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1 Introduction

Many problems in the theory of differential equations were initially treated
with analytic techniques and later evolved towards more topological ap-
proaches. Perhaps the most paradigmatic case is found in the study of
nonlinear boundary value problems. The classical proofs based on succes-
sive approximations or in the implicit function theorem were soon replaced
by the use of fixed points and degree theory. The modern point of view is
already found in the famous paper by Leray and Schauder [15]. The same
process has been experienced by other branches of differential equations.
The next pages are an attempt to illustrate this evolution in two concrete
problems.

First we will discuss the existence of asymptotic solutions. These are
non-trivial solutions tending to the origin as time increases to infinity and
they appear in systems of differential equations having the trivial solution.
Asymptotic solutions have been studied since Poincaré’s times. The classical
method for proving their existence consists in the reduction of the problem to
an integral equation. Once this equation has been found one uses the method
of successive approximations or the contraction principle. This analytical
method leads to the Principle of Linearization and to the Stable Manifold
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Theorem for autonomous equations (see [14] and [25]). Wazewski applied
the theory of retracts and developed an alternative method for constructing
asymptotic solutions in his paper [28]. We will illustrate Wazewski’s ideas
in a concrete situation, and later we will discuss the connections with the
analytical approach. In the process we will find that other tools such as
topological degree and global continuation are also applicable to this prob-
lem.

The second part of the paper will deal with the stability properties of
closed orbits in Hamiltonian systems. This is a question of particular rel-
evance in Celestial Mechanics and again we must refer to Poincaré for the
origins of the problem. He mainly considered systems with two degrees of
freedom and was lead to the study of the fixed points of area-preserving
maps in the plane. This line of research was continued by Birkhoff but the
stability problem was not solved until the appearance of the KAM method,
which was fully developed in the sixties (see [2, 27]). In contrast, results
on instability were already obtained by Levi-Civita in 1901. The interest-
ing paper [19] contains the linearization principle due to Lyapunov and more
delicate instability criteria depending on higher order terms. We will present
a topological approach to the problem of instability treated by Levi-Civita.
The main tools will be the fixed point index and the notion of translation
arc. These arcs are very useful in the study of planar homeomorphisms and
they already appeared in Brouwer’s work. It would have been desirable to
present also a topological approach to the problems of stability solved by
KAM techniques. However these problems seems to be of a rather analytic
character and I do not know if this could be possible.

I would like to thank Rogerio Martins for his careful reading of a pre-
liminary version of this paper. His comments and questions have influenced
the final form of the manuscript.

2 Asymptotic solutions and Wazewski’s principle

Given a continuous vector field X : [0,00[xR% — R? we can consider the
system of differential equations

i=X(tz), t>0, xR (1)

It will be always assumed that there is uniqueness for the associated initial
value problem.
A solution z(t) is called asymptotic to z = 0 if it is well defined in [0, 00|



and it satisfies
z(t) — 0 ast — +oo.

To make the discussion more visual we assume from now on that d = 3. The
space R? is decomposed as R? x R, with coordinates & € R? and z € R. The

notations (-,-) and || - || refer to the dot product and the euclidean norm in
R2. The system (1) with d = 3 is rewritten as
§=F(t.&2), :=G(tE2) (2)

and we can imagine a cylindrical region shrinking to the origin as time goes
to infinity. More precisely, we consider the set

Q ={(&2) : [[Ell < (t), 2] <o)}

where ¢, 1 : [0, 00[— R are C! decreasing functions with o(t) — 0, ¥(t) — 0
as t — +o00. The flow associated to (2) will enter into the cylinder through
the faces z = 9 (t) and z = —(t) and will exit through the lateral boundary
[l€]] = ¢(t). In this setting our intuition says that some orbit should remain
inside the cylinder forever. For if all the orbits would escape from the moving
cylinder, they would do it through the lateral boundary. This process would
define a retraction of the solid cylinder onto its lateral boundary, which is
impossible. Once we know of the existence of orbits lying in €); for each ¢
we observe that they must produce asymptotic solutions. This is so because
the cylinder is shrinking to the origin.

