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Chapter 0

Introduction

In 1900, the same year as Fredholm developed, in Sur une nouvelle méthode pour la résolution du problème de
Dirichlet, his theory of integral equations, and two years before Lebesgue’s dissertation, Intégrale, longueur,
aire, Hilbert poses 23 problems at the Second International Congress of Mathematicians in Paris as a challenge
for the 20th century. The problems include the continuum hypothesis, the mathematical treatment of the
axioms of physics, Goldbach’s conjecture, the transcendence of powers of algebraic numbers, the Riemann
hypothesis and many more. Some of the problems were solved during the 20th century, and each time one of
the problems was solved it was a major event for mathematics.

The 20th problem was called ‘The general problem of boundary values’. In his speech, Hilbert describes
it in the following terms:

An important problem closely connected with the foregoing is the question concerning the exis-
tence of solutions of partial differential equations when the values on the boundary of the region
are prescribed. This problem is solved in the main by the keen methods of H. A. Schwarz, C.
Neumann, and Poincaré for the differential equation of the potential. These methods, however,
seem to be generally not capable of direct extension to the case where along the boundary there
are prescribed either the differential coefficients or any relations between these and the values
of the function. Nor can they be extended immediately to the case where the inquiry is not for
potential surfaces but, say, for surfaces of least area, or surfaces of constant positive gaussian
curvature, which are to pass through a prescribed twisted curve or to stretch over a given ring
surface. It is my conviction that it will be possible to prove these existence theorems by means
of a general principle whose nature is indicated by Dirichlet’s principle. This general principle
will then perhaps enable us to approach the question: Has not every regular variation problem a
solution, provided certain assumptions regarding the given boundary conditions are satisfied (say
that the functions concerned in these boundary conditions are continuous and have in sections one
or more derivatives), and provided also if need be that the notion of a solution shall be suitably
extended?

Many of the most outstanding mathematicians of the twentieth century (among which there were people
of the rank of Hilbert himself for the first part of the question and Schwartz and Sobolev for the second)
devoted their efforts to study this problem and related ones. Their works established a well-developed theory
of boundary value problems for linear differential equations, and gave rise to disciplines with the modern
relevance of convex analysis, monotone operators theory, distribution theory, critical point theory, Sobolev
spaces, etc.

However, most phenomena in our world seem to display an intrinsically nonlinear behavior. Thus, it
became a priority to understand, as well, nonlinear problems. In many cases, problems arising in biology,
mechanics,... may be seen as nonlinear perturbations of linear ones.

In this memory we mainly deal with second order, elliptic, semilinear boundary value problems, or periodic
problems associated with nonlinear ordinary differential equations. All these can be represented in the
abstract form
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Lu = Nu , (\)

where L : X → Y and N : Y → Y are suitable operators between Banach spaces X,Y , and X ⊂ Y compactly.
When L is inversible, (\) can be rewritten as a fixed point equation:

u = [L−1N ]u .

In case L−1 : Y → X and N : Y → Y are continuous and carry bounded sets into bounded sets,
L−1N : Y → Y is completely continuous. Thus, the 1930 Schauder’s Fixed Point Theorem ([76]), which
extended to completely continuous operators on infinite dimensional Banach spaces the well-known Brouwer’s
fixed point theorem, was a landmark in the treatment of such problems. Schauder’s paper was closely followed
by the introduction, in 1934, of the Leray-Schauder topological degree [50]. In this remarkable paper already
appeared some facts -such as the existence of continua of solutions for some semilinear equations depending
on a one-dimensional parameter- which were going to be systematically employed by mathematicians in the
last quarter of the century.

The World War II broke out, and Schauder’s and Leray-Schauder’s papers had little impact outside the
scope of nonlinear perturbations of invertible operators. In this background, the sixties saw a tremendous
development of the the theory of operators of monotone type, ([9], [51]), which could treat some problems
outside the scope of the Leray-Schauder theory, but could hardly be applied to solve problems where the
equation is a nonlinear perturbation of a linear operator with nontrivial, sign-changing kernel, or even a
nonmonotonous perturbation of a linear operator with a constant-sign kernel. Thus, the 1970 paper by
Landesman and Lazer [46] was a mayor step in the treatment of such problems. In this work, the authors
considered the boundary value problem

∆u+ λku+ g(u) = h(x) in D
u|∂D = 0 , (1)

where D is a bounded domain in RN , h ∈ L2(D), λk is a simple eigenvalue of −∆ and g : R → R is a
continuous function such that the limits g(±∞) = lims→±∞ g(s) exist and are finite, and

g(−∞) < g(ξ) < g(+∞) ∀ξ ∈ R .

It was shown that, if ϕk is an eigenfunction corresponding to λk, D− := {x ∈ D : ϕk(x) < 0}, and
D+ := {x ∈ D : ϕk(x) > 0}, then the condition

g(−∞)
∫

D+
ϕkdt+ g(+∞)

∫
D−

ϕkdt <

∫
D

hϕkdt < g(+∞)
∫

D+
ϕkdt+ g(−∞)

∫
D−

ϕkdt

is both necessary and sufficient for the existence of a weak solution of (1).
In the mesure that this paper was able to overcome the monotonicity requirements, it had a tremendous

impact, and the just born Landesman-Lazer condition was rapidly adopted for similar situations in other
problems at resonance (see, for instance, [58], for a quick survey). It is fair to say, however, that results of
Landesman-Lazer type had already appeared in [35] and [48], shortly before the publication of [46]. Moreover,
[48] presented an additional difficulty, since it dealt with perturbations of linear operators having a bidimen-
sional kernel. Both papers were looking for almost periodic and periodic solutions of ordinary differential
equations and they did not find the same resonance among experts as the Landesman-Lazer monograph.

In a separate context, the forced pendulum equation

−u′′ +A sinu = h(t) (2)

had been thoroughly studied since 1922, when Hamel published, in the special issue of the Matematische
Annalen dedicated to Hilbert’s sixtieth birthday anniversary, the first general existence results for 2π-periodic
solutions of equation (2) when h(t) = b sin t. Using the direct method of the calculus of variations, Hamel
was able to show the existence of, at least, one solution of this problem.

Almost 60 years later, and when the interest in the pendulum equation had decayed, Fučik reopened the
problem and wrote, in 1969:
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Description of the set P of h for which the equation u′′ + sinu = h(t) has a T -periodic solution seems to
remain a terra incognita.

In this task, Landesman-Lazer’s conditions did not help much; unfortunately, the limits limx→±∞ sin(x)
do not exist. It motivated works such as [21], [25], [86], [62] which reintroduced, in the early eighties, the use
of variational methods in the study of the periodic solutions of the forced pendulum equation. Since then,
this equation has become a paradigm for nonlinear analysis and dynamical systems [57], and been the object
of a extensive research by many mathematicians, see Section 3.1. We refer to [56] for a more complete survey
on this equation.

Let now c > 0 be given. The equation

−u′′ − cu′ +A sinu = h(t) (3)

models the swing of a planar pendulum rod immersed in a medium with constant friction coefficient c, under
the action of a time-dependent external force h = h(t). When h is T -periodic and, say, continuous, questions
such as the existence, or the geometric multiplicity (that is, multiplicity up to constant multiples of 2π), or
the stability of periodic solutions of (3) appear. Even when many partial answers to these problems have
been given, they are far from closed, and open questions remain. In Chapter 3 we give a step in the second
direction, and we deal with the problem of the number of geometrically different, periodic solutions of (3)
depending on h. The problem had already been studied, among others, by Mawhin and Willem [62], and
later on, by Ortega [65] in the conservative case c = 0, and Katriel [42] when the function A sin(·) is replaced
by a 2π-periodic, C2 function g verifying certain additional conditions concerning its Fourier coefficients -
conditions which do not hold for g(u) = A sinu -. Along this chapter we generalize their results and further
establish, for conservative pendulum-type equations, exact multiplicity results.

More recent is the history of the analogous Dirichlet boundary value problem

−u′′ − u+A sin(u) = h(t)
u(0) = u(π) = 0 (4)

and its PDE generalizations. It has been detailed in [41] that the differential equation in (4) models the swing
of a pendulum clock as it is excited by the external force −h. Of course, Landesman-Lazer conditions do not
apply here either, and the use of the stationary phase principle was already suggested in Dancer’s paper [25]
in order to obtain existence and multiplicity results through the Lyapunov-Schmidt decomposition of this
problem. We refer to Sections 1.1 and 2.1 for a more detailed overview of its history. In some sense, this
problem is more difficult to deal with than (2), since, for instance, the periodicity of the action functional is
lost, but, in other sense, it is easier, since it is precisely this fact which allows the use of asymptotics (which
are, at the end, based in the so-called Riemann-Lebesgue Lemma) to obtain solvability or multiplicity results,
and we employ this idea along the first and second chapters of this memory.

More precisely, the first chapter is devoted to the study of non self-adjoint, Dirichlet boundary value
problems of the type

−u′′ − αu′ − λ1(α)u+ g(u) = h(t), t ∈ [0, π]
u(0) = u(π) = 0 , (5)

where α ∈ R is given, λ1(α) := 1 + α2

4 is the first eigenvalue of the linear problem

−u′′(t)− αu′(t) = λu(t), t ∈ [0, π]
u(0) = u(π) = 0 ,

g ∈ C(R/TZ) is continuous and periodic, and h ∈ L1[0, π]. In case h is a continuous function and α = 0, this
problem had already been studied by authors such as Dancer [25], Ward [85], Schaaf and Schmitt [73], Arcoya
and Cañada [6], Cañada [11], or Cañada and Roca [15], [16]. We extend their results for the more general
framework described above. Our main tools here are the Lyapunov-Schmidt decomposition of the problem
together with the Riemann-Lebesgue Lemma as developed in [85]. In particular, we show the solvability
hyperplane R of the associated linear problem to be included in (the interior of) the solvability set of (5).
As it is well-known since Ortega’s first counterexample [64], the analogous thing does not occur for the
T−periodic problem associated to (3). We further establish some multiplicity and asymptotic results.
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The second chapter is devoted to the study of solvability and multiplicity results for elliptic self-adjoint
problems of the type {

−∆u− λ1u+ g(u) = h(x) = h̃(x) + h̄ϕ(x), x ∈ Ω
u(x) = 0, x ∈ ∂Ω

(6)

where Ω is a bounded, regular domain in RN , λ1 is the first eigenvalue of−∆ when acting onH1
0 (Ω), g : R → R

is continuous and periodic, and h : Ω → R is Lipschitz. This problem, which can be seen as the natural
extension to PDE of (4), had already been considered by authors such as Amann, Ambrosetti and Mancini
[5], Solimini [78], Costa, Jeggle, Schaaf and Schmitt, [23], or Schaaf and Schmitt, [74], [75] among others.
Under some geometric assumptions on Ω which hold, in particular, if Ω is convex or Steiner-symmetric, we
use asymptotic techniques to obtain solvability, nondegeneracy and multiplicity results. These are particulary
fruitful in case N = 3; for N ≥ 4 the asymptotics only provide generic results, and open problems remain.
We also display examples showing qualitative differences appearing in the multiplicity problem (with respect
to the cases of low dimensions N = 1, 2, 3) when the dimension N is big; precisely, N ≥ 5.

In recent times, a lot of attention has been given, both in the ordinary and the partial differential cases,
to extend spectral, bifurcation or existence results from semilinear equations of second order to perturbations
of nonlinear operators such as the p-Laplacian

u 7→ ∆pu = div(|∇u|p−2∇u)

or some suitable generalization (see, for instance, [29], [53], [54], [30], [31]). In Chapter 4 we extend to the
vector p-Laplacian case a former result first proved by Hartman [39] and later improved by Knobloch [44]
on the existence of Dirichlet or periodic solutions of nonlinear perturbations of the ordinary Laplacian which
verify a Nagumo condition. Our main tools here are a suitable extension of the so-called Hartman-Nagumo
inequality, -which is going to provide a priori bounds-, together with a continuation theorem proved in [60].

A more detailed overview on the history of the previously mentioned problems, as well as the main
contributions of this doctoral thesis and related open questions, may be found at the beginning of each one
of the four chapters in which it is divided.
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Chapter 1

Dirichlet problems for resonant,
pendulum-like equations: the first
eigenvalue

1.1 Introduction

Second order, ordinary differential equations of the type

−u′′ − αu′ + f(t, u) = 0

and associated boundary value problems, have been extensively studied in the literature since Newton’s times,
not only because of its intrinsic mathematical importance, but also because of the huge variety of phenomena
in nature they may be used to model.

A particular case is given by nonlinearities f of the form f(t, u) = r(u)−h(t). They give rise to equations
of the type

−u′′ − αu′ + r(u) = h(t)

In this chapter we deal with nonlinear, resonant boundary value problems having the form

−u′′ − αu′ − λ1(α)u+ g(u) = h(t) = h̃(t) + h̄ψ(t), t ∈ [0, π]
u(0) = u(π) = 0 ,

(1.1)

where the following set of hypothesis is assumed

[H1] α is a given real number, λ1(α) = 1 + α2/4 is the first eigenvalue of the linear problem

−u′′(t)− αu′(t) = λu(t), t ∈ [0, π]
u(0) = u(π) = 0 ,

(1.2)

g ∈ C̃(R/TZ) is a continuous and T -periodic function with zero mean, and h ∈ L1[0, π] is an integrable
function.

Here, h is usually called the forcing term, or the external force of the equation. We decompose it as
h = h̃+ h̄ψ, being

ψ(t) =
1√∫ π

0

[
e

α
2 s sin s

]2
ds
e

α
2 t sin t, 0 ≤ t ≤ π,

and
h̄ ∈ R, h̃ ∈ L1[0, π],

∫ π

0

h̃(s)ψ(s)ds = 0.
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One important reason to do this is that, in case g is trivial, the resulting linear problem (1.1) is solvable
if and only if h̄ = 0. We will call ψ⊥ this hyperplane in L1[0, π] :

ψ⊥ :=
{
h̃ ∈ L1[0, π] :

∫ π

0

h̃(s)ψ(s)ds = 0
}

=
{
h ∈ L1[0, π] : (1.1) with g ≡ 0 is solvable

}
.

