fix some
constant P as in (6) and pick some element (r, p;µ) ∈ Σ(a, b). Then,

r(t)2 ≤ b2 , p(t)2 ≤ P 2 , t ∈ R ,

and from the second equation of (HS) we deduce

ṗ(t) ≥ µ2

b2
√

µ2 + b2 + b2P 2
− P/T , t ∈ R .

The constants b, P, T being fixed, the right-hand side above diverges to +∞
as |µ| → ∞; in particular, it becomes positive for |µ| big enough. However p is
periodic and consequently its derivative should vanish somewhere. It provides
the desired bounds for |µ| and concludes the proof.

The argument above does not only show the existence of the bounds P,M ,
but actually may be used to obtain explicit formulas for them. Being given by
(6) the expression for P is particularly simple; this fact will be used later in the
paper.

The main assumption of Theorems 1-2 is the attractiveness of our force field
at a given level r∗, i.e.

f(t, r∗) < 0 for any t ∈ R. (7)

Under this condition one easily checks that no T -periodic solution (r, p; µ) of
(HS) with angular momentum µ = 0 can satisfy mint∈R r(t) = r∗. Remembering
(4) we may equivalently reformulate this fact as: rot(r, p; µ) > 0 for any T -
periodic solution (r, p; µ) of (HS) with mint∈R r(t) = r∗. It suggests a partial
converse of Lemma 1(b) and the second assertion of Lemma 2 on the existence
of nonzero lower bounds for the rotation number of these solutions. This is the
content of the following result:

Lemma 3 Assume (7). Then there exists some ω∗ > 0 (depending only on r∗
and f) such that | rot(r, p; µ)| ≥ ω∗ for any T -periodic solution (r, p; µ) of (HS)
with mint∈R |x(t)| = r∗.
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Proof. In view of (4), Lemma 1(a) and the first assertion of Lemma 2 (take
a = r∗, b = r∗ + T ) we may equivalently show the existence of some m > 0 such
that |µ| ≥ m for any (r, p;µ) ∈ Σ(r∗, r∗ + T ) with mint∈R r(t) = r∗. We define

m := −r2
∗ max

t∈R
f(t, r∗) > 0 .

We use a contradiction argument and assume instead the existence of some
(r, p; µ) ∈ Σ(r∗, r∗ + T ) with mint∈R r(t) = r∗ = r(t∗) for some t∗ ∈ R and
−m < µ < m. Thus ṙ(t∗) = 0, and the second equation of (HS) implies

ṗ(t∗) ≤ |µ|
r2∗

+ f(t∗, r∗) <
m

r2∗
+ f(t∗, r∗) ≤ 0 .

We deduce the existence of some ε > 0 such that p(t) > 0 if t∗ − ε < t < t∗ and
p(t) < 0 if t∗ < t < t∗ + ε. The first equation of system (HS) then implies

ṙ(t) > 0 if t∗ − ε < t < t∗ , ṙ(t) < 0 if t∗ < t < t∗ + ε ,

contradicting the fact that r attains its minimum at r∗. It concludes the proof.

We point out that the comparison of this result with Lemma 1(b) implies
that the constant ω∗ cannot be greater than 1/r∗. Before closing this Section
we consider the opposite case in which our force field is repulsive at some level
` > 0, i.e.,

f(t, `) > 0 for any t ∈ R. (8)

Lemma 4 Under this condition, maxt∈R r(t) 6= ` for any T -periodic solution
(r, p; µ) of (HS).

Proof. Using a contradiction argument we assume that (r, p; µ) is a T -periodic
solution of (HS) with maxt∈R r(t) = r(t0) = ` for some t0 ∈ R. Then ṙ(t0) = 0,
and the first equation of (HS) implies p(t0) = 0. On the other hand, from the
second equation of the system we see that ṗ(t0) > 0 and we deduce the existence
of some ε > 0 such that p(t) > 0 if t0 < t < t0 + ε. Going back to the first
equation, ṙ(t) > 0 on ]t0, t0 + ε[, which is not possible since r attains its global
maximum at t0. The proof is complete.

4 Continuation of solutions with nonzero degree

Theorems 1-2 were formulated in terms of equation (1). However, the translation
to system (HS) is straightforward. The equivalent versions read:

Theorem 1bis. Assume the existence of r∗ > 0 such that f(t, r∗) < 0 for
every time t. Then there exists some T -periodic solution (r, p;µ) of (HS) with
mint∈R r(t) = r∗.
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Theorem 2bis. Under the assumptions of Theorem 1bis above there ex-
ists ω∗ > 0 with the following property: for any ω ∈] − ω∗, ω∗[\{0} there
is some T -periodic solution (rω, pω; µω) of (HS) with mint∈R rω(t) ≥ r∗ and
rot(xω, pω; µω) = ω.