Precise statements can be produced from the above discussions. To this
end it is convenient to consider the set

Q={(t,&2) €]0,00[xR*xR: (& 2) € W},
which can also be described by the inequalities
Vi(t,€,2) <0 i=1,2,3,
where
Vi(t,6,2) = 2= 0(t), Va(t&,2) = —2 — (t), VA(LE 2) = i€l — p(t)?.

The boundary of Q relative to [0,00[xR? x R will be denoted by I' and
decomposed in five parts

I=EUT,UT_ UB, UB_



with
Ex €l = (1), |2 <¥(t)

Ir o JlEll < o(t), 2= +9(t)
By i [[E]l = o(t), 2 = £9(t).

The Lyapunov derivative of a function V = V(¢,&, z) along the solutions of

(2) is defined as

.9V oV oV
Vi= G G P+ 56

We assume
Vi<0onZyUBy, Va<0onZ_ UB_, Vs3>0 onEUB; UB_.

This assumption is modelled after the previous qualitative discussion. For
later discussions we reformulate it in the next result.

Theorem 1 Assume that p(t) and 1 (t) are admissible functions' and that
the two conditions below hold,

¥(t) > max{G(t,§, (1)), —G(t,&, —¢(t)} if t >0, [[€]] < (), (3)

(F(t,€,2),8) > et)p(t) if t >0, [[§]] = @(t), |2] < (). (4)
Then for each zy € [—1(0),1(0)] there exists at least one asymptotic solution
of (2) satisfying
1E(0)]] < ¢(0), 2(0) = 2.

Proof. First of all we need to be more precise about the behavior of the
flow on I'. A point (7,&p,20) € T is called of strict entry if the solution of
(2) with initial conditions (1) = &, 2(7) = 2o satisfies (¢,£(¢), 2(t)) € Q if
t €]r,7+¢| and (t,£(), 2(t)) € Qif t € [T — ¢, 7[ for some € > 0. Notice that
the second condition is empty if 7 = 0. A point of strict ezit is defined in the
same way excepting that the roles of the past and the future are exchanged.
Finally we say that the point is of exterior sliding if (t,£(t),2(t)) € Q if
t €[t —eT1+¢€,t # 7. As the reader probably suspects, the points on
T, UZ_ are of strict entry, while those on £ are of strict exit. Finally the
points in By UB_ are of exterior sliding. This is the effect of the assumptions
(3) and (4). For more information on this point the reader is referred to
Section X.3 of the book [16].

!By an admissible function we understand a C'* function ¢ : [0, co[— R which is strictly
decreasing and tends to 0 as t — +o0.



After classifying the points in I we are ready to complete the proof. We
shall proceed by contradiction and assume that, for some z, € [—(0),1(0)],
there are no asymptotic solutions satisfying

We will consider the disk

D={peR?: |]p|| < ¢(0)}

and denote by (£(t,p), z(t,p)) the solution of (2) satisfying

5(071)) =D, Z(Ovp) = Zx.

Let 7 = 7(p) > 0 be the first instant when the graph of the solution touches
the exit set, that is

7(p) := min{t € [0,00[: (¢,&(t,p),2(t,p)) € EUBL UB_}.

It is important to notice that this definition is meaningful thanks to the
contradiction argument. Indeed, we are assuming that for ||p|| < ¢(0) the
solution is not asymptotic and so it must escape from €. This escape must
occur through £ and so 7(p) €0, 0o[. The previous discussion also includes
the extreme case z, = +1(0) since the points (0, p, £1/(0)) are of strict entry.
Finally we observe that if |[p|| = ¢(0) then 7(p) = 0. Once we know that
7 is well defined we are going to prove that it is continuous as a function
from D to R. The continuous dependence with respect to initial conditions
says that the solution is continuous as a function of (¢,p) and this implies
that 7 = 7(p) is lower semi-continuous. For a general differential equation
it would not be possible to prove the other semi-continuity but we have
a convenient classification of the points of I' at our disposal. The point
(t(p),&(T(p),p), 2(17(p),p)) is of strict exit or of exterior sliding and this
is sufficient to prove the upper semi-continuity of 7. More details on this
argument can be found in Wazewski’s paper [28] or in Chapter II of Conley’s
memoir [8]. The points of strict exit or exterior sliding lie on £ U By U B_
and so ||£(7(p),p)|| = ¢(7(p)). This observation allows us to consider the