The question of the solvability of nonlinear problems of the type (1.1) had already been considered by
different authors, starting with the pioneering work of Dancer ([25]). Here, the boundary value problem (1.1)
was first explored in detail, in the more restricted framework of h being continuous, α = 0, g(u) = Λ sinu.
In this setting, it was shown ([25], Theorem 4, pp. 182) that, for any given h̃, there exists ε0 = ε0(h̃) > 0
such that problem (2.1) has solution for any |h̄| ≤ ε0. Further, the problem was also seen to have infinitely
many solutions for h̄ = 0.

Many subsequent efforts were devoted to extend the Theorem above to general periodic nonlinearities g.
We briefly describe some of them in a chronological order. Still assuming the continuity of the forcing term
h, Ward [85] extended Dancer’s results for arbitrary oscillating functions g, showing, in the non-friction case
(α = 0), that if h̄ = 0, problem (1.1) has at least one solution. His result was improved two years later by
Schaaf and Schmitt [73], who used methods from global bifurcation theory to show that Ward’s problem has
in fact infinitely many positive and infinitely many negative solutions.

A related problem was to show nondegeneracy. It follows from the lower and upper solutions method,
the boundedness of g, and Ward’s results ([85]), that, for any given h̃ ∈ C[0, π], there exists a nonempty,
closed and bounded interval Ih̃ 3 0 of real numbers such that (1.1) is solvable if and only if h̄ ∈ Ih̃. In case
this interval contains a neighborhood of zero, the equation is said to be nondegenerate. Thus, in Dancer’s
work already appeared the nondegeneracy of (1.1) when α = 0 and g(u) = Λ sin(u). It was extended for
general periodic nonlinearities (still assuming the continuity of h and the absence of friction) by Cañada
and Roca in [15], using a Lyapunov-Schmidt reduction of this problem and a suitable generalization of the
Riemann-Lebesgue lemma developed in [85].

In the first part of this chapter, we further generalize these results for problem (1.1) in the broader
framework established in [H1]. First of all, we have an analogous non-degeneracy result.

Theorem 1.1.1. Assume g 6≡ 0. For any given h̃ ∈ ψ⊥ there exist real numbers −ε−(h̃) < 0 < ε+(h̃) such
that problem (1.1) is solvable if and only if −ε−(h̃) ≤ h̄ ≤ ε+(h̃).

Further, if H ⊂ ψ⊥ is an equi-integrable subset, that is,

there exists h0 ∈ L1[0, π] such that |h| ≤ h0 ∀h ∈ H,

then, there exists a positive constant ε > 0 such that

ε−(h̃), ε+(h̃) ≥ ε ∀h̃ ∈ H.

We also have a multiplicity result, showing that the number of solutions of (1.1) diverges to infinity
whenever |h̄| is small enough. This divergence can be seen to be uniform with respect to h̃ belonging to
equi-integrable subsets of ψ⊥:

Theorem 1.1.2. Let H ⊂ ψ⊥ be an equi-integrable subset. Then, for each m ∈ N there exists εm > 0 such
that problem (1.1) has at least m different solutions for any h̃ ∈ H, |h̄| ≤ εm.

Finally, it is possible to show that the length of the solvability interval [−ε−(h̃), ε+(h̃)] tends to 0 as the
damping α becomes large. This convergence is uniform with respect to h̃.

Theorem 1.1.3. lim|α|→∞{ε+ + ε−} = 0 uniformly in ψ⊥

Thus, we generalize the existing results in two different directions. Firstly, a damping α is taken into con-
sideration. And, secondly, we deal with forcing terms which are no longer continuous or bounded. This latter
fact is, with much, which introduces the main new difficulties in our problem, and a delicate computations
are needed to tackle it. As in [25, 85, 15], our approach is based in the Lyapunov-Schmidt decomposition of
equation (1.1).

In the last two sections of this chapter we develop a multi-dimensional generalization of the Riemann-
Lebesgue Lemma, which we use to explore the behavior at infinity of ε±. Our arguments there may be
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extended to a much wider variety of problems -say, elliptic problems associated to PDE of the type of these
considered in Chapter II, or resonant problems in higher eigenvalues such as

−u′′ − αu′ − λk(α)u+ g(u) = h(t), t ∈ [0, π]
u(0) = u(π) = 0.

where λk(α) = k2 + α2/4 is the kth eigenvalue of (1.2). However, to decide whether a similar theorem to
(1.1.1) holds for this problem seems to remain an open problem, even though some partial answers have been
given (see [38], [83]).

1.2 Preliminary results. The alternative system

Let us fix h̃ ∈ ψ⊥ and define

Ih̃ :=
{
h̄ ∈ R : problem (1.1) is solvable

}
. (1.3)

We consider the linear differential operator

L : W 2,1
0 [0, π] → L1[0, π], Lu = −u′′ − αu′ − λ1(α)u, ∀u ∈W 2,1

0 [0, π],

and the Nemytskii operator associated with −g

N : W 2,1
0 [0, π] → L1[0, π], Nu(t) = −g(u(t)), ∀u ∈W 2,1

0 [0, π], ∀t ∈ [0, π],

so that (1.1) is equivalent to the operator equation

Lu = Nu+ h (1.4)

It is well known that L is a linear Fredholm operator of zero index. Furthermore,

kerL = 〈ϕ〉, imL = ψ⊥

where
ϕ(t) =

1√∫ π

0

[
e−

α
2 s sin s

]2
ds
e−

α
2 t sin t, 0 ≤ t ≤ π (1.5)

is a normalized generator of the eigenspace associated with the first eigenvalue λ = λ1(α) of the linear problem
(1.2). Observe that

W 2,1
0 [0, π] = ϕ⊥ ⊕ 〈ϕ〉,

being

ϕ⊥ :=
{
ũ ∈W 2,1

0 [0, π] :
∫ π

0

ũ(s)ϕ(s)ds = 0
}
.

This splitting is also well adapted to our problem; just note that L : ϕ⊥ → ψ⊥ is a topological isomorphism,
and we will use it to rewrite any element u ∈ W 2,1

0 [0, π] as u = ũ + ūϕ, where ū ∈ R and ũ ∈ ϕ⊥. We call
K : ψ⊥ → ϕ⊥ the inverse of this isomorphism and define

Q : L1[0, π] → L1[0, π], h 7→
(∫ π

0

h(s)ψ(s)ds
)
ψ

In this way, equation (1.4) becomes equivalent to the so-called Lyapunov-Schmidt system

ũ = K(I −Q)N (ūϕ+ ũ) +Kh̃ (1.6)

h̄ =
∫ π

0

g(ūϕ(s) + ũ(s))ψ(s) ds (1.7)
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Let us firstly study the so-called auxiliary equation (1.6). Let us call T the set of its solutions

T :=
{

(ū, ũ) ∈ R× ϕ⊥ : ũ = K(I −Q)N (ūϕ+ ũ) +Kh̃
}
. (1.8)

Something can be said about the set T . Observe, to start, that being N bounded, and K compact, the
Schauder fixed point theorem implies the existence, for any ū ∈ R, of ũ ∈ ϕ⊥ such that (ū, ũ) ∈ T :

prRT = R.

Another important fact, T is contained in a cylinder:

There exist M > 0 and an integrable function m ∈ L1[0, π], such that

|ũ|, |ũ′| ≤M, |ũ′′| ≤ m a.e. in [0, π],

for any (ū, ũ) ∈ T .
(1.9)

But then, the Riemann-Lebesgue lemma ([85]) together with (1.6) imply indeed

lim
ū→∞

‖ũ−Kh̃‖C1[0,π] = 0 (1.10)

uniformly for (ū, ũ) ∈ T .
Finally, T is locally compact, as it can be easily checked from its definition (1.8).
Other well-known properties of T , related with the existence of ‘large’ connected subsets, will be described

later. In our next step, we are going to start the proof of theorem 1.1.1 by showing the set Ih̃

(
defined in

(1.3)
)

to be an interval.
Using the well-known change of variables v = u−Kh̃, problem (1.1) becomes

−v′′ − αv′ − λ1(α)v + g(v +Kh̃) = h̄ψ(t), t ∈ [0, π]
v(0) = v(π) = 0.

(1.11)

Thus, the lower and upper solutions method in a particular version which does not require any ordering
of the lower and upper solutions (see [5, 12]), shows that Ih̃ is an interval. Moreover, if it contains both
positive and negative values, it must be closed. To check this, we will just show that in case m := inf Ih̃ < 0,
then m ∈ Ih̃. It is indeed a consequence of Ward’s version of the Riemann-Lebesgue lemma ([85]). Let {εn}n

be any sequence in Ih̃ with {εn} → m and let {(ūn, ũn)} ⊂ R× ϕ⊥ be such that

ũn = K(I −Q)N (ūnϕ+ ũn) +K(h̃) (1.12)

and
εn =

∫ π

0

g(ūnϕ(s) + ũn(s))ψ(s)ds (1.13)

We showed in (1.9) that the sequence {ũn} must be bounded in C1[0, π]. It implies the sequence {ūn}
has, at least, a bounded subsequence, since the contrary would mean {|ūn|} → ∞ and the Riemann-Lebesgue
lemma [85] would imply

m = lim
n→∞

{εn} = lim
n→∞

∫ π

0

g(ūnϕ(s) + ũn(s))ψ(s) ds = 0.

Thus, we may find subsequences {ũnr}r of {un} and {ūnr}r of {ūn}, together with elements ũ ∈ C[0, π],
ū ∈ R such that {ũnr} → ũ in C[0, π], {ūnr} → ū. Taking limits as r →∞ in (1.12) and (1.13) we deduce:

ũ = K(I −Q)N (ūϕ+ ũ)

and
m =

∫ π

0

g(ūϕ(s) + ũ(s))ψ(s) ds, (1.14)
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that is, m ∈ Ih̃.
The idea to show that Ih̃ contains both positive and negative values is roughly that, for |ū| big enough,

(ū, ũ) ∈ T , ∫ π

0

g(ūϕ+ ũ)ψ ds ≈
∫ π

0

g(ūϕ+Kh̃)ψds

as a consequence of (1.10). But this latter integral can be shown to oscillate around zero as ū→ ±∞. This
is something where the fact that we are dealing with integrals on an interval plays an important role; even
when it remains valid for dimensions 2,3, it is no longer true for N ≥ 4. We will study this in detail in
Chapter 2.

1.3 Study of some oscillating integrals

We may rewrite the bifurcation equation (1.7) as follows:

Ih̃ =
{∫ π

0

g(ūϕ(s) + ũ(s))ψ(s) ds : (ũ, ū) ∈ T
}
. (1.15)

On the other hand, well-known results, based upon the continuity property of the Leray-Schauder topo-
logical degree (see, for instance, [25]), show the existence of a continuum (i.e., a closed, connected set)
S ⊂ R× ϕ⊥ of solutions

ũ = K(I −Q)N (ūϕ+ ũ) +Kh̃ ∀(ū, ũ) ∈ S

with projection on R covering the whole real line

prR(S) = R.

Of course, from (1.15) we know∫ π

0

g(ūϕ(s) + ũ(s))ψ(s) ds ∈ Ih̃ ∀(ū, ũ) ∈ S. (1.16)

Relation (1.16) will be later used at big values of |ū| to deduce that Ih̃ contains both positive and negative
values. And, in order to study the asymptotic behaviour of functions defined by integrals of this type, it is
firstly convenient to understand the shape of ϕ:

Lemma 1.3.1. There is an (unique) real number θ ∈
]−π

2 ,
π
2

[
such that:

1. ϕ′(t) > 0, ∀t ∈
[
0, π

2 − θ
[
, ϕ′(t) < 0, ∀t ∈

]
π
2 − θ, π

]
.

2. ϕ′(π
2 − θ) = 0, ϕ′′(π

2 − θ) < 0.

As a consequence, the maximum value of ϕ on [0, π] is attained at π
2 − θ.

Proof. We recall the explicit expression of ϕ, given in (1.5). If, for simplicity, we call

C :=

√∫ π

0

[
e−

α
2 s sin s

]2
ds ,

we have
ϕ(t) =

1
C
e−

α
2 t sin t,

ϕ′(t) =
1
C
e−

α
2 t
(
−α

2
sin t+ cos t

)
=
A

C
e−

α
2 t

(
1
A

cos t− α/2
A

sin t
)
,

being

A =

√
1 +

α2

4
. (1.17)
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Since (
1
A

)2

+
(
α/2
A

)2

= 1,

there is an unique point θ ∈]− π/2, π/2[ satisfying

cos θ =
1
A
, sin θ =

α/2
A

.

Then,

ϕ′(t) =
A

C
e
−α
2 t cos(t+ θ), ϕ′′(t) = −A2e

−α
2 t sin(t+ 2θ),

and the lemma follows.

Let G be the primitive with zero mean of g. We choose b−, b+ ∈ R such that

0 ≤ b−, b+ < T, G(b−) = min
R

G, G(b+) = max
R

G.

Being S connected, for each n ∈ N there exist (ūn, ũn), (v̄n, ṽn) ∈ S ⊂ T with

ūnϕ
(π

2
− θ
)

+ ũn

(π
2
− θ
)

= b− + nT. (1.18)

v̄nϕ
(π

2
− θ
)

+ ṽn

(π
2
− θ
)

= b+ + nT ; (1.19)

We plan to prove that, for sufficiently large n,∫ π

0

g(ūnϕ+ ũn)ψ ds < 0 (1.20)

and ∫ π

0

g(v̄nϕ+ ṽn)ψ ds > 0. (1.21)

uniformly with respect to h̃ as it varies on equi-integrable subsets of ϕ⊥. This motivates Theorem 1.3.2
below.

Theorem 1.3.2. Let Ω ⊂W 2,1
0 ([0, π]) be bounded in the C1[0, π] topology. Assume, further, that{

Ω′′ : Ω ∈ Ω
}

is equi-integrable.

Then, there exists n∗ ∈ N such that for any n ∈ N with n ≥ n∗, there exists a positive constant Kn > 0
verifying ∫ π

0

g(rϕ+ Ω)ψdt ≥ Kn ∀(r,Ω) ∈ R× Ω with rϕ
(π

2
− θ
)

+ Ω
(π

2
− θ
)

= b+ + nT, (1.22)∫ π

0

g(rϕ+ Ω)ψdt ≤ −Kn ∀(r,Ω) ∈ R× Ω with rϕ
(π

2
− θ
)

+ Ω
(π

2
− θ
)

= b− + nT. (1.23)

All the remaining of this Section is consecrated to the proof of this theorem. However, let us firstly see
how to deduce Theorems 1.1.1 and 1.1.2 from this.