This Section is devoted to prove these results. A suitable functional frame-
work for our problem is provided by the Banach space Y := C(R/TZ,R2)
of continuous and T -periodic functions with values on the plane. At some mo-
ments it will be convenient to represent the elements y ∈ Y by their components
y = (r, p), where r, p ∈ C(R/TZ,R). For instance, the natural domain of the
system (HS) is the set

Ω :=
{

(r, p;µ) ∈ Y × R : r(t) > 0 ∀t ∈ R
}

,

and further examples of subsets of Y ×R are the sets Σ(a, b) which we already
defined in (5).

A key step towards the proof of Theorems 1bis-2bis is the result which
occupies us now. Under the assumption that our vector field is attractive and
repulsive at two different levels we obtain connected families of solutions lying
between them:

Proposition 1 Assume the existence of levels 0 < r∗ < ` with (7)-(8). Then
there is a connected set C ⊂ Σ(r∗, `) with

C ∩ (Y × {0}) 6= ∅ 6= C ∩
{

(r, p; µ) ∈ Ω : min
t∈R

r(t) = r∗
}

. (9)

Here, the adjective ‘connected’ refers to the inherited topology from Y ×R.
We postpone the proof of Proposition 1 to the end of the paper; at this moment
let us see how it can be used to obtain Theorems 1bis-2bis.

Proof of Theorem 1bis. Choose some constant ` > r∗ + T + 1 and fix some
continuous and 2π-periodic in time function f̃ : R×]0 + ∞[→ R, f̃ = f̃(t, r),
satisfying

f̃(t, r) = f(t, r) if 0 < r ≤ `− 1 , f̃(t, r) > 0 if r ≥ ` . (10)

We apply Proposition 1 to the Hamiltonian system (H̃S) obtained after re-
placing f by f̃ in (HS). We obtain in particular the existence of a solution
(r, p; µ) of (H̃S) with mint∈R r(t) = r∗. Lemma 1(a) states that maxt∈R r(t) <
r∗ + T < `− 1 and in view of the first part of (10) we deduce that (r, p;µ) is a
solution of (HS). It completes the proof.

It is clear from (HS) that whenever (r, p; µ) is a solution of this system
(r, p;−µ) is another one; furthermore, rot(r, p;−µ) = − rot(r, p; µ). This fact,
which has its roots in the complex conjugate x̄(t) = r(t)e−iθ(t) of any solution
x(t) = r(t)eiθ(t) of (1) being again a solution, has the following consequence: in
order to establish Theorem 2 it suffices to check the existence of some ω∗ > 0
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with the property that for any ω ∈]0, ω∗[ there is some T -periodic solution
(r, p; µ) of (HS) with mint∈R r(t) ≥ r∗ and | rot(r, p; µ)| = ω. It will be our goal
next.

Proof of Theorem 2bis. Choose some constant ` > r∗ + T + 1, fix f̃ as
in (10) and consider the associated Hamiltonian system (H̃S). Applying again
Proposition 1 we deduce the existence of a connected set C ⊂ Ω of solutions of
(H̃S) with

r∗ ≤ r(t) ≤ ` for any t ∈ R and (r, p; µ) ∈ C ,

and satisfying (9). Lemma 1(a) implies that all elements of

Γ := {(r, p; µ) ∈ C : min
t∈R

r(t) ≤ `− T − 1}

are solutions of (HS). Choose now some constant ω∗ > 0 as given by Lemma 3.
By (9),

{| rot(r, p; µ)| : (r, p; µ) ∈ C} ⊃ [0, ω∗] ,

while, by lemma 1(b),

{
| rot(r, p;µ)| : (r, p; µ) ∈ C\Γ

}
⊂

[
0,

1
`− T − 1

]
,

and we deduce that
{
| rot(r, p; µ)| : (r, p; µ) ∈ Γ

}
⊃

[
1

`− T − 1
, ω∗

]
.

Thus, for any ω ∈ [1/(`− T − 1), ω∗] there is some solution (r, p; µ) of (HS)
with mint∈R r(t) ≥ r∗ and | rot(r, p;µ)| = ω. The result follows because here `
is any number greater than r∗ + T + 1.

At this moment it only remains to show Proposition 1. With this aim we
first rewrite system (HS) in an abstract form. The two-dimensional subspace
of Y made of constant functions is naturally identified with R2; we use this
identification to construct two linear projections Π, Q : Y → Y on this subspace:

Πy := y(0) = y(T ) , Qy :=
1
T

∫ T

0

y(t)dt .

For any y ∈ kerQ we denote by Ky to the primitive of y vanishing at times
t = 0, T , and the linear operator K : kerQ → kerΠ defined in this way is
compact. The Nemytskii operator N : Ω → Y is defined by

N [r, p; µ] :=

(
rp√

µ2 + r2 + r2p2
,

µ2

r2
√

µ2 + r2 + r2p2
+ f(t, r)

)
.