map
©(0)
o(7(p))

Since 7(p) = 0 when p € 9D this map would be a retraction of the disk
onto its boundary. This is of course impossible and we have arrived at the
searched contradiction.

peD— £(7(p),p) € OD.



In the paper [28], Wazewski says that the first attempts to develop his
method employed homology and Kronecker index. Finally he found more
convenient to attach his method to the notion of retract. In an exercise of
history-fiction we will prove the previous result using degree (or Kronecker
index).

Another proof of Theorem 1. This time the proof will be direct and
z, will be an arbitrary number in [—(0),(0)]. The notations for the disk
D and the solution ({(t,p), z(t,p)) are preserved. Consider the function
7: D — [0, 00] defined by

#(p) :=sup{s > 0: (t,&(t,p),2(t,p)) € Q for each t € [0, s]}

and observe that for those solutions getting out of 2 this is equivalent to the
definition of 7(p) in the previous proof. Once again the classification of the
points on I' has been used. The novelty is that we admit the possibility of
solutions remaining in € forever. In such cases 7(p) = co. We claim that 7
is continuous. Of course this is clear for those points with 7(p) = 7(p) < oo.
For points with 7(p) = oo we proceed by contradiction. If p,, were a sequence
in D converging to p with 7(p,) — T < oo, then (T,&(T, p), 2(T, p)) would
belong to £ U B4 U B_. Since 7(p) = oo > 0 we infer that (0, p, z,) cannot
be in the exit set and so T > 0. This would lead to the contradictory
conclusion 7(p) < T. Once we know that 7 is continuous we consider the
map ® : D — R? given by

O(p) = e TPE(F(p),p) if 7(p) < o0, B(p) =0 if 7(p) = oc.

All points on the boundary of D are fixed under ® and so we can compute
the Brouwer degree

deg(®, D) = deg(id, D) = 1.

This implies that ® has at least one zero contained in the interior of D, but
the zeros of ® correspond to the solutions remaining in €2 and these solutions
are asymptotic to the origin.

Indeed the conclusion of the above proof can be sharpened with the
Leray-Schauder continuation principle [15, 10]. With the previous notations
we interpret z, as a parameter varying in the interval I = [—(0),(0)]. The
map ® = ®(p, z,) now goes from D x I into R2. Since ® = id on D x I,
there are no zeros on this set and deg(®(-, z,), D) # 0 for any z,. Then there



exists a continuum C' contained in D x I, joining the sets D x {—(0)} and
D x {4(0)}, and such that

®(p, z.) =0 for each (p,z.) € C.
We can now state the following improvement of Theorem 1,

Assume that the conditions (3) and (4) hold. Then there exists a continuum
C C Qq, joining z = (0) and z = —(0), such that every solution of (2)
with (£(0),2(0)) € C is asymptotic to x = 0.

There are several topological versions of the stable manifold theorem
[26, 18]. They deal with homeomorphisms of the plane having the origin
as an isolated invariant set. The previous proofs suggest that Wazewski’s
method could be useful to obtain related results in higher dimensions. There
is another remarkable feature in Wazewski’s method, it deals with a general
non-autonomous differential equation. This is very close to the topological
notion of isotopy.