Proof of Theorem 1.1.1. Let H ⊂ ψ⊥ be equi-integrable. Then, the set

Ω :=
⋃

h̃∈H, v̄∈R

{
ṽ ∈ ϕ⊥ : ṽ = K(I −Q)N (v̄ + ṽ) +Kh̃

}
⊂W 2,1

0 [0, π]
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is bounded in the C1[0, π]-topology, while {
ṽ′′ : ṽ ∈ Ω

}
is equi-integrable. Thus, n∗ ∈ N may be chosen such that for any n ∈ N with n ≥ n∗, there exists a positive
constant Kn > 0 verifying (1.22) and (1.23).

Then, in view of (1.19), (1.18) and (1.3), it implies, for the particular case of n = n∗,

Ih̃ ⊃ [−Kn∗ ,Kn∗ ] ∀h̃ ∈ H,

showing Theorem 1.1.1.

Proof of Theorem 1.1.2. Let H ⊂ ψ⊥ be equi-integrable and choose n∗ ∈ N as in the proof of Theorem 1.1.1
above.

It follows from our auxiliary equation (1.6) that the limit in (1.10) is indeed uniform with respect to h̃
belonging to bounded subsets of ψ⊥. Thus, a natural number n∗ ≥ n∗ may be found such that given any
n ≥ n∗ and {

(ūn, ũn)
}

n≥n∗
,

{
(v̄n, ṽn)

}
n≥n∗

,

sequences of solutions of (1.6) for some h̃ ∈ H, verifying (1.18) and (1.19) for each n ≥ n∗, we have

ūnϕ(t) + ũn(t) < v̄nϕ(t) + ṽn(t) < ūn+1ϕ(t) + ũn+1(t) ∀t ∈]0, π[ in case b− < b+ ; (1.24)
v̄nϕ(t) + ṽn(t) < ūnϕ(t) + ũn(t) < v̄n+1ϕ(t) + ṽn+1(t) ∀t ∈]0, π[ in case b+ < b− . (1.25)

We observe that we further have

ūnϕ
′(0) + ũ′n(0) < v̄nϕ

′(0) + ṽ′n(0), in case b− < b+ ;
ūnϕ

′(0) + ũ′n(0) < v̄n+1ϕ
′(0) + ṽ′n+1(0), in case b+ < b− ,

the nonstrict inequalities being a consequence of (1.24) and (1.25), while equalities cannot occur.
Thus, the lower and upper solutions method gives us, for any h̃ ∈ H and

|h̃| < min
n∗≤n≤n∗+m

{Kn},

the existence of at least m different solutions of (1.1).

Proof of Theorem 1.3.2. Of course, (1.22) and (1.23) are analogous, and we may restrict ourselves to prove,
for instance, (1.22). In order to achieve that we may well concentrate in the case of {vn} and limit ourselves
to show

lim
n→∞

v̄n

∫ π

0

g(v̄nϕ+ ṽn)ψ ds = +∞ , (1.26)

uniformly with respect to h̃ belonging to equi-integrable subsets of ψ⊥. Thus, we choose any sequence
{(Ω̄n, Ω̃n)} in R×ϕ⊥, (in fact, our proof will only need a sequence {(Ω̄n, Ω̃n)} in R×W 2,1

0 [0, π]), from which
we assume:

∃M > 0, ∃m ∈ L1[0, π] such that |Ωn| ≤M, |Ω′n| ≤M, |Ω′′n| ≤ m ∀n ∈ N, (1.27)

Ω̄nϕ
(π

2
− θ
)

+ Ω̃n

(π
2
− θ
)

= b+ + nT ∀n ∈ N, (1.28)

and we are going to show that

lim
n→∞

Ω̄n

∫ π

0

g(Ω̄nϕ+ Ω̃n)ψ ds = +∞. (1.29)

Note that, from (1.27) and (1.28) we deduce that Ω̄n → +∞ as n → +∞. Thus, it is not restrictive to
assume Ω̄n > 0 ∀n ∈ N. Let us define

pn := ϕ+
1

Ω̄n
Ω̃n (1.30)

As {Ω̄n} → +∞ and ϕ′(t) 6= 0 if t 6= π
2 − θ, it seems reasonable we will be able to control by below |p′n|

by 1
2 |ϕ

′| whenever n is big and we are not too close to π
2 − θ. This is shown next:
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Lemma 1.3.3. There exist D > 0 and n1 ∈ N such that∣∣∣p′n(t)− ϕ′(t)
∣∣∣ ≤ 1

2

∣∣∣ϕ′(t)∣∣∣, ∀t ∈ [0, π] \
[
π

2
− θ − D

Ω̄n
,
π

2
− θ +

D

Ω̄n

]
, ∀ n ≥ n1. (1.31)

Proof. Pick 0 < ε < −ϕ′′(π
2 − θ) and D > 0 satisfying

D >
2M

−ϕ′′(π
2 − θ)− ε

(1.32)

where M is the constant given in (1.27). Moreover, since

ϕ′′
(π

2
− θ
)

= lim
t→π

2−θ

ϕ′(t)
t− (π

2 − θ)

we may choose δ > 0 such that [π
2 − θ − δ, π

2 − θ + δ] ⊂ [0, π], and

ϕ′(t) ≥
(
ϕ′′(π

2 − θ) + ε
)(
t− (π

2 − θ)
)
∀t ∈

[
π
2 − θ − δ, π

2 − θ
]
,

ϕ′(t) ≤
(
ϕ′′(π

2 − θ) + ε
)(
t− (π

2 − θ)
)
, ∀t ∈

[
π
2 − θ, π

2 − θ + δ
]
.

(1.33)

Finally, select n1 ∈ N such that∣∣∣ϕ′(t)∣∣∣ ≥ 2M
Ω̄n

∀t ∈ [0, π] \
[π
2
− θ − δ,

π

2
− θ + δ

]
,

D

Ω̄n
≤ δ ∀n ≥ n1. (1.34)

Then, if n ≥ n1, and t ∈
[
0, π

2 − θ − δ
]
, we have from (1.34)

p′n(t) ≥ ϕ′(t)−M/Ω̄n =
1
2
ϕ′(t) +

(
ϕ′(t)/2−M/Ω̄n

)
≥ 1

2
ϕ′(t) +

(
1/2

2M
Ω̄n

−M/Ω̄n

)
=

1
2
ϕ′(t)

Also, if n ≥ n1, and t ∈
[

π
2 − θ − δ, π

2 − θ −D/Ω̄n

]
, we have from (1.32)

p′n(t) ≥ 1
2
ϕ′(t) +

(
1
2
ϕ′(t)−M/Ω̄n

)
≥

≥ 1
2
ϕ′(t) +

(
1
2

[(
ϕ′′
(π

2
− θ
)

+ ε
)(

t−
(π

2
− θ
))]

−M/Ω̄n

)
≥

≥ 1
2
ϕ′(t) +

(
1
2

[(
ϕ′′(

π

2
− θ) + ε

) (
−D/Ω̄n

)]
−M/Ω̄n

)
≥

≥ 1
2
ϕ′(t)−

(
1
2

(
ϕ′′
(π

2
− θ
)

+ ε
) 1

Ω̄n

2M
−ϕ′′(π

2 − θ)− ε

)
−M/Ω̄n =

1
2
ϕ′(t)

Therefore, if n ≥ n1, we obtain

p′n(t) ≥ 1
2
ϕ′(t),∀ t ∈

[
0,
π

2
− θ −D/Ω̄n

]
(1.35)

p′n(t) ≤ 3
2
ϕ′(t),∀ t ∈

[
0,
π

2
− θ −D/Ω̄n

]
(1.36)

To see this, it is sufficient to show

ϕ′(t) ≥ 2M/Ω̄n, ∀ t ∈
[
0,
π

2
− θ −D/Ω̄n

]
.
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However, it is shown in (1.34) that previous inequality holds in
[
0, π

2 − θ − δ
]
. Moreover, from (1.33), we

obtain that if t ∈ [π
2 − θ − δ, π

2 − θ −D/Ω̄n],

ϕ′(t) ≥
(
ϕ′′
(π

2
− θ
)

+ ε
)(

t−
(π

2
− θ
))

≥ 2M/D
(π

2
− θ − t

)
≥ 2M/Ω̄n.

Now, (1.35) and (1.36) prove (1.31) in [0, π
2 − θ −D/Ω̄n]. And an analogous reasoning establishes (1.31) on

[π
2 − θ +D/Ω̄n, π].

Recall from (1.28) that the sequence pn was chosen in such a way that pn

(
π
2 − θ

)
= b+ + nT . In these

points g vanishes, making the sequence[
π

2
− θ − D

Ω̄n
,
π

2
− θ +

D

Ω̄n

]
→ R , s 7→ g(Ω̄npn(s))ψ(s) ,

(and thus, also its mean) converge to 0. We write the detailed proof below.

Lemma 1.3.4.

lim
n→∞

Ω̄n

∫ π
2−θ+ D

Ω̄n

π
2−θ− D

Ω̄n

g(Ω̄npn(t))ψ(t) dt = 0

Proof. By using the substitution t = π
2 − θ + s/Ω̄n, previous limit becomes

lim
n→∞

∫ D

−D

g
(
Ω̄nϕ

(π
2
− θ + s/Ω̄n

)
+ Ω̃n

(π
2
− θ + s/Ω̄n

))
ψ
(π

2
− θ + s/Ω̄n

)
ds = 0

However,
{
t 7→ g

(
Ω̄nϕ

(
π
2 − θ + t/Ω̄n

)
+ Ω̃

(
π
2 − θ + t/Ω̄n

))}
→ 0 uniformly on [0, π]. To check this, let

ε ∈ R+ be given and δ > 0 such that |g(v)| ≤ ε, ∀ v ∈ [b+ − δ, b+ + δ]. Since g is T -periodic, we have
|g(v)| ≤ ε, ∀ v ∈ [b+ + nT − δ, b+ + nT + δ], ∀ n ∈ N. Also, from the equality ϕ′(π

2 − θ) = 0, it follows that
for sufficiently large n,∣∣∣Ω̄nϕ

(π
2
− θ + s/Ω̄n

)
− Ω̄nϕ

(π
2
− θ
)∣∣∣ ≤ δ/2 ∀ s ∈ [−D,D].

Moreover, from (1.9), we deduce that if n is sufficiently large, then∣∣∣Ω̃n

(π
2
− θ + s/Ω̄n

)
− Ω̃n

(π
2
− θ
)∣∣∣ ≤ δ/2 ∀ s ∈ [−D,D].

Thus, previous relations and (1.19) imply that for sufficiently large n,∣∣∣g (Ω̄nϕ
(π

2
− θ + s/Ω̄n

)
+ Ω̃n

(π
2
− θ + s/Ω̄n

))∣∣∣ ≤ ε, ∀ s ∈ [−D,D]

In our next result we show we may substitute the sequence of integrals{
Ω̄n

∫ π

0

g(Ω̄npn(t))ψ(t) dt
}

by another more appropriate sequence which points out the oscillations of the function G.

Lemma 1.3.5. Let D be chosen as in Lemma 1.3.3. Then

lim
n→∞

{
Ω̄n

∫ π

0

g(Ω̄npn(t))ψ(t) dt− J +
n − J−

n

}
= 0,
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where

J +
n =

∫ π
2−θ− D

Ω̄n

0

(
max

R
G−G

(
Ω̄npn(t)

)) d

dt

(
ψ(t)
p′n(t)

)
dt,

J−
n =

∫ π

π
2−θ+ D

Ω̄n

(
max

R
G−G

(
Ω̄npn(t)

)) d

dt

(
ψ(t)
p′n(t)

)
dt

Proof. From Lemma 1.3.4 we know

lim
n→∞

[
Ω̄n

∫ π

0

g(Ω̄npn(t))ψ(t) dt− Ω̄n

∫ π
2−θ− D

Ω̄n

0

g(Ω̄npn(t))ψ(t) dt−

− Ω̄n

∫ π

π
2−θ+ D

Ω̄n

g(Ω̄npn(t))ψ(t) dt

]
= 0.

On the other hand, Lemma 1.3.3 gives us that, for n ≥ n1, the function

t 7→ ψ(t)
p′n(t)

is absolutely continuous both on
[
0, π

2 − θ − D
Ω̄n

]
and on

[
π
2 − θ + D

Ω̄n
, π
]
. Therefore, for n sufficiently large,

it follows from integration by parts that

Ω̄n

∫ π
2−θ− D

Ω̄n

0

g
(
Ω̄npn(t)

)
ψ(t)dt =

∫ π
2−θ− D

Ω̄n

0

g
(
Ω̄npn(t)

)
Ω̄np

′
n(t)

(
ψ(t)
p′n(t)

)
dt =

= G

(
Ω̄npn

(
π

2
− θ − D

Ω̄n

))
ψ
(

π
2 − θ − D

Ω̄n

)
p′n
(

π
2 − θ − D

Ω̄n

) − ∫ π
2−θ− D

Ω̄n

0

G
(
Ω̄npn(t)

) d
dt

(
ψ(t)
p′n(t)

)
dt =

=
[
G

(
Ω̄npn

(
π

2
− θ − D

Ω̄n

))
−max

R
G

] ψ (π
2 − θ − D

Ω̄n

)
p′n

(
π
2 − θ − D

Ω̄n

)+

+
∫ π

2−θ− D
Ω̄n

0

(
max

R
G−G

(
Ω̄npn(t)

)) d

dt

(
ψ(t)
p′n(t)

)
dt

and, analogously,

Ω̄n

∫ π

π
2−θ+ D

Ω̄n

g
(
Ω̄npn(t)

)
ψ(t)dt =

(
−G

(
Ω̄npn

(
π

2
− θ +

D

Ω̄n

))
+ max

R
G

)
ψ(π

2 − θ + D
Ω̄n

)

p′n(π
2 − θ + D

Ω̄n
)
+

+
∫ π

π
2−θ+ D

Ω̄n

(
max

R
G−G

(
Ω̄npn(t)

)) d

dt

(
ψ(t)
p′n(t)

)
dt

Therefore, to finish the proof of this lemma it is sufficient to show that

lim
n→∞

maxR G−G
(
Ω̄npn

(
π
2 − θ + D

Ω̄n

))
p′n

(
π
2 − θ + D

Ω̄n

)
 = 0 (1.37)

lim
n→∞

−maxR G+G
(
Ω̄npn

(
π
2 − θ − D

Ω̄n

))
p′n

(
π
2 − θ − D

Ω̄n

)
 = 0 (1.38)
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and we will restrict ourselves to prove (1.37). Of course, (1.38) would we proved analogously.
From Lemma 1.3.3, we know

0 ≤ 1
−p′n(π

2 − θ + D
Ω̄n

)
≤ 2
−ϕ′(π

2 − θ + D
Ω̄n

)
.