For each value of the parameter µ, system (HS) may now be rewritten as a fixed
point equation on Ω:

y = F [y;µ] ,
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the (nonlinear) operator F : Ω → Y being given by

F [y;µ] := Πy + QN [y; µ] + K(I −Q)N [y;µ] ,

(we denote by I to the identity map on Y ). We point out that F is completely
continuous, i.e., it is continuous and maps bounded subsets of Y × R whose
closure is contained in Ω into relatively compact subsets of Y .

The expression of N is particularly simple when µ = 0; indeed

N [r, p; 0] :=

(
p√

1 + p2
, f(t, r)

)
,

and one easily checks that (r, p) is a fixed point of F [·; 0] if and only if r is a
solution of the one-dimensional equation

d

dt

(
ṙ√

1− ṙ2

)
= f(t, r) , r > 0 , (11)

and p = ṙ/
√

1− ṙ2. Assumptions (7)-(8) may be reinterpretated now by saying
that r(t) ≡ r∗ and r(t) ≡ ` are, respectively, lower and upper solutions for the
periodic problem associated to (11). We choose some constant P as in (6) with
a = r∗, b = `, and the first assertion of Lemma 2 implies that every fixed point
(r, p) of F [·, 0] with r∗ < r(t) < ` for every t ∈ R belongs to the open bounded
set

U :=
{

(r, p) ∈ Y : r∗ < r(t) < `, |p(t)| < P ∀t ∈ R
}

.

Before going into the proof of Proposition 1 we compute the Leray-Schauder
fixed-point degree of F [·, 0] on U . This will open the door to the use of contin-
uation techniques.

Lemma 5 Assume the conditions of Proposition 1 and let the set U be chosen
as above. Then F [·, 0] does not have fixed points on ∂U and

degLS

(
I − F [·, 0], U, 0

)
= −1 .

Proof. We first check that F [y, 0] 6= y for any y ∈ ∂U . Indeed, this set can
be divided into three (nondisjoint) subsets: the set of elements (r, p) ∈ Y such
that mint∈R r(t) = r∗, the set of elements (r, p) ∈ Y for which maxt∈R r(t) = `,
and the set of elements {(r, p) ∈ Y satisfying that maxt∈R |p(t)| = P . The fact
that F [0, ·] does not have fixed points on each of them is a direct consequence,
respectively, of Lemma 3, Lemma 4 and the choice of P .

In order to check the statement on the degree we consider the ‘homotopy to
the averaged nonlinearity’:

H : [0, 1]× Ū → Y , H[λ; y] := Πy + QN [y; 0] + K(I −Q)Nλ[y] ,

where Nλ[r, p] :=
(
p/

√
1 + p2, (1 − λ)f(t, r)

)
. Observe that H is completely

continuous and H[0; y] = F [y; 0]. On the other hand, H[λ; r, p] = (r, p) if and

12



only if it solves the system

ṙ =
p√

1 + p2
, ṗ = (1− λ)f(t, r) +

λ

T

∫ T

0

f(s, r(s))ds . (12)

Integrating both sides of the second equation on the time interval [0, T ] we see
that

∫ T

0
f(t, r(t))dt = 0. Thus, any solution (λ; r, p) of (12) must also satisfy

ṙ =
p√

1 + p2
, ṗ = (1− λ)f(t, r) .

A similar argument to the one already used to show that F [·; 0] does not
have fixed points on ∂U proves now that H[λ; y] 6= y for any λ ∈ [0, 1[ and
y ∈ ∂U . When λ = 1 system (12) becomes

ṙ =
p√

1 + p2
, ṗ =

1
T

∫ T

0

f(s, r(s))ds ,

and we see that H[1, ·] does not have fixed points on ∂U either. It means that
H is an admissible homotopy and

degLS

(
I − F [·; 0], U, 0

)
= degLS

(
I −H[0; ·], U, 0

)
= degLS

(
I −H[1; ·], U, 0

)
.

(13)
One easily checks that the image of Ū by H[1, ·] is contained in the subspace

C(R/TZ,R)×R of curves (r, p) ∈ Y for which p(t) ≡ p̄ is constant. In its turn,
the image of Ū ∩ (

C(R/TZ,R)×R)
is contained in the subspace R2 of constant

curves. Combining (13) with Theorem 8.7 in page 59 of [6] we see that

degLS

(
I − F [·; 0], U, 0

)
= degB

(
IR2 −H[1; ·]

∣∣
R2 , U ∩ R2, 0

)
.

where degB denotes the Brouwer degree. Observe that U ∩R2 =]r∗, `[×]−P, P [
and

(
IR2 −H[1; ·]

∣∣
R2

)
(r̄, p̄) = −

(
p̄√

1 + p̄2
,

1
T

∫ T

0

f(t, r̄) dt

)
.