To finish this section on asymptotic solutions we discuss two examples
which help to clarify the connection with more classical analytical results.
First we consider a system (2) with the semi-linear form

£:A£+R1(t,£,2), Z:_)‘Z_‘_RQ(t?gaz)? (5)
where A is a 2 X 2 matrix satisfying
(AE,€) >0 for each & € R?

and A is a positive constant. The remainders R; and Rs are small; that is,

||Rl(t’£v Z)H + |R2(t?£v Z)|
11m
1€1|+]2]—0 ][]+ |2

=0,

uniformly in t € [0, co[. In the unperturbed case, R; = 0, i = 1,2, the system
is linear and has the asymptotic solutions £(t) = 0, z(t) = zpe™*. The
perturbed system (5) has also asymptotic solutions and the reader is referred
to Chapter X of Hartman’s book [16] for more general results on linearization
principles. Next we show how to prove the existence of asymptotic solutions

using Theorem 1. Select two numbers p and € with
0 < 2e < min{\ — p, u}
and find a positive ¢ such that

[[R1 (2, &, 2)|[ + [ Ra(t, &, 2)| < e([I€]] + |2])



if [|€]] < 0, |z] < §. A simple computation shows that the assumptions (3)
and (4) hold with () = ¥(t) = de .
The second example is the system

£=0, z=-22°

t

which is not of the type (5). Theorem 1 can be applied with ¢(t) = e™* and

V() = (1+3t)" 12

3 Instability criteria for periodic orbits

We start with a Hamiltonian system of two degrees of freedom. The phase
space S is an open subset of R* and a generic point in S is denoted by
¢ = (q,p) with ¢,p € R2. The equations are

q:%g(q,p), ﬁz—aﬂ(q,p) (6)

9q
with H : S — R smooth (the Hamiltonian function). This family of equa-
tions has many illustrious members, including the Kepler problem and the
circular restricted three body problem.
The function H is a first integral of the system (6) and so the sets

M.={(q,p) € S: H(q;p) =c}, cé€R,

are invariant. Typically these sets are 3d manifolds and it seems natural to
restrict the flow to them. Let us now assume that v is a closed orbit of (6).
The corresponding periodic solution is not constant and so v cannot contain
critical points of H. This implies that Mz, with ¢ = H(vy), is a smooth
manifold, at least in some neighborhood around ~. The orbit v is called
isoenergetically stable if it is orbitally stable (in the future and in the past)
with respect to the flow on Mz. This means that for each neighborhood U of
v there exists another neighborhood V such that any orbit passing through
Y N Mz remains entirely in & N Mz. As an example we consider the Kepler
problem, whose Hamiltonian is

1 1
Hig.p) = 3llplP — e (@p) € = B\ {0}) x .
In this case M, is homeomorphic to R x S' x S if ¢ > 0 and to R? x S!
if ¢ < 0. The orbit associated to the periodic solution ¢(¢) = (cost,sint),
p(t) = ¢(t) has negative energy with H(y) = —1/2. The reader who has



some familiarity with Celestial Mechanics can prove that this circular motion
is stable, for all the motions in a neighborhood are of elliptic type.

The method of transversal sections reduces the problem of isoenergetic
stability to the study of a discrete transformation in the plane. This is done
as follows. We fix a point &, € + and construct a transversal section ¥ C Mg
passing through &,. By restricting the size of ¥ we can always assume that
YNy = {&}. The section ¥ is diffeomorphic to a disk and, given a point
¢ € X which is close enough to &, say & € ¥/, we know that the orbit
passing through £ must cross X in the future. The first of these returns will
be denoted by h(£). The point &, is fixed under the map h: ¥/ C ¥ — %
and the isoenergetic stability of 7y is equivalent to the perpetual stability of
&, as a fixed point of h. For future discussions we mention some properties
of h. It is a smooth and one-to-one map which preserves orientation. In
addition there exists a measure on > which is preserved by h, this measure
is obtained as a pull-back of the Lebesgue measure in the plane. More details
can be found in sections 22 and 31 of the book by Siegel and Moser [27].