Since

lim
n→∞

ϕ′(π
2 − θ + D

Ω̄n
)

D/Ω̄n
= ϕ′′(

π

2
− θ) < 0,

we need only to prove

lim
n→∞

Ω̄n

[
max

R
G−G

(
Ω̄npn

(
π

2
− θ +

D

Ω̄n

))]
= 0.

However,

Ω̄n

[
max

R
G−G

(
Ω̄npn

(
π

2
− θ +

D

Ω̄n

))]
= Ω̄n

∫ Ω̄npn(π
2−θ)

Ω̄npn

(
π
2−θ+ D

Ω̄n

) g(s)ds ≤
≤ Ω̄n

∣∣∣∣Ω̄npn

(
π

2
− θ +

D

Ω̄n

)
− Ω̄npn

(π
2
− θ
)∣∣∣∣max

Jn

|g|

where Jn =
[
Ω̄npn

(
π
2 − θ + D

Ω̄n

)
, Ω̄npn

(
π
2 − θ

) ]
. Moreover,

Ω̄npn

(
π

2
− θ +

D

Ω̄n

)
− Ω̄npn

(π
2
− θ
)

= Ω̄n

∫ π
2−θ+ D

Ω̄n

π
2−θ

p′n(s) ds =

=
∫ D

0

(
ϕ′
(π

2
− θ + s/Ω̄n

)
+

1
Ω̄n

Ω̃′n
(π

2
− θ + s/Ω̄n

))
ds −→

n→∞
0,

as a consequence of (1.27). Then, from (1.19), maxJn
|g| → 0 as n→∞. So, the proof will be finished if we

show the sequence of real numbers{
Ω̄n

[
Ω̄npn

(
π

2
− θ +

D

Ω̄n

)
− Ω̄npn

(π
2
− θ
)]}

n

to be bounded. However,

Ω̄n

[
Ω̄npn

(
π

2
− θ +

D

Ω̄n

)
− Ω̄npn

(π
2
− θ
)]

= Ω̄n

∫ π
2−θ+ D

Ω̄n

π
2−θ

Ω̄np
′
n(s)ds =

= Ω̄n

∫ D

0

ϕ′
(π

2
− θ + s/Ω̄n

)
ds+

∫ D

0

Ω̃′n
(π

2
− θ + s/Ω̄n

)
ds =

= Ω̄n

∫ D

0

(
ϕ′
(π

2
− θ + s/Ω̄n

)
− ϕ′

(π
2
− θ
))

ds+
∫ D

0

Ω̃′n
(π

2
− θ + s/Ω̄n

)
ds =

=
∫ D

0

(
Ω̄n

∫ s/Ω̄n

0

ϕ′′
(π

2
− θ + r

)
dr

)
ds+

∫ D

0

Ω̃′n
(π

2
− θ + s/Ω̄n

)
ds =

=
∫ D

0

(∫ s

0

ϕ′′
(π

2
− θ + t/Ω̄n

)
dt

)
ds+

∫ D

0

Ω̃′n
(π

2
− θ + s/Ω̄n

)
ds

whose boundedness derives from (1.27).
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Proof of (1.29). It follows from Lemma 1.3.5 above that what we want to prove is nothing but

lim
n→∞

{J +
n + J−

n } = +∞ (1.39)

Indeed, what happens here is that both the terms in the sum above diverge:

lim
n→∞

J−
n = lim

n→∞
J +

n = +∞

To see this, we consider the functions ψ1, ψ2 : [0, π] → R given by

ψ1(t) = e−αt/2 sin(t+ θ), ψ2(t) = e−αt/2 cos(t+ θ),

where θ is the real constant defined in Lemma 1.3.1. Then, since

ψ
(π

2
− θ
)
> 0, ψ1

(π
2
− θ
)
> 0, ψ2

(π
2
− θ
)

= 0, ψ′2

(π
2
− θ
)
> 0,

there exist (unique) real constants β1, β2 ∈ R with β1 > 0, and a function R ∈ C∞[0, π] with R(π
2 − θ) =

R′(π
2 − θ) = 0, such that

ψ = β1ψ1 + β2ψ2 +R (1.40)

Let us divide the proof of (1.39) into two steps.

Step 1: Here, we plan to establish the equality

lim
n→∞

[∫ π
2−θ− D

Ω̄n

0

(
max

R
G−G

(
Ω̄npn(t)

)) d
dt

(
R(t)
p′n(t)

)
dt+

+
∫ π

π
2−θ+ D

Ω̄n

(
max

R
G−G

(
Ω̄npn(t)

)) d
dt

(
R(t)
p′n(t)

)
dt

]
= 0.

To show this, recall (1.27) and Lemma 1.3.3 to write, for n is sufficiently large and t ∈
[
0, π

2 − θ − D
Ω̄n

]
∪[

π
2 − θ + D

Ω̄n
, π
]
,

∣∣∣∣ ddt
(
R(t)
p′n(t)

)∣∣∣∣ ≤ ∣∣∣∣R′(t)p′n(t)

∣∣∣∣+ ∣∣∣∣ R(t)
p′n(t)2

∣∣∣∣ |p′′n(t)| ≤ 2
∣∣∣∣R′(t)ϕ′(t)

∣∣∣∣+ 4
∣∣∣∣ R(t)
ϕ′(t)2

∣∣∣∣ (|ϕ′′(t)|+m(t)
)

(1.41)

Moreover, both functions

t 7→ R′(t)
ϕ′(t)

, t 7→ R(t)
ϕ′(t)2

,

are continuous on [0, π]. Thus, we may apply the Lebesgue Convergence Theorem to obtain that the sequence
of L1[0, π]-functions given by

t→


d
dt

(
R(t)
p′n(t)

)
if t ∈

[
0, π

2 − θ − D
Ω̄n

]
∪
[

π
2 − θ + D

Ω̄n
, π
]
,

0 if t ∈
[

π
2 − θ − D

Ω̄n
, π

2 − θ + D
Ω̄n

]
converges in L1[0, π] to

t 7→ d

dt

(
R(t)
ϕ′(t)

)
,
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and we conclude that

lim
n→∞

[∫ π
2−θ− D

Ω̄n

0

(
max

R
G−G

(
Ω̄npn(t)

)) d
dt

(
R(t)
p′n(t)

)
dt+

+
∫ π

π
2−θ+ D

Ω̄n

(
max

R
G−G

(
Ω̄npn(t)

)) d
dt

(
R(t)
p′n(t)

)
dt−

−
∫ π

0

(
max

R
G−G

(
Ω̄npn(t)

)) d
dt

(
R(t)
ϕ′(t)

)
dt

]
= 0.

Thus, to finish this step, it remains to show that

lim
n→∞

∫ π

0

(
max

R
G−G

(
Ω̄npn(t)

)) d
dt

(
R(t)
ϕ′(t)

)
dt = 0. (1.42)

However,∫ π

0

(
max

R
G−G

(
Ω̄npn(t)

)) d
dt

(
R(t)
ϕ′(t)

)
dt =

=
(

max
R

G
)(R(π)

ϕ′(π)
− R(0)
ϕ′(0)

)
−
∫ π

0

G(Ω̄npn(t))
d

dt

(
R(t)
ϕ′(t)

)
dt.

At this point, we apply the Riemann-Lebesgue lemma ([85]), which says that

lim
n→∞

∫ π

0

G
(
Ω̄npn(t)

) d
dt

(
R(t)
ϕ′(t)

)
dt = 0,

while it follows from (1.40) that
R(π)
ϕ′(π)

=
R(0)
ϕ′(0)

,

showing (1.42).
Step 2. We claim that

lim
n→∞

∫ π
2−θ− D

Ω̄n

0

(
max

R
G−G

(
Ω̄npn(t)

)) d

dt

(
β1ψ1(t) + β2ψ2(t)

p′n(t)

)
dt =

= lim
n→∞

∫ π

π
2−θ+ D

Ω̄n

(
max

R
G−G

(
Ω̄npn(t)

)) d

dt

(
β1ψ1(t) + β2ψ2(t)

p′n(t)

)
dt = +∞

To prove this, we may concentrate, for example, in the first limit, the second one being analogous. The
following equality is straightforward:

d

dt

(
β1ψ1(t) + β2ψ2(t)

p′n(t)

)
= e−αt An(t)

p′n(t)2
− 1

Ω̄n
e−αt Bn(t)

p′n(t)2
(1.43)

where

An(t) = β1A+
β1

Ω̄n
eαt/2 cos(t+ θ)Ω̃′n(t)− β2

Ω̄n
eαt/2 sin(t+ θ)Ω̃′n(t);

Bn(t) =
(
β1 sin(t+ θ) + β2 cos(t+ θ)

) d
dt

(
eαt/2Ω̃′n(t)

)
,

being A =
√

1 + α2

4 as defined in (1.17). Moreover, from (1.27) we deduce

1. {An} → β1A, uniformly on [0, π].
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2. There exists a function B ∈ L1[0, π] such that |Bn| ≤ B for n ∈ N sufficiently large.

At this point we consider the sequences {rn}n and {sn}n of real numbers defined below:

rn :=
∫ π

2−θ− D
Ω̄n

0

(
max

R
G−G

(
Ω̄npn(t)

))
e−αt An(t)

p′n(t)2
dt;

sn :=
1

Ω̄n

∫ π
2−θ− D

Ω̄n

0

(
max

R
G−G(Ω̄npn(t))

)
e−αt Bn(t)

p′n(t)2
dt,

so that, for each n ∈ N, from (1.43) we may write∫ π
2−θ− D

Ω̄n

0

(
max

R
G−G

(
Ω̄npn(t)

)) d

dt

(
β1ψ1(t) + β2ψ2(t)

p′n(t)

)
dt = rn − sn/Ω̄n.

To finish, we will show that

lim rn = +∞; (1.44)
{sn} is bounded. (1.45)

In orden to check (1.44), choose n large enough so that

An(t) ≥ β1
A

2
∀t ∈ [0, π],

and fix any ρ ∈
]
0, π

2 − θ
[

with
π

2
− θ − D

Ω̄n
≥ ρ. (1.46)

Then, from Lemma 1.3.3, we have

rn/β1 ≥
A

2
4
9

∫ π
2−θ− D

Ω̄n

0

(
max

R
G−G

(
Ω̄npn(t)

))
e−αt 1

ϕ′(t)2
dt ≥

≥ 2A
9

∫ ρ

0

(
max

R
G−G

(
Ω̄npn(t)

))
e−αt 1

ϕ′(t)2
dt =

=
2A
9

∫ ρ

0

(
max

R
G−G

(
Ω̄npn(t)

)) 1
A2 cos2(t+ θ)

dt =

=
2

9A

(
max

R
G
)∫ ρ

0

1
cos2(t+ θ)

dt− 2
9A

∫ ρ

0

G
(
Ω̄npn(t)

) 1
cos2(t+ θ)

dt

and letting n tend to infinity, the Riemann-Lebesgue lemma ([85]) gives

lim inf
n→∞

rn ≥
2

9A
max

R
G

∫ ρ

0

1
cos2(t+ θ)

dt.

Since ρ ∈
]
0, π

2 − θ
[

was chosen with the only restriction of verifying (1.46) for n big enough, we may let it
tend to π

2 − θ to obtain (1.44).
Finally, to show (1.45), we observe the following consequence of Lemma 1.3.3:

|sn| ≤ 4
∫ π

2−θ− D
Ω̄n

0

maxR G−G
(
Ω̄npn(t)

)
Ω̄nϕ′(t)2

e−αtB(t) dt = 4
∫ π

2−θ

0

γn(t) dt

where γn : [0, π
2 − θ] → R, is defined by

γn(t) =

{
maxR G−G(Ω̄npn(t))

Ω̄nϕ′(t)2
, if 0 ≤ t ≤ π

2 − θ − D
Ω̄n
,

0, if π
2 − θ − D

Ω̄n
≤ t ≤ π

2 − θ
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Since γn converges pointwise to zero, (1.45) will be proved if the sequence γn is uniformly bounded on L1[0, π].
But, for n sufficiently large and t ∈

[
0, π

2 − θ − D
Ω̄n

]
, we have (see 1.19):

0 ≤ γn(t) =
G
(
Ω̄npn

(
π
2 − θ

))
−G

(
Ω̄npn(t)

)
Ω̄nϕ′(t)2

≤
(
max

R
g
) |pn(π

2 − θ)− pn(t)|
ϕ′(t)2

≤

≤
(
max

R
g
) ϕ (π

2 − θ
)
− ϕ(t)

ϕ′(t)2
+

1
Ω̄n

(
max

R
g
) |Ω̃n(π

2 − θ)− Ω̃n(t)|
ϕ′(t)2

However, it follows from Lemma 1.3.1 the existence of a constant k > 0 satisfying(
t−
(π

2
− θ
))2

≤ kϕ′(t)2, ∀ t ∈ [0, π].

Consequently, for n sufficiently large and t ∈
[
0, π

2 − θ − D
Ω̄n

]
,

0 ≤ γn(t) ≤ k
(
max

R
g
) |ϕ(t)− ϕ

(
π
2 − θ

)
|

|t−
(

π
2 − θ

)
|2

+
k

D

(
max

R
g
)(

max
[0,π]

Ω̃′n

)
,

whose boundedness is a consequence of (1.27). This ends the proof.

Theorem 1.3.2 follows. As seen before, it implies Theorems 1.1.1 and 1.1.2.

At this point, we turn ourselves to the proof of Theorem 1.1.3.

Proof of Theorem 1.1.3. Since up to now, the damping coefficient α was always fixed, it was not necessary
to introduce it in the notation of the functions ϕ, ψ, ε±, etc. However, here we will make α vary and we
will adapt our notation by adding α as a superscript; in this way we will write ϕα, ψα, εα

±, etc. From our
bifurcation equation (1.7) we deduce:

|h̄| ≤ ‖g‖∞‖ψα‖L1[0,π] ∀h̄ ∈ Iα
h̃
, ∀h̃ ∈

(
ϕα
)⊥
,

and, consequently,
0 < εα± ≤ ‖g‖∞‖ψα‖L1[0,π] .