We are led to consider the functions ϕ : [r∗, `] → R, ψ : [−P, P ] → R defined by

ϕ(r̄) =
1
T

∫ T

0

f(t, r̄), ψ(p̄) :=
p̄√

1 + p̄2
,

and their cartesian product

ϕ× ψ : [r∗, `]× [−P, P ] → R2, (r̄, p̄) 7→ (ϕ(r̄), ψ(p̄)) .

The usual properties of the degree imply

degB

(
IR2 −H[1; ·]

∣∣
R2 , U ∩ R2, 0

)
= −degB

(
ϕ× ψ, ]r∗, `[×]− P, P [, 0

)
= −1 ,

since both ϕ and ψ change from negative to positive on their respective domains.
It concludes the proof.

13



Proof. [of Proposition 1] We consider the open set

V := {(r, p) ∈ Y : r∗ < r(t) < ` ∀t ∈ R} ,

and the restriction of F to V̄ × R ⊂ Ω ,

F : V̄ × R→ Y , (r, p; µ) 7→ F (r, p; µ) .

which is completely continuous. Our choice of P implies that every fixed point
y ∈ V̄ of the section map F [·, 0] belongs to U . On the other hand, Lemma 5
states that degLS(I − F [·, 0], U, 0) 6= 0.

Under these conditions the classical Leray-Schauder continuation theorem
([14], see also [2, 5, 16, 17]) provides the existence of a connected set C ⊂ Σ(r∗, `)
with C ∩ (U × {0}) 6= ∅ and satisfying, either (i): C is unbounded in V × R, or
(ii): C∩ (∂V ×R) 6= ∅. In its turn (ii) may happen because (iia): C∩{(r, p; µ) ∈
V̄ × R : mint∈R = r∗} 6= ∅ or (iib): C ∩ {(r, p;µ) ∈ V̄ × R : maxt∈R = `} 6= ∅.
Representing the infinite-dimensional space C(R/TZ) in the one-dimensional
ordinate axis and the set {r : r∗ ≤ r(t) ≤ ` ∀t ∈ R} as the interval [r∗, `], these
cases are depicted below.

|µ| →

r ↑
`

r∗

0

(i)

(iia)

(iib)

Figure 2: The possibilities for the connected set {(|µ|, r) : (r, p; µ) ∈ C}.

Possibilities (i) and (iib) are ruled out by Lemmas 2 and 4 respectively.
Consequently, (iia) states the existence of some element (r, p;µ) ∈ C with
mint∈R r(t) = r∗. It completes the proof.

14



References

[1] C.M. Andersen, H.C. Von Baeyer, On Classical Scalar Field Theories and
the Relativistic Kepler Problem, Annals of Physics 62 (1971), 120-134.

[2] J.C. Alexander, A primer on connectivity. Fixed point theory (Sherbrooke,
Que., 1980), pp. 455-483, Lecture Notes in Math., 886, Springer, Berlin-
New York, 1981.

[3] A.A. Bekov, Periodic solutions of the Gylden-Merscherskii problem, Astron.
Rep. 37(6) (1993), 651-654.

[4] T.H. Boyer, Unfamiliar trajectories for a relativistic particle in a Kepler or
Coulomb potential, Am. J. Phys. 72, Iss. 8 (2004), 992-997.

[5] E.N. Dancer, On the use of asymptotics in nonlinear boundary value prob-
lems, Ann. Mat. Pura Appl. (4) 131 (1982), 167-185.

[6] K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1985.
47-01

[7] A. Deprit, the secular accelerations in Gylden’s problem, Celestial Mechan-
ics 31 (1983), 1-22.

[8] M.S.P Eastham, The spectral theory of periodic differential equations.
Texts in Mathematics. Edinburgh-London: Scottish Academic Press.

[9] R. Engelke, C. Chandler, Planetary Perihelion Precession with Velocity-
Dependent Gravitational Mass, Am. J. Phys. 38, Iss. 1 (1970), 90-93.

[10] A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-
like systems: a topological degree approach, J. Differential Equations 244
(2008), 3235-3264.

[11] A. Fonda and R. Toader, Periodic solutions of radially symmetric pertur-
bations of Newtonian systems, Proc. of the Amer. Math. Soc 140 (2012),
1331-1341.

[12] A. Fonda, A. J. Ureña, Periodic, subharmonic, and quasi-periodic oscilla-
tions under the action of a central force, Discrete and Continuous Dynam-
ical Systems, 29 (2011) 169-192.

[13] W. Greiner,Classical Mechanics: Point Particles and Relativity, Springer-
Verlag New York, 2004.

[14] J. Leray and J. Schauder, Topologie et equations fonctionnelles. (French)
Ann. Sci. Ecole Norm. Sup. (3) 51 (1934), 45û78.
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