We are ready for a discussion with more topological flavor. We shall
work with the open disk

D={¢eR: [ig|l<1}.

The group of homeomorphism of D will be denoted by H(D). We stress
that H(D) = D for each H in H(D). Let us assume that there is a regular
measure on the disk, denoted by p, which is invariant under H. This means
that

w(H(B)) = u(B) for each Borel set B C D.

The measure p satisfies two extra conditions:
e the whole disk D has finite measure
e the measure of any non-empty open set is positive.

We summarize the above conditions by saying that H is in the class H(D, u).
The following fixed point theorem can be found in the papers by Montgomery
[21] and Bourgin [4].

Theorem 2 FEvery orientation preserving map in H(D, ) has a fized point.

A similar result is false for open balls in higher dimensions. In [4] Bour-
gin constructed an orientation preserving homeomorphism of the ball B =
B3 = {2 € R : ||z|| < 1} which was fixed point free and invariant under
an admissible measure. Later Asimov found in [3] analogous examples in B>



using the Hopf fibration. Even in the plane the theorem fails for orientation
reversing maps, as was discovered by Alpern in [1].

Next we improve the theorem in the plane by using the fixed point index.
Following [10] the fixed point index will be denoted by I(f,U), where U is
an open subset of R? and f : U — R? is continuous. This notion makes
sense when the set of fixed points Fix(f) is compact. We also recall the
connection with the Brouwer degree,

I(f,U) = deg(Zd_ f?U)

Theorem 3 Assume that H € H(D, p) is orientation preserving. If H is
not the identity, H # id, then there exists a Jordan curve I' C D such that

I(H,T) =1.
Here T' denotes the bounded component of R\ T.

The reader can find related results in the papers by Medvedev [20] and by
Le Calvez [17].

To prove this theorem we shall employ the notion of translation arc,
which goes back to Brouwer. An oriented arc @ = pg in D is called a
translation arc for H € H(D) if H(p) = q and

H(a\{q}) N (a\{q}) =0.
The next result probably explains why this notion is so useful in the study

q

h(q)

Figure 1: A translation arc. (H = h)

of discrete dynamics in the plane.

10



Lemma 4 (Brouwer). Assume that H € H(D) is orientation preserving
and there exists a translation arc o with

H"(a)Na#0 for somen > 2.
Then there exists a Jordan curve I' C D such that
I(H,T)=1.

This result has a long history and the proof is delicate. The reader is referred
to [5, 11] for more details.
We need a second preliminary result on the existence of translation arcs.

Lemma 5 Assume that H € H(D) and A is a compact topological disk
contained in D and such that A and H(A) lie in the same component of
D\ Fix(H). In addition assume that

H(A)NA=0.

Then, given points &1,...,&, € A, there exists a translation arc o contained
i D and passing through all these points.

This result is obtained by an adaptation of the ideas of Brown in his proof
of Lemma 4.1 in [6]. The details will appear in the monograph under con-
struction [24]. After these two lemmas we are ready for the proof.

Proof of Theorem 3. Let {Uy} be the family of connected components
of D\ Fix(H). These sets are open and invariant under H. The invariance
follows from the result by Brown and Kister in [7] since H preserves orien-
tation. We fix one of the components, say Uy, and a point & € Uy. This is
possible for any H # id. The points & and H () are different and so we
find a small disk A centered at &, which is contained in Uy and is such that
H(A)N A = (. Next we apply Poincaré’s recurrence theorem as presented
in [22] and find a point & in the interior of A which is recurrent. For some
n > 2 the iterate H"(&p) will enter again in the disk A. Lemma 5 says that
we can find a translation arc passing through &, and H"(&p). This last point
belongs to H™(«) N and so we can apply Brouwer’s lemma to arrive at the
conclusion.

In the next pages we explore the implications of Theorem 3 in stability
theory. Assume that U is an open subset of the plane containing the origin
and

h:U—R%: h=h(E)

11



is a continuous and one-to-one map having a fixed point at the origin. This
point is called stable in the future if every neighborhood V contains another
neighborhood W such that the successive iterates of YV remain in V; that is

R"(W) CV foreachn > 0.