However, the quantity ‖ψα‖L1[0,π] is easily computable, and we have

‖ψα‖L1[0,π] =

∫ π

0
e

α
2 t sin tdt√∫ π

0

[
e

α
2 t sin t

]2
dt

=

(
1 + exp(απ/2)

)
/
(
1 + α2/4

)√(
exp (απ)− 1

)
4/
(
8α+ 2α3

) −→
|α|→∞

0,

which finishes our proof.

1.4 The continuity of ε±

In this section, we want to show the continuity of the functionals ε±. This problem was already studied, in
a broader, PDE setting, by Dancer [24], Ortega, [63]. We briefly recall here their argument, adapted to our
framework. In order to show lower semicontinuity of, say, ε+ (upper semicontinuity is straightforward), take
some point h̃∗ ∈ ϕ⊥. Corresponding solutions u− and u+ of problem (1.1) with h̄ = 0, ε+(h̃) respectively,
may be found. Moreover, after some further work which was basically carried out in [5], it is possible to
choose u− and u+ with u−(t) < u+(t) ∀t ∈]0, π[, u′−(0) < u′+(0), u′−(π) > u′+(π). We then consider the set G
of C1[0, π] functions u with u′−(0) < u′(0) < u′+(0), u−(t) < u(t) < u+(t) ∀t ∈]0, π[, u′−(π) > u′(π) > u′+(π),
which is an open and bounded subset of C1[0, π]. Given any 0 < a < ε+(h̃), problem (1.1) with h̄ = a
may be equivalently reformulated as: find the fixed points of a suitable completely continuous operator P
on C1[0, π]. Being u− a lower solution and u+ an upper solution, Hopf’s Lemma shows that there are not
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solutions in ∂G, and the Leray-Schauder degree of I − P in G is shown to be 1. Both things keep true under
small perturbations of P , so that, for h̃ near h̃∗ and h̄ = a, we have still solutions of (1.1) in G and ε+(h̃) ≥ a.

When it uses Hopf’s Lemma, this argument needs the nonlinearity g to be Lipschitz, at least in a neigh-
borhood of 0. In our setting, g is merely assumed to be continuous. We devote this section to overcome this
difficulty by replacing the function ψ, which vanishes at 0 and 1, by a strictly positive function.

Lemma 1.4.1. Let E be a metric space, e−, e+ : E → R+ positive functions defined on E. We consider the
set

E :=
{

(x, t) ∈ E × R : −e−(x) ≤ t ≤ e+(x)
}

Then,

1. E is closed in E × R if and only if e− and e+ are upper semicontinuous.

2. E ⊂ int (E) if and only if e− and e+ are lower semicontinuous.

The proof is straightforward (see, for instance, [27]). However, it gives rise to the following interesting
consequence:

Corollary 1.4.2. Let X be a Banach space, H ⊂ X a closed hyperplane and u, v ∈ X\H. Assume that
eu
±, e

v
± : H → R+ are functions verifying{

h+ tu : h ∈ H,−eu
−(h) ≤ t ≤ eu

+(h)
}

=
{
h+ tv : h ∈ H,−ev

−(h) ≤ t ≤ ev
+(h)

}
Then, eu

± is lower (respectively, upper) semi-continuous if and only if ev
± has the same property.

Theorem 1.4.3. The functionals ε± : ψ⊥ → R+, as defined in Theorem 1.1.1, are continuous.

Proof. In view of (1.4.1), the upper continuity of both e− and e+ is granted as soon we check the set

R := {(h̃, h̄) ∈ ψ⊥ × R : −ε−(h̃) ≤ h̄ ≤ ε+(h̃)}

to be closed in ψ⊥×R. This argument is not new; was already used, for instance, in [15]. Given {(h̃n, h̄n)} →
(h̃∗, h̄∗) a sequence in R, either we have h̄∗ = 0 (and then, (h̃∗, h̄∗) ∈ R), or h̃∗ 6= 0, and we pick a
corresponding sequence

{
(ũn, ūn)

}
⊂ ϕ⊥ × R with

ũn = K(I −Q)N (ūnϕ+ ũn) +Kh̃n (1.47)

h̄n =
∫ π

0

g(ūnϕ(s) + ũn(s))ψ(s) ds (1.48)

It follows from (1.47) that the sequence {ũn} is bounded in ϕ⊥, in particular, it is bounded in C1[0, π].
Thus, {ūn} should also be bounded in R, since, otherwise, the Riemann-Lebesgue lemma together with (1.48)
would imply h̄∗ = 0. Consequently, convergent subsequences {ũrn} → ũ∗ in C[0, π] and {ūrn} → ū∗ may be
found. Passing to the limit along these subsequences in (1.47) and (1.48) we deduce:

ũ∗ = K(I −Q)N (ū∗ϕ+ ũ∗) +Kh̃∗

h̄∗ =
∫ π

0

g(ū∗ϕ(s) + ũ∗(s))ψ(s) ds

and then, (h̃∗, h̄∗) ∈ R.
In orden to show the lower semicontinuity of ε±, we are going to use Corollary 1.4.2. We write our

solvability set in an alternative form:{
h̃+ tϕ : h̃ ∈ ψ⊥, −ε−(h̃) ≤ t ≤ ε+(h̃)

}
=
{
h̃+ t1 : h̃ ∈ ψ⊥, −ε−(h̃) ≤ t ≤ ε+(h̃)

}
for suitable functions ε± : ψ⊥ → R+

0 . This may be done thanks to the upper and lower solutions method
([5]), and Theorem 1.1.1 above, which guarantees in particular that problem (1.1) is always solvable if h̄ = 0.
It will be easier to show the lower continuity of ε± instead of ε±. Of course, we may (and we will) restrict
ourselves to study ε+, the case of ε− being analogous. We choose any function h̃0 ∈ ψ⊥.
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1. In case ε+(h̃0) = 0, ε+ being nonnegative, it is lower semicontinuous at h̃0.

2. In case ε+(h̃0) > 0, choose 0 < a < ε+(h̃0) and take a solution u+ of problem (1.1) with h(t) =
h0(t) + ε+(h̃0)1. We call v+ := u+ −Kh̃0, which is a solution of the alternative problem

−v′′ − αv′ − λ1(α)v + g(v + (Kh̃0)(t)) = γ1, t ∈ [0, π]
u(0) = u(π) = 0

(1.49)

for γ = ε+(h̃0), and thus, a strictly upper solution of (1.49) for γ = a. On the other hand, using the
Riemann-Lebesgue lemma and letting ū→ −∞ in (1.6, 1.7), a C2[0, π] function v− with

v−(0) = v−(π) = 0 ; v′−(0) < v′+(0) ; v′−(π) > v′+(π);

−v′′−(t)− αv′−(t)− β1(α)v−(t) + g(v−(t) + (Kh̃0)(t)) ≤ a/2 < a ∀t ∈ [0, π];
v−(t) < v+(t) ∀t ∈]0, π[,

may be found. In this way, the set

O :=
{
w ∈ C1[0, π] : v′−(0) < w′(0) < v′+(0), v′−(π) > v′+(π), v−(t) < v+(t) ∀t ∈]0, π[

}
is open in C1[0, π], and problem (1.49) with γ = a has not solutions in ∂O, since v− and v+ are,
respectively, strictly lower and upper solutions. The Theorem is now a consequence of known arguments,
based upon the continuity of the Leray-Schauder topological degree (see, for instance, [63], pp. 38, 39).

1.5 Generic asymptotic behavior of the solvability set

In the second part of this chapter we plan to study the asymptotic behavior along lines of the functionals

ε± : ψ⊥ → R+

defined in Theorem 1.1.1. These functionals delimite the solvability set of problem (1.1).
Roughly, our results can be abridged by saying that, generically, ε± converge to zero along lines. Further,

this convergence is uniform in bounded sets. However, there exists at the same time a dense set of directions
where this fails to happen. A basic ingredient of our proofs is a multidimensional generalization of the
Riemann-Lebesgue lemma which is developed in Lemma 1.5.1.

For the corresponding periodic problem, an asymptotic result on the behavior of the functionals ε± was
developed in [43]. In this paper, it was shown how these functionals converge to zero generically along lines;
that is, there exists an open, dense set of directions for which this happens. Examples were also given to show
that exceptional directions, where the functional do not converge to zero, also exist. In the proofs, the fact
that the principal eigenfunction of the periodic problem is constant played a key role, and the problem was
solved using the more classical, one-dimensional version of the Riemman-Lebesgue Lemma (see, for instance,
[85]).

We recall some of the notation that will be extensively used in what follows. A function h ∈ L1([a, b])
will be called a step function if there exists a partition a = t0 < t1 < ... < tm−1 < tm = b of [a, b] such
that h|]ti−1,ti[ is constant for all i : 1, ...m. In case all these constants are not 0, we will say that h is a
non-vanishing step function. A function u ∈W 2,1[a, b] will be called a parabolic spline if u′′ is a step function
and the set {u ∈ W 2,1([0, π]) : u is a parabolic spline} will be denoted as P. For given δ > 0, if there exists
a partition a = t0 < t1 < ... < tm−1 < tm = b of the interval [a, b], and 1 ≤ i0 ≤ m, µ,C ∈ R with C 6= 0
such that

ti0 − ti0−1 < δ (1.50)
u(t) = µϕ(t) + C ∀t ∈ [ti0−1, ti0 ] (1.51)
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and
u′′|]ti−1,ti[

is constant for every 1 ≤ i ≤ m, i 6= i0, (1.52)

u will be called a δ-singular function, and the set of all W 2,1([0, π]) δ-singular functions will be denoted as Sδ.
Finally, for every measurable set I ⊂ [0, π], we will denote by meas I its one-dimensional Lebesgue measure.

Let B ⊂ ψ⊥ be a bounded subset, let h̃ ∈ ψ⊥ be given. For any b̃ ∈ B and h̄, λ ∈ R, the Lyapunov-Schmidt
system (1.6), (1.7) associated to the forcing term h = b̃+ λh̃+ h̄ becomes:

ũ = Kb̃+ λKh̃+K(I −Q)N (ūϕ+ ũ) (1.53)

h̄ =
∫ π

0

g
(
ūϕ(t) + ũ(t)

)
ψ(t)dt, (1.54)

the operators K, N , and Q being defined as in Section 1.2. Thus,

ε±(b̃+ λh̃) = max
{
±
∫ π

0

g
(
ūϕ+ ũ)ψ dt :

ū ∈ R, ũ ∈ ϕ⊥
ũ = Kb̃+ λKh̃+K(I −Q)N (ūϕ+ ũ)

}
=

= max
{
±
∫ π

0

g
(
Kb̃+ λKh̃+ ūϕ+K(I −Q)N

(
ūϕ+ λKh̃+ ũ

))
ψ dt : ū ∈ R, ũ ∈ ψ⊥

(1.53) holds.

}
. (1.55)

Of course, both functionals ε± may be studied in an analogous way, so that we will concentrate ourselves
with ε+. For any λ ∈ R, b̃ ∈ B, there exists an element (ũλ,b̃, ūλ,b̃) ∈ ϕ⊥ × R such that

ũλ,b̃ = Kb̃+ λKh̃+K(I −Q)N (ūλ,b̃ϕ+ ũλ,b̃) ; (1.56)

ε+(b̃+ λh̃) =
∫ π

0

g
(
ūλ,b̃ϕ+ λKh̃+K(I −Q)N (ūλ,b̃ϕ+ ũλ,b̃)

)
ψdt . (1.57)

Since N is bounded, it is possible to find a constant M > 0, not depending on λ ∈ R or b̃ ∈ B, such that∥∥∥K(I −Q)N (ūλ,b̃ϕ+ ũλ,b̃)(t)
∥∥∥

C1[0,π]
≤M (1.58)

All this motivates us to the study of following multidimensional generalization of the Riemann-Lebesgue
lemma:

Lemma 1.5.1. Let g : R → R be continuous, bounded, and have a bounded primitive, and let u1, . . . , uN ∈
C1[0, π] be given functions satisfying the following property:

[P] If ρ1, . . . , ρN are real numbers such that

meas

{
t ∈ [0, π] :

N∑
i=1

ρiu
′
i(t) = 0

}
> 0 ,

then ρ1 = · · · = ρN = 0.

(We say that u1, . . . , uN are linearly independent on sets of positive mesure).
Let B ⊂ C1[0, π] be such that {

b′ : b ∈ B
}

is bounded in C[0, π]. Then, for any given function r ∈ L1[0, π], we have

lim
‖ρ‖→∞

∫ π

0

g

(
N∑

i=1

ρiui(t) + b(t)

)
r(t) dt = 0 (1.59)

uniformly with respect to b ∈ B.

20



Proof. Let r ∈ L1[0, π] be any integrable function and let {ρn}n ⊂ RN , {bn}n ⊂ B be given sequences with
‖ρn‖ → ∞. The sequence

µn := ρn/‖ρn‖
being bounded we have, at least for a subsequence, µn → µ for some µ ∈ RN with µ2

1 + · · · + µ2
N = 1. We

write
u := (u1, . . . , uN ),

so that, by hypothesis, meas(Z) = 0, where

Z = {t ∈ [0, π] : 〈µ, u′(t)〉 = 0}.

This implies that the linear span of the set

S = {〈µ, u′〉χI : I is any compact subinterval of [0, π], I ∩ Z = ∅} (1.60)

is a dense set in L1[0, π]. To see this, let us define

S1 = {χI : I is any compact subinterval of [0, π], I ∩ Z = ∅} (1.61)

Then, for any open subset A ⊂ [0, π] (in particular, for any open subinterval of [0, π]), meas(A \ Z) =
meas(A). Since A\Z is also open, there exists an at most countable collection {Ii, i ∈ N} of pairwise disjoint
open intervals such that A \ Z = ∪i∈N Ii and meas(A \ Z) =

∑
i∈N meas(Ii). Consequently, the linear span

of the set S1 is a dense set in the set of step functions and therefore in L1[0, π].
Now, let χI be a given element of S1. Write w = 〈µ, u′〉 and m = infI |w| (m > 0). Finally, fix ε > 0.

Choose a partition of I = [a, b], a = a0 < a1 < · · · < am−1 < am = b such that if t, y ∈ Ji = [ai−1, ai],
1 ≤ i ≤ m, then |w(t)− w(y)| ≤ ε. Then, for any t ∈ I, there is some i, 1 ≤ i ≤ m, such that t ∈ Ji and∣∣∣∣∣χI(t)−

m∑
i=1

wχJi(t)
w(ai)

∣∣∣∣∣ =
∣∣∣∣w(ai)− w(t)

w(ai)

∣∣∣∣ ≤ ε/m,

so that ∥∥∥χI −
m∑

i=1

wχJi

w(ai)

∥∥∥
1
≤ επ/m .

We deduce from this all that the linear span of S is dense in S1 and therefore in L1[0, π].
On the other hand, let us denote l∞ the Banach space of bounded sequences of real numbers endowed

with the uniform norm, l0 the closed subspace of converging to 0 sequences, and T : L1[0, π] → l∞, s 7→
T s = {(T s)n}n the linear operator defined by

(Ts)n =
∫ π

0

g(〈ρn, u(t)〉+ bn(t))s(t) ds, ∀ s ∈ L1[0, π], ∀ n ∈ N,

which is trivially continuous
(
‖T s‖∞ ≤ ‖g‖∞‖s‖L1[0,π]

)
. Since our objective is to prove the inclusion

T
(
L1[0, π]

)
⊂ l0 and T is continuous, to prove the lemma it is sufficient to demonstrate that T (S) ⊂ l0, i.e.,

lim
n→∞

∫
I

g
(
〈ρn, u(t)〉+ bn(t)

)
〈µ, u′(t)〉 dt = 0, (1.62)

for any compact subinterval I of [0, π] such that I
⋂
Z = ∅. But, if vn, v : I → R are defined as

vn(t) = 〈µn, u(t)〉+ bn(t)/‖ρn‖,
v(t) = 〈µ, u(t)〉, ∀ t ∈ [0, π],

we trivially have

lim
n→∞

∫
I

g
(
‖ρn‖vn(t)

)(
v′(t)− (vn)′(t)

)
dt = 0 (1.63)

and

lim
n→∞

∫
I

g
(
‖ρn‖vn(t))(vn)′(t)

)
dt = lim

n→∞

G(‖ρn‖vn(max I))−G(‖ρn‖vn(min I))
‖ρn‖

= 0 (1.64)

where G is any primitive of the function g. Now, (1.63) plus (1.64) imply (1.62).
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We observe that inside the set of continuous and bounded functions having a bounded primitive are the
periodic functions with zero mean. In our next result we use Lemma 1.5.1 in this particular case to obtain
that, for generic h̃, lim|λ|→∞ ε±(λh̃) = 0.

Corollary 1.5.2. Let h̃ ∈ ψ⊥ be a given function and suppose that the functions Kh̃ and ϕ satisfy the
following relationship:

[P1] If ρ1, ρ2 are real numbers such that

meas{t ∈ [0, π] : ρ1(Kh̃)′(t) + ρ2ϕ
′(t) = 0} > 0,

then ρ1 = ρ2 = 0.

Let B ⊂ ψ⊥ be any bounded subset. Then

lim
|λ|→∞

ε+(λh̃+ b) = lim
|λ|→∞

ε−(λh̃+ b) = 0, (1.65)

uniformly with respect to b ∈ B.

Proof. Immediate from (1.57), (1.58) and Lemma 1.5.1 above.

The following equivalent version of previous corollary will be very useful for our purposes.

Corollary 1.5.3. Let h̃ ∈ ψ⊥ be a given function and suppose that, for every ρ ∈ R,

meas{t ∈ [0, π] : (Kh̃)′(t) = ρϕ′(t)} = 0. (1.66)

Let B ⊂ ψ⊥ be any bounded subset. Then

lim
|λ|→∞

ε+(λh̃+ b) = lim
|λ|→∞

ε−(λh̃+ b) = 0, (1.67)

uniformly with respect to b ∈ B.

However, the set of functions h̃ ∈ ψ⊥ not verifying (1.66) for some ρ ∈ R, can be seen to be residual in
ψ⊥. This will lead us to one of our main results in this chapter:

Theorem 1.5.4. There exists a subset F ⊂ ψ⊥, of first Baire category in this space, such that for any
h̃ ∈ ψ⊥ \ F , and each given bounded subset B ⊂ ψ⊥, one has

lim
|λ|→∞

ε+(λh̃+ b) = lim
|λ|→∞

ε−(λh̃+ b) = 0 (1.68)

uniformly with respect to b ∈ B.

Proof. Let
F =

{
h̃ ∈ ψ⊥ : ∃ ρ ∈ R with meas

(
{t ∈ [0, π] : (Kh̃)′(t) = ρϕ′(t)}

)
> 0
}

Then F =
⋃

n∈N Fn, where

Fn =
{
h̃ ∈ ψ⊥ : ∃ ρ ∈ R with meas

(
{t ∈ [0, π] : (Kh̃)′(t) = ρϕ′(t)}

)
≥ 1/n

}
Let us prove that each subset Fn is closed and has an empty interior. Given n ∈ N, since K : ψ⊥ → ϕ⊥ is a
topological isomorphism, Fn is closed in ψ⊥ if and only if Gn := K(Fn) is a closed subset of ϕ⊥. However,

Gn = {u ∈ ϕ⊥ : ∃ρ ∈ R with meas{t ∈ [0, π] : u′(t) = ρϕ′(t)} ≥ 1/n}

Let {um}m ⊂ Gn be a sequence such that {um} → u in ϕ⊥. For any m ∈ N, we can find ρm ∈ R such that

meas({t ∈ [0, π] : u′m(t) = ρmϕ
′(t)}) ≥ 1/n
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Since
meas({t ∈ [0, π] : ϕ′(t) = 0}) = 0,

the sequence {ρm} must be bounded and, after possibly passing to a subsequence, we can suppose, without
loss of generality, that {ρm} → ρ. Moreover, if we define

Mm = {t ∈ [0, π] : u′m(t) = ρmϕ
′(t)}

then meas(Mm) ≥ 1/n, ∀ m ∈ N and meas (
⋂∞

m=1 [
⋃∞

s=mMs]) ≥ 1/n. Finally, let us observe that if
t ∈
⋂∞

m=1 [
⋃∞

s=mMs], then u′(t) = ρϕ′(t), so that

meas{t ∈ [0, π] : u′(t) = ρϕ′(t)} ≥ 1/n

and, consequently, u ∈ Gn.
Next, we are going to show that F (and therefore each Fn) has an empty interior. To do that, let ϕ̂ be

the only solution of the linear problem
ϕ̂′′ = ϕ

ϕ̂(0) = ϕ̂(π) = 0

Then, ϕ̂ ∈ C[0, π], ϕ̂(t) < 0 ∀t ∈]0, π[ by the maximum principle, and, for any u ∈W 2,1
0 [0, π],∫ π

0

uϕ = −
∫ π

0

u′ϕ̂′ =
∫ π

0

u′′ϕ̂ .

As a consequence, the mapping

Φ : ϕ⊥ → ϕ̂⊥ , u 7→ u′′,

is a topological isomorphism, where

ϕ̂⊥ =
{
h ∈ L1[0, π] :

∫ π

0

h(t)ϕ̂(t) dt = 0
}
.

We deduce from this all that F has an empty interior in ψ⊥ if and only if Φ(K(F )) has an empty interior
in ϕ̂⊥. This last result will follow from points 2. and 3. of our next lemma.

Lemma 1.5.5. Let us denote by A the subset of L1[0, π] given by all the step functions and by B the subset
of L1[0, π] given by all the non-vanishing step functions. Then,

1. A ∩ ϕ̂⊥ is dense in ϕ̂⊥;

2. B ∩ ϕ̂⊥ is dense in ϕ̂⊥;

3. B ∩ Φ(K(F )) = ∅.

Proof. 1. Take any h ∈ ϕ̂⊥ and ε > 0. Then, there exists s ∈ A such that

‖h− s‖1 < min
{
ε/2π,

‖ϕ̂‖1
‖ϕ̂‖∞

}
.

Now,

s̃ = s+
1

‖ϕ̂‖1

∫ π

0

sϕ̂

is again a step function which belongs to ϕ̂⊥ and verifies ‖h− s̃‖1 < ε.

2. Let us show that B ∩ ϕ̂⊥ is dense in A∩ ϕ̂⊥. Thus, take a function u ∈ A∩ ϕ̂⊥. Given a, b ∈ R, define
ua,b = u+ aχ[0,π/2] + bχ[π/2,π]. The condition for ua,b to belong to ϕ̂⊥ is

a

∫ π/2

0

ϕ̂+ b

∫ π

π/2

ϕ̂ = 0

Since
∫ π/2

0
ϕ̂ < 0 and

∫ π

π/2
ϕ̂ < 0

(
recall that ϕ̂(t) < 0 ∀t ∈]0, π[

)
, we may choose a and b both different

from zero but with small absolute value such that ua,b ∈ B ∩ ϕ̂⊥.
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3. Assume, instead, that an element s ∈ B ∩ Φ(K(F )) may be found. Then, there exist h̃ ∈ F , u ∈
W 2,1([0, π]), such that K(h̃) = u, Φ(u) = u′′ = s. Since h̃ ∈ F , ρ ∈ R can be chosen such that
meas({t ∈ [0, π] : u′(t) = ρϕ′(t)}) > 0. Choose some nontrivial compact interval I ⊂ [0, π] satisfying
s|I ≡ c 6= 0 and such that meas({t ∈ I : u′(t) = ρϕ′(t)}) > 0. This implies that

meas({t ∈ I : c = u′′(t) = ρϕ′′(t)}) > 0,

a contradiction.

1.6 Many ‘exceptional’ functions coexisting together

Now that we know that, generically, the functionals ε± converge to zero along lines, we are inevitably
confronted with the following questions:

1. Are there any functions h̃ ∈ ψ⊥ such that lim inf |λ|→∞ a±(λh̃) > 0?

2. If ’yes’, how big is this set of such ‘exceptional’ functions?

In orden to respond to these questions, we need to approximate accurately the term ũ appearing in the
Lyapunov-Schmidt system (1.6), (1.7). This is the aim of next proposition.

Proposition 1.6.1. Let B ⊂ C1[0, π] be a bounded set. Then, for any ε > 0 there exists δ > 0 such that, for
any w ∈ Sδ,

lim sup
‖(λ,µ)‖→∞

‖K(I −Q)N (λϕ+ µw + b)‖∞ < ε, (1.69)

uniformly with respect to b ∈ B.

Proof. Assume the stated result is false. Then, there exists ε0 > 0 and, for any δ > 0, wδ ∈ W 2,1[0, π] such
that wδ ∈ Sδ, and

lim sup
‖(λ,µ)‖→∞

(
sup
b∈B

∥∥∥K(I −Q)N (λϕ+ µwδ + b)
∥∥∥
∞

)
≥ ε0, ∀δ > 0. (1.70)

Let {hn : n ∈ N} be a dense and countable subset of L1[0, π]. For any n ∈ N, let us choose δn > 0 such
that ∫

A

|hn(t)|dt < 1
n(1 + ‖g‖∞)

∀A ⊂ [0, π] measurable with meas(A) < δn. (1.71)

Using (1.70) and Lemma 1.5.1, for any n ∈ N there exist wn ∈ Sδn
, 0 ≤ pn < qn ≤ π,

(λn, µn) ∈ R2 and bn ∈ B with

qn − pn < δn; (1.72)∣∣∣∣∫ pn

0

g
(
λnϕ(t) + µnwδn(t) + bn(t)

)
hr(t) dt

∣∣∣∣ < 1/n ∀r : 1 . . . n; (1.73)∣∣∣∣∫ π

qn

g
(
λnϕ(t) + µnwδn

(t) + bn(t)
)
hr(t) dt

∣∣∣∣ < 1/n ∀r : 1 . . . n; (1.74)∥∥∥K(I −Q)N (λnϕ+ µnwδn + bn)
∥∥∥
∞
≥ ε0/2 (1.75)

We deduce from (1.71), (1.72), (1.73) and (1.74) that∣∣∣∣∫ π

0

g
(
λnϕ(t) + µnwδn

(t) + bn(t)
)
hr(t) dt

∣∣∣∣ < 3/n ∀r, n ∈ N with r ≤ n,
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and then, since {hn : n ∈ N} is dense in L1[0, π] and g is bounded,

lim
n→∞

∫ π

0

g
(
λnϕ(t) + µnwδn

(t) + bn(t)
)
h(t) dt = 0 ∀h ∈ L1[0, π].

In particular,

lim
n→∞

∫ π

0

g
(
λnϕ(t) + µnwδn

(t) + bn(t)
)
h(t) dt = 0 ∀h ∈ L∞[0, π],

that is, the L1[0, π] sequence {N (λnϕ+µnwδn +bn)}n converges weakly to zero. Since the operator K(I−Q) :
L1[0, π] → C[0, π] is compact, it is weakly-strong continuous, and

lim
n→∞

{
K(I −Q)N (λnϕ+ µnwδn

+ bn)
}
→ 0 uniformly on [0, π],

contradicting (1.75).

Theorem 1.6.2. Let g 6≡ 0 be given. Then, there exists δ > 0 such that for every h̃ ∈ ψ⊥ with K(h̃) ∈
Sδ, ε±(λh̃) 9

λ→+∞
0. In particular, {

h̃ ∈ ψ⊥ : ε±(λh̃) 9
λ→+∞

0
}

is ‖ · ‖1-dense in ψ⊥.

Proof. Since g 6≡ 0 has mean value, it is possible to find ε, ρ > 0 and γ−, γ+ ∈ R such that g(u) < −ρ ∀u ∈
[γ− − ε, γ− + ε] and g(u) > ρ ∀u ∈ [γ+ − ε, γ+ + ε].

Observe that
B :=

{
K[I −Q](a) : a ∈ C[0, π], ‖a‖∞ ≤ ‖g‖∞

}
is a bounded subset of C1[0, π]. Thus, using Proposition 1.6.1 above, we may find δ > 0 such that (1.69)
holds for every w ∈ Sδ.

Let h̃0 ∈ ψ⊥ such that Kh̃0 = ũ0 ∈ S be given. Find a partition 0 = t0 < t1 < . . . < tm = π of the
interval [0, π] and 1 ≤ i0 ≤ m, µ,C ∈ R with C 6= 0, such that (1.50), (1.51), (1.52) with u = ũ0 are satisfied.
Define, for each n ∈ N, λn := nT+γ+

C . We claim that

lim inf
n→+∞

ε+(λnh̃0) ≥ ρ

∫ xi0

xi0−1

ψ(t)dt .