The theorem of invariance of the domain implies that A is open and so its
inverse is also continuous. This fact allows a parallel definition of stability
in the past. Finally we say that there is perpetual stability when the origin
is stable for the future and the past.

The three notions of stability are equivalent for area-preserving maps?
This fact is well known in Hamiltonian dynamics. The reader can find a
proof in Lemma 2.5 of [23]. Next we present a result exploring the implica-
tions of the stability in the fixed point index.

Theorem 6 Assume that h is orientation and area preserving and £ =0 is
stable. Then one of the alternatives below holds,

(i) h =id in some neighborhood of the origin

(ii) there exists a sequence of Jordan curves {I'y,} converging to the origin
and such that, for each n,

T, NFix(h) =0, I(h,T,)=1.

When the fixed point is isolated this theorem is a consequence of the results
in [9]. The novelty is in the case of non-isolated fixed points.

Proof. Let us first recall that the stability of the origin guarantees the exis-
tence of a sequence of open neighborhoods {4, } which are simply connected
and satisfy

ﬂun = {0}7 h(un) = Up.

See section 25 of [27] or [23] for a proof. Each U, has finite area and is
homeomorphic to D, say v : U, = D. The map H =t o ho~! is in the
class H(D, i), where p is obtained as a transport of the Lebesgue measure.
Assuming that (i) does not hold it is possible to apply Theorem 3 and find
a Jordan curve I',, in U,, such that

I(H, %) :I(h7fn) =1

2For simplicity it is assumed that p is the Lebesgue measure but it will be clear how
to extend the discussions to a large class of measures.

12



with ~y, = ¢ (T',,). This is precisely the second alternative.

Next we present a couple of examples showing that the preservation of ori-
entation and area are essential in the previous result.

Ezample 1. The symmetry with respect to the z-axis is area-preserving but
it reverses orientation. Denote this map by hi(z,y) = (x, —y). We observe
that Fix(h;) = R x {0} and all the fixed points are stable. In contrast to
the theorem, I(hy,T') = 0 for any Jordan curve I' € R? \ Fix(h1). Indeed
any of these curves lie in one of the half-planes {y > 0}, {y < 0}, and these
regions do not contain fixed points.

Example 2. The map ho is expressed in polar coordinates as
(0,7) — (0 +sinb,r).

This time the map preserves the orientation but not the area. The set of
fixed points is again the z-axis and the origin is perpetually stable. To check
this it is sufficient to notice that all disks centered at the origin are invariant.
As in the previous case one can prove that I(hg, f) = 0 for any Jordan curve
[ C R?\ Fix(hs).

In a preliminary version of the paper I constructed a more complicated

example with similar properties. It was R. Martins who suggested the use
of hg.

We are going to finish the paper with two applications of Theorem 6.

The index and an instability criterion by Levi-Civita. In section 4
of [19] Levi-Civita considered maps of the type

h(z,y) = (z + f(z,y),y + =+ g(z,y))

where f,g were smooth functions defined in a neighborhood of the origin
and satisfying

f£(0,0) = ¢(0,0) =0, Vvf(0,0)=vg(0,0)=0. (7)
Assuming that the Taylor expansion of f was
f(z,y) = anna’® + 2a122y + any® + -

he proved that the origin was not stable if ass # 0.
We are going to present a topological version of this result for the area-
preserving case. To this end we assume that h is C' and

det h'(x,y) =1 for each (z,y).