In orden to check this, take some n ∈ N. The Schauder fixed point theorem provides the existence of
some ũn ∈ ϕ⊥ ⊂ C[0, π] such that

ũn = K(I −Q)N (−µλnϕ+ λnũ0 + ũn) .

Thus, ũn belongs indeed to B. By the choice of δ, and since ‖(−µλn, λn)‖ ≥ λn → ∞, for n big enough we
have the inequality

‖un‖∞ < ε, (1.76)

so that, remembering (1.55),

ε+(λnh̃) ≥
∫ π

0

g
(
− µλnϕ+ λnũ0 + ũn

)
dt =

m∑
i=1

∫ ti

ti−1

g(−µλnϕ+ λnũ0 + ũn)ψdt

Observe now that, for each i 6= i0,

lim
n→∞

∫ ti

ti−1

g
(
− µλnϕ+ λnũ0 + ũn

)
ψ dt = 0, (1.77)
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as a consequence of Lemma 1.5.1 if ũ′0 is not constantly 0 on [xi0−1, xi0 ] and as a consequence of the classical
Riemann-Lebesgue Lemma (see [85]) otherwise. On the other hand, for each n ∈ N,∫ ti0

ti0−1

g
(
− µλnϕ+ λnũ0 + ũn

)
ψ dt =

∫ ti0

ti0−1

g
(
λnC + ũn

)
ψdt

To end the proof, observe that, thanks to (1.76) and the choice of ε,

g
(
λnC + ũn(t)

)
ψ(t) = g

(
γ+ + nT + ũn(t)

)
ψ(t) = g

(
γ+ + ũn(t)

)
ψ(t) ≥ ρψ(t) ∀t ∈ [0, π],

so that,

lim inf
n→∞

ε+(λnh̃0) ≥ lim inf
∫ ti0

ti0−1

g
(
λnC + ũn(t)

)
ψ(t) dt ≥ ρ

∫ xi0

xi0−1

ψ(t) dt.

Of course, an analogous reasoning would give

lim inf
n→∞

ε−(µnh̃0) ≥ ρ

∫ xi0

xi0−1

ψ(t) dt.

for the sequence µn := γ−+nT
C . This proves the theorem.

The final part of this chapter is devoted to check the claimed density of

{h̃ ∈ ψ⊥ : K(h̃) ∈ Sδ}

in ψ⊥ for any δ > 0.

Proof. Since K : ψ⊥ → ϕ⊥ is a topological isomorphism, we can equivalently prove the density of Sδ ∩ ϕ⊥
in ϕ⊥. Now, recall that P ∩ ϕ⊥, and hence, P ∩ ϕ⊥\{0} are dense in ϕ⊥ (this was proven in Lemma
1.5.5, 1). With this in mind we are finished if we prove that (P ∩ ϕ⊥)\{0} ⊂ Sδ ∩ ϕ⊥. Take, therefore,
u ∈ P ∩ ϕ⊥, u 6≡ 0. It will be shown that there exists ε > 0 and a continuous curve U : [0, ε[→ W 2,1

0 [0, π]
such that U(0) = u; U(t) ∈ Sδ ∩ ϕ⊥ ∀t ∈]0, ε[.

Being u ∈ ϕ⊥ =
{
w ∈ W 2,1

0 [0, π] :
∫ π

0
w(s)ϕ(s)ds = 0

}
we know that u must achieve both positive and

negative values in ]0, π[. Let ρ0 > 0 be the greater positive number ρ such that

Jρ := {s ∈]0, π[: u(s) = ρ(ϕ(s) + 1)} 6= ∅ (1.78)

and choose some point t0 ∈ Jρ0 .
Being u ∈ P, it should be possible to find a partition 0 = r0 < r1 < r2 < . . . < rp−1 < rp = t0 = sp <

sp−1 < . . . < s2 < s1 < t0 = π of the interval [0, π] such that p ≥ 3 and u′′|]ri−1,ri[
, u′′|]si,si−1[

are constant for
each i : 1...p. Define ε := min{rp − rp−1, sp−1 − sp, δ/3}. We will explicitly describe only U(ξ)|[0,s0] for any
ξ ∈ [0, ε[; U(ξ)|[s0,π] would be constructed similarly.

Consider the linear mapping T : R3 →W 2,1[r0, r2] defined by

T (y′0;m1,m2) := The solution y of the linear IVP


y(0) = 0; y′(0) = y′0;
y′′(t) = m1; r0 < t < r1;
y′′(t) = m2; r1 < t < r2.

(1.79)

Next, define Ψ : R3 → R3 by

(y′0;m1,m2) 7→
([
T (y′0;m1,m2)

]
(r2),

[
T (y′0;m1,m2)

]′(r2),∫ r2

0

[
T (y′0;m1,m2)

]
(t)ϕ(t)dt

)
which is easily seen to have a trivial kernel, being, therefore, a linear isomorphism.

Finally, for each ξ ∈ [0, ε[, U(ξ)|[0,s0] will be built as follows:

• If t ∈ [rp − ξ, rp], define [U(ξ)](t) := ρ0(ϕ(t) + 1).
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• Next, extend U(ξ) to [r2, rp] in the only way that keeps U(ξ) being a W 2,1 function which, in addition,
verifies [U(ξ)]′′ = u′′ in ]r2, rp − ξ[.

• To finish, extend U(ξ) to [0, s0] by setting, for any t ∈ [0, r2[,

[U(ξ)](t) := T

[
Ψ−1

([
U(ξ)

]
(r2),

[
U(ξ)

]′(r2),∫ s0

0

u(s)ϕ(s)ds−
∫ s0

r2

[
U(ξ)

]
(s)ϕ(s)ds

)]
(t).

For any ξ ∈ [0, ε[, U(ξ) is built similarly on [s0, π]. Eventually, it is clear that, as assured, U : [0, ε[→W 2,1
0 [0, π]

is a continuous mapping verifying U(0) = u, U(ξ) ∈ ϕ⊥ ∩ S ∀ξ ∈]0, ε[. The result is now proven.
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Chapter 2

Periodic perturbations of linear,
resonant, elliptic operators in
bounded domains

2.1 Introduction

In this chapter we are concerned with self-adjoint, elliptic boundary value problems of the type{
−∆u− λ1u+ g(u) = h(x) = h̃(x) + h̄ϕ(x), x ∈ Ω
u(x) = 0, x ∈ ∂Ω

(2.1)

where the following hypothesis are made:

[H2]
1. Ω is a bounded, smooth domain in RN for some N ≥ 2,

2. λ1 is the first eigenvalue associated to the operator −∆ when acting on H1
0 (Ω); our problem is

resonant. We call ϕ an associated normalized eigenfunction

−∆ϕ = λ1ϕ , max
Ω

ϕ = 1 .

3. g : R → R is assumed to be Lipschitz, periodic, and to have zero mean

g ∈ Lip(R/TZ) for some T > 0;∫ T

0

g(u) du = 0 ,

the latter hypothesis being not restrictive
(
otherwise, simply subtract its medium value from both

sides of the equation in (2.1)
)
. Also, we assume it is not the constant zero function: our problem

is not linear. Finally, we call G1, G2, G3,... the successive, periodic primitives of g with zero
mean.

4. Respecting the forcing term h = h(x), it is assumed to be Lipschitz in Ω. We decompose it in the
form

h = h̄ϕ+ h̃ ,

where h̄ ∈ R, and

h̃ ∈ L̃ip(Ω) :=
{
h ∈ Lip(Ω) :

∫
Ω

h(x)ϕ(x)dx = 0
}
.
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The following geometrical assumption on the domain Ω in relation with the operator−∆ will stand throughout
this chapter:

[C2] ϕ has an unique critical point, which is not degenerate.

Here, the expression ‘not degenerate’ means that the Hessian matrix of ϕ at this point is assumed to be
inversible. It follows from results in [8, 45], that all regular, convex, bounded domains verify [C2]. Regular
and bounded domains which are Steiner symmetric with respect to all N coordinate hyperplanes, i.e.

(λ1x1, λ2x2, . . . , λNxN ) ∈ Ω ∀x = (x1, x2, . . . , xN ) ∈ Ω, ∀λ = (λ1, λ2, . . . , λN ) ∈ [−1, 1]N ,

also verify [C2], (see [7]), and domains Ω which result by means of small, smooth perturbations of others
verifying [C2] do verify this same assumption. On the other hand, [C2] implies severe restrictions on the
topology of the domain; it forces Ω̄ to be C1-diffeomorphic to a closed ball, as it follows from well known
arguments of Morse’s theory.

We observe here that this hypothesis on the domain Ω is not merely required by our method of proof,
since, for different types of domains, (which include, for instance, anular domains whose inner and outer
radius satisfy certain relations) there are results in the literature (see, for instance, [23]) displaying a different
qualitative behaviour of the several aspects of the problem. In particular, most of our results fail to hold if
[C2] is simply removed.

Observe that, in case N = 1, Ω =]0, π[, we obtain the same problem which was discussed throughout
our previous chapter (for α = 0), and whose solvability, in case h̄ = 0, had already been shown by Ward
([85]). Shortly after Ward’s paper, his result was generalized by Solimini [78], and Lupo and Solimini [52],
for resonant problems in arbitrary domains of RN and higher eigenvalues λs, s ≥ 1. Thus, in case h̄ = 0,
problem (2.1) is solvable.

Using methods from global bifurcation theory, Schaaf and Schmitt studied the multiplicity of solutions
of Ward’s problem. In [73] they showed this problem to have infinitely many positive and infinitely many
negative solutions. Using a similar approach, they also studied the case of Ω being a convex subset of the
plane. When h̄ = 0, they showed ([74]) that problem (2.1) is not only solvable, but has infinitely many
positive and infinitely many negative solutions. Numerical experiments were provided ([23, 74]) indicating
that ‘the latter result does not hold for Ω a ball in dimensions greater than 3’ ([74], pg. 1120).

All these partial results lead us to our first question: Do Schaaf-Schmitt results hold for problem (2.1)
and dimensions N ≥ 3?. With a certain degree of generality, we answer to this question in Theorem 2.1.1
below. In particular, it is shown the answer to be ‘yes’ in case N = 3 and ‘certainly not always’ in case
N ≥ 5. We also give a new proof of the two dimensional case.

Theorem 2.1.1. Choose h = h̃ ∈ L̃ip(Ω). Then, in case N = 2 or N = 3, problem (2.1) has infinitely many
positive and infinitely many negative solutions. Indeed,

∀p ∈ C1(Ω̄) with p(Ω) = 0 ∀Ω ∈ ∂Ω there exist solutions u1 and u2 of (2.1) with u1 ≤ p ≤ u2 .

In case N ≥ 5 and Ω is convex, for any bounded set B ⊂ L̃ip(Ω) there exists a nonempty open set
OB ⊂ {g ∈ Lip(R/TZ) :

∫ T

0
g(u)du = 0} such that, if h̃ ∈ B and g ∈ OB, the set of solutions of (2.1) is

bounded.

Thus, it remains an open problem to decide whether, in case N ≥ 5, the set of solutions of (2.1) is always
bounded, regardless of g and h, or might be unbounded. The fourth dimensional case escapes our treatment
and remains also open.

A second related question was motivated by the work of Cañada [11]. Here, it was proved that, in the
one-dimensional Ward’s problem, in case the forcing term h = h̃ belongs to the range of the linear problem,
the associated action functional, (which turns out to be non-coercive and bounded from below), does attain
its minimum. In this chapter we also show how this result remains true for dimensions N = 2 and N = 3.
For higher dimensions N ≥ 4 this continues to hold for generic g and all h̃ :

Theorem 2.1.2. Assume N = 2 or N = 3, or N ≥ 4 and G2(0) 6= 0, or G2(0) = 0 but Ω is convex
and G3(0) < 0, and let h = h̃ ∈ L̃ip(Ω). Then, the minimum of the action functional corresponding to
(2.1) is attained. Furthermore, this minimum is strictly lower than the minimum of the action functional
corresponding to the linear problem −∆u− λ1u = h̃, u ∈ H1

0 (Ω).
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Finally (following a historic account of the facts), the nondegeneracy problem received a separate attention.
As it happened with the ODE problem we studied in chapter 1, it follows from the lower and upper solutions
method, the Riemann-Lebesgue Lemma and Solimini results ([78]) that, for any h̃ ∈ L̃ip(Ω) there exist real
numbers ε−(h̃) ≤ 0 ≤ ε+(h̃) such that problem (2.1) is solvable if and only if ε−(h̃) ≤ h̄ ≤ ε+(h̃). In case
this closed interval always contains a neighborhood of zero

(
that is, ε−(h̃) < 0 < ε+(h̃) ∀h̃ ∈ L̃ip(Ω)

)
, the

nonlinearity g is said to be nondegenerate, and the nondegeneracy of g(u) = A sinu when N = 1, Ω =]0, π[,
was already shown by Dancer [25]. It was extended for general periodic nonlinearities by Cañada and Roca
([15]).

Some related nondegeneracy results for the PDE problem (2.1) when ‖h̃‖L2(Ω) is small were also established
in [17], and, for N = 2, the nondegeneracy of every nonlinearity g was implicit in [74]. The arguments in this
latter paper do not extend to the case N ≥ 3, and the main contribution of this chapter refers precisely to
the three dimensional case. If N = 3, we show that every nonlinearity g is not degenerate. In case N ≥ 4 we
show that, generically, nonlinearities are nondegenerate. Finally, we give a new proof of the two-dimensional
case.

Theorem 2.1.3. Assume N = 2 or N = 3. Then, problem (2.1) is not degenerate.
Assume N ≥ 4 and that G2(0) 6= 0, or G2(0) = 0 but Ω is convex and G3(0) < 0. Then, problem (2.1) is

nondegenerate.

Thus, for convex domains and nonlinearities g of the form, say, g(u) = A sin(u) +B cos(u), where B 6= 0
or B = 0 and A < 0, problem (2.1) is not degenerate. It remains an open problem to decide if nondegeneracy
continues to hold for arbitrary dimensions N ≥ 4 and arbitrary nonlinearities g.

Finally, a whole world of open problems appears when hypothesis [C2] is skipped. There exist some
previous work in this direction, and several nonconvex domains such as annulus have been considered, (see
[23]), but the problem is far from closed.