13



This is sufficient to guarantee that h is in the conditions of Theorem 6. The
special structure of the linear part of A allows to reduce the computation
of the fixed point index to one-dimensional degree. This is done following
ideas from [12]. We first apply the implicit function theorem to solve the
equation

z+g(z,y) =0 (8)
and obtain x as a function of y, say that x = ¢(y) is the only solution in
the rectangle R = [0, 6] x [—¢,€]. Next we define the function

and notice that the fixed points of h in R satisfy z = ¢(y) and ®(y) = 0.
Given a Jordan curve contained in R and disjoint with Fix(h), the index
can be computed by the formula

I(h,T') = —degg(®, ) (9)

where Q = {y € [—€,¢] : (¢(y),y) € T'}. We will give a sketch of the proof
of this formula later. The index of h will vanish at any Jordan domain if ®
satisfies one of the conditions below,

(i) @(y) >0 foreachy € [—¢,€],

or
(i) ®(y) <0 foreachy € [—¢,¢€].

It can take the values —1 or 0 if ® satisfies
(iii) yP(y) >0 for each y € [—¢,¢€].

In any of these cases there are no curves of index one and the origin cannot
be stable.

We can recover from here the result by Levi-Civita. Assuming that h is
C? we notice that, from (8) and (7), ¢(y) = O(y*) and so

P(y) = an1p(y)? + 2a120(y)y + azy® + -+ = asy® + o(y?).

If ags # 0 we are in case (i) or (ii). The paper [19] also deals with the
case when the linear part of h is the identity and an elegant variation can
be found in section 31 of [27]. The topological approach to this case was
presented in [9].

14



It remains to justify the formula (9). Define the map

F(z,y) = (®(y),z — ¢(y)), (v,y) € R,

and notice that, for each A € [0, 1], the zeros of A(h — id) + (1 — \)F are
exactly the fixed points of h. At this point it is convenient to observe that
the implicit function theorem implies that x = ¢(y) is the only solution of

Mz +g(z,y) + (1= A)(z —»(y) = 0.

By homotopy invariance we must compute the degree of F'. To do this we
perform the change of variables

E=z—9Wy), n=vy.

The map o(z,y) = (§,n) is a diffecomorphism of R onto its image and so
deg(F,T') = deg(F,, ), where F, = 1) o F o4~ ! and v = ¢(I'). The new
map is Fy(&,n) = (P(n),€) and the reduction to one dimension follows.

Analytic area preserving maps. Assume now that h : & C R? — R?,
h = (h1, ha), is a real analytic map defined on some open set U. The set of
fixed points can be described by the equation

Fix(h):  (ha(w,y) — 2)* + (ha(,) = y)* = 0.

When h is not the identity this is a proper analytic subset of the plane.
The local structure of these sets is well known (see [13]): they can contain
isolated points and points with a finite number of branches emanating from
them. In the second case the branches are described by Puiseux series. In
view of this we consider a non-isolated fixed point & and a small disk D
around it such that Fix(h)ND is composed by the branches emanating from
&.. Moreover we can assume that all the branches touch the boundary of
the disk and each component of D \ Fix(h) is simply connected. From this
setting it is clear that if I' is a Jordan curve in D without fixed points, then
' does not contain fixed points either. In consequence the index I (h,f)
vanishes. We are lead to a result already obtained in [23].

Corollary 7 Assume that h # id is real analytic and
deth' = 1.

Then every stable fized point is isolated.
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To finish the paper we go back to the Hamiltonian system (6) and assume
that the function H is real analytic. Assume also that we are given a closed
orbit v with ¢ = H(v) and a transversal section ¥ C Mz with £ N~y = {&,}.
Any closed orbit v/ C Mz which is close enough to « will pass through 3
only a finite number of times. This is a consequence of the transversality of
the section. The closed orbit " will be called simple whenever 7/ N X is a
singleton. This notion is relative to the chosen section 3 but the initial orbit
~ is simple just by construction. The previous corollary can be rephrased
in the following terms: if « is isoenergetically stable then there exists a
neighborhood U of v such that one of the alternatives below holds,

e every orbit contained in U N Mz is closed and simple
e v is the only orbit in & N Mz which is closed and simple.

The circular orbit of the Kepler problem mentioned at the beginning of the
section will be in the first situation.
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