2.2 A variational approach

The splitting
H1

0 (Ω) = 〈ϕ〉 ⊕ H̃1
0 (Ω) , (2.2)

where

H̃1
0 (Ω) =

{
ũ ∈ H1

0 (Ω) :
∫

Ω

ũ(x)ϕ(x)dx = 0
}
,

let us to write any function u ∈ H1
0 (Ω) as u = ūϕ+ũ, with ū ∈ R and ũ ∈ H̃1

0 (Ω). Calling ũh̃ the only solution
in H̃1

0 (Ω) of the linear equation −∆ũ − λ1ũ = h̃, the classical change of variables v = u − ũh̃ transforms
problem (2.1) into the equivalent one:

−∆v − λ1v + g(v + ũh̃) = h̄ϕ , v ∈ H1
0 (Ω) (2.3)

We consider the associated action functional Φh : H1
0 (Ω) → R given by

Φh(v) :=
1
2

∫
Ω

‖∇v(x)‖2dx− λ1

2

∫
Ω

v(x)2dx+
∫

Ω

G1(v(x) + ũh̃(x))dx− h̄

∫
Ω

ϕ(x)v(x)dx (2.4)

where G1 denotes, as before, the primitive of g with zero mean. It follows that the solutions of (2.3) coincide
with the critical points of Φh. Observe that

Φh(v̄ϕ+ ṽ) =

=
[
1
2

∫
Ω

‖∇ṽ(x)‖2dx− λ1

2

∫
Ω

ṽ(x)2dx
]

+
∫

Ω

G1

(
v̄ϕ(x) + ṽ(x) + ũh̃(x)

)
dx− h̄‖ϕ‖22v̄ =

= Ψ(ṽ) + Υh̃(v̄, ṽ)− h̄‖ϕ‖22v̄ ∀ṽ ∈ H̃1
0 (Ω), ∀v̄ ∈ R.

On the other hand, Φh̃ coincides, up to a constant and a translation in H1
0 (Ω), with the action functional

corresponding to (2.1). Consequently, it attains its global minimum in H1
0 (Ω) if and only if the action
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functional corresponding to (2.1) has the same property, and the minimum of this latter functional is strictly
lower than the minimum of the associated linear problem if and only if minH1

0 (Ω) Φh̃ < 0.
The functional Ψ : H̃1

0 (Ω) → R is coercive while Υh̃ : R×H̃1
0 (Ω) → R is bounded. On the other hand, Ψ is

weak lower semicontinuous, while, for any fixed v̄ ∈ R, Υh̃(v̄, ·) : H̃1
0 (Ω) → R is easily seen to be sequentially

weak lower semicontinuous. Consequently, for any v̄ ∈ R, the minimum of the functional H̃1
0 (Ω) → R,

ṽ 7→ Φh(v̄ϕ+ṽ), is attained, and, further, there exists some R > 0 such that ‖ṽ‖H1
0 (Ω) ≤ R ∀(v̄, ṽ) ∈ R×H̃1

0 (Ω)
with Φh(v̄ϕ+ ṽ) = minw̃∈H̃1

0 (Ω) Φh(v̄ϕ+ w̃).
We consider the continuous function

mh : R → R; mh(v̄) := min
w̃∈H̃1

0 (Ω)
Φh(v̄ϕ+ w̃)

Observe that mh(v̄) = mh̃(v̄) − h̄‖ϕ‖22 v̄. It follows from the Riemann-Lebesgue Lemma (see [78])
that Υh̃(v̄, ṽ) → 0 as |v̄| → ∞ uniformly with respect to ṽ ∈ H̃1

0 (Ω), ‖ṽ‖H1
0 (Ω) ≤ R. It means that

lim|v̄|→∞mh̃(v̄) = 0 = minH̃1
0 (Ω) Ψ. And a C1 function ξ : R → R which has the same limits at −∞ and

+∞, if nonconstant, has at least a critical point in R and the same thing happens to little perturbations of
the type v̄ 7→ ξ(v̄)− δv̄ with |δ| small. In our case, mh̃ is probably not necessarily C1 (it will happen if g is
assumed to have a small Lipschitz constant), but anyway, we may easily obtain the same conclusion via the
Mountain Pass Theorem.

Lemma 2.2.1. Assume that mh̃(v̄) 6= 0 for some v̄ ∈ R. Then, problem (2.1) is not degenerate.

Proof. This is an immediate consequence of the direct methods of the calculus of variations if mh̃(v̄) < 0 for
some v̄ ∈ R and a consequence of the Mountain Pass theorem in case mh̃(v̄) > 0 for some v̄ ∈ R. (Indeed,
observe that the Palais-Smale condition for Φh̃ holds at all levels but 0, and at all levels for Φh when h̄ 6= 0,
see also [6]). In the first case it is clear that the non coercive action functional Φh̃ attains its minimum in R
while, if the latter possibility would hold for any v̄ ∈ R, there will be no global minima of Φh̃ in H1

0 (Ω).

We devote the first part of this chapter to look for sufficient conditions implying mh̃ to be not constantly
zero. And maybe the most elementary one follows from the observation

Υh̃(v̄∗, 0) < 0 ⇒ mh̃(v̄∗) ≤ Φh̃(v̄∗ϕ) = Υh̃(v̄∗, 0) < 0 ,

since Ψ(v̄∗ϕ) = 0.
A second possibility in order to show that mh̃ is not constant is given below:

Υh̃(v̄∗, ṽ) > 0 ∀ṽ ∈ H̃1
0 (Ω) with Φh̃(v̄∗, ṽ) = min

ṽ∈H̃1
0 (Ω)

Φh̃(v̄∗, ṽ) ⇒ m(v̄∗) > 0 .

We will explore both strategies in our context. Both will give us sufficient conditions for (2.1) to be
nondegenerate. Observe that, in case this second one would happen for all v̄∗ ∈ R, the action functional will
not attain its minimum in H1

0 (Ω).
Let us take a sequence {v̄n}n of real numbers with

|v̄n| ≥ 1 ∀n ∈ N , |v̄n| → ∞ ,

and, for each n ∈ N, choose ṽn ∈ H̃1
0 (Ω) with

Φh̃(v̄nϕ+ ṽn) = min
ṽ∈H̃1

0 (Ω)
Φh̃(v̄nϕ+ ṽ) .

Observe that this element ṽn satisfies the so-called auxiliary equation in Ω

−∆ṽn − λ1ṽn + g
(
v̄nϕ(x) + ṽn + ũh̃(x)

)
− 1
‖ϕ‖22

[∫
Ω

g
(
v̄nϕ(y) + ṽn(y) + ũh̃(y)

)
ϕ(y) dy

]
ϕ(x) = 0 , (2.5)
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together with the homogeneous Dirichlet boundary conditions ṽn|∂Ω = 0. Thus, regularity arguments (see,
for instance, [1],[10] (pp. 197-198), [37]) show that{

ṽn : n ∈ N
}
⊂W 3,r(Ω) ∀r ∈]1,∞[,

and {ṽn} is bounded in the W 2,r(Ω) topology for any 1 < r < ∞. In particular, the sequence {ṽn}n is
contained in C2(Ω̄), though we are not able to ensure (unlike what happens in the ODE problem we studied
in the previous chapter) that it is bounded here. In any case, the Riemann-Lebesgue Lemma ([85]) together
with (2.5) imply that {ṽn} → 0 weakly in W 2,r(Ω) for any 1 < r <∞; in particular,

{ṽn}n → 0 in C1(Ω̄) .

Derivate with respect to xi in equation (2.5) to obtain

−∆∂xi

(
ṽn/v̄n

)
− λ1∂xi

(
ṽn/v̄n) = −

(
∂xi

ϕ+ ∂xi
ṽn/v̄n + ∂xi

ũh̃/v̄n

)
g′
(
v̄nϕ+ ṽn + ũh̃

)
+

+
1
v̄n

1
‖ϕ‖22

[∫
Ω

g(v̄nϕ(y) + ṽn(y) + ũh̃(y))ϕ(y) dy
]
∂xiϕ , 1 ≤ i ≤ N . (2.6)

Since {ṽn/v̄n} → 0 in W 2,r(Ω), the Riemann-Lebesgue Lemma [78] together with (2.6) imply that {ṽn/v̄n} →
0 weakly in W 3,r(Ω) for any 1 < r <∞. In particular,{

ṽn/v̄n

}
→ 0 in C2(Ω̄) . (2.7)

For each n ∈ N, we write

vn := v̄nϕ+ ṽn + ũh̃ ; dn :=
v̄n

|v̄n|
max

Ω
|vn| . (2.8)

Observe that
lim

n→∞

{
dn − v̄n

}
= ũh̃(Ω0) ,

being Ω0 the unique point in Ω where ϕ attains its maximum. In particular, if n is taken big enough, dn 6= 0
and the sequence {ϕn} ⊂ C2(Ω̄) defined by

ϕn :=
1
dn
vn, n ∈ N, (2.9)

converges to ϕ in the C2(Ω̄) norm, while it is bounded in the W 3,r(Ω) topology for any 1 < r <∞. We will
just need later to use that it is bounded in H3(Ω) .

Our hypothesis [C2] on the geometry of Ω says that the gradient of ϕ vanishes only at Ω0 and D2ϕ(Ω0)
is negative definite. Consequently, for n sufficiently big, ∇ϕn will vanish only at one point Ωn ∈ Ω and
D2ϕn(Ωn) will be negative definite -we will indeed assume this is true for any n ∈ N-. The co-area formula
(see, for instance [33]) may be used then to find that

Υh̃(v̄n, ṽn) =
∫

Ω

G1(dnϕn(x))dx =
∫ 1

0

G1(dnt)

(∫
{ϕn(x)=t}

1
‖∇ϕn(x)‖

dsx

)
dt =

∫ 1

0

G1(dnt)pn(t)dt

(2.10)
where

pn(t) :=
∫
{ϕn(x)=t}

1
‖∇ϕn(x)‖

dsx, 0 ≤ t < 1, n ∈ N (2.11)

This idea of using the co-area formula to tackle this problem by means of a careful study of the asymptotic
behaviour of some oscillating integrals was already suggested in [25] and used in [74]. It will be shown (Lemma
2.2.2) that {pn} converges to

p(t) :=
∫
{ϕ(x)=t}

1
‖∇ϕ(x)‖

dsx (2.12)

in C1([0, 1 − ε]), while it is contained and bounded in H2[0, 1 − ε] for any 0 < ε < 1. In order to do that,
we need some deeper knowledge on the level sets of ϕn. With this aim, we use adequate changes of variables
carrying copies of ∂Ω into the level sets of ϕn or ϕ. The details are shown below.
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Lemma 2.2.2. Let {un} → u be any convergent sequence in C2(Ω̄) and let 0 < ε < 1 be given. Assume
that un(Ω) = u(Ω) = 0 for all n ∈ N and all Ω ∈ ∂Ω, that maxΩ̄ u = 1 and that ∇u(Ω) 6= 0 ∀Ω ∈ Ω̄ with
u(Ω) < 1. If n ∈ N is big enough, ∇un(Ω) 6= 0 ∀Ω ∈ Ω̄ with un(Ω) ≤ 1− ε; let us assume that this happens
indeed for any n. Then, the sequence {$n} defined by

$n(t) :=
∫
{un(x)=t}

1
‖∇un(x)‖

dsx (2.13)

converges in C1
(
[0, 1− ε]

)
to the function $ given by

$(t) :=
∫
{u(x)=t}

1
‖∇u(x)‖

dsx . (2.14)

Finally, if, further, {un}n is contained and bounded in H3(Ω), then {$n} is bounded in H2[0, 1− ε] , and,
in case {un} converges in H3(Ω), {$n} converges in H2[0, 1− ε] .

Proof. For any n ∈ N, let us consider the mapping Θn : (∂Ω)× [0, 1− ε] → RN defined as the solution of the
initial value problem

Θn(x, 0) = x ; x ∈ ∂Ω

∂Θn

∂t
(x, t) =

∇un

(
Θn(x, t)

)
‖∇un

(
Θn(x, t)

)
‖2

; (x, t) ∈ (∂Ω)× [0, 1− ε]

Analogously, define Θ : (∂Ω)× [0, 1− ε] → RN as the solution of

Θ(x, 0) = x ; x ∈ ∂Ω

∂Θ
∂t

(x, t) =
∇u
(
Θ(x, t)

)
‖∇u

(
Θ(x, t)

)
‖2

; (x, t) ∈ (∂Ω)× [0, 1− ε]

Then, for each t ∈ [0, 1− ε] ,

Θn

[
(∂Ω)× {t}

]
=
{

Ω ∈ Ω : un(Ω) = t
}
∀n ∈ N ; Θ

[
(∂Ω)× {t}

]
=
{

Ω ∈ Ω : u(Ω) = t
}
,

and the change of variables theorem gives

$n(t) =
∫

∂Ω

∣∣∣JΘn(x, t)
∣∣∣ dsx , $(t) =

∫
∂Ω

∣∣∣JΘ(x, t)
∣∣∣ dsx , t ∈ [0, 1− ε]

being JΘn and JΘ the Jacobian determinants of Θn and Θ respectively. Since these are C0,1 mappings
(indeed, C1 mappings,) which do not vanish on (∂Ω)× [0, 1− ε], we deduce that $n and $ are C1 mappings
on [0, 1− ε] and we have, for any 0 ≤ t ≤ 1− ε,

$′
n(t) =

∫
∂Ω

∣∣∣JΘn

∣∣∣∣∣∣∇un ◦Θn

∣∣∣2
∆un ◦Θn − 2

(
∇un ◦Θn

)T (
D2un ◦Θn

)(
∇un ◦Θn

)∣∣∣∇un ◦Θn

∣∣∣2
 dsx , (2.15)

$′(t) =
∫

∂Ω

∣∣∣JΘ
∣∣∣∣∣∣∇u ◦Θ
∣∣∣2
∆u ◦Θ− 2

(
∇u ◦Θ

)T (
D2u ◦Θ

)(
∇u ◦Θ

)∣∣∣∇u ◦Θ
∣∣∣2

 dsx . (2.16)

being D2un and D2u the Hessian matrices of un and u respectively. Since Θn → Θ in the C1
(
(∂Ω)× [0, 1−ε]

)
topology, and un → u in C2(Ω̄), we deduce that {$n} → $ in C1[0, 1− ε].

We also deduce from (2.15) and (2.16) that, in case that {un}n is, further, contained in C3(Ω̄), and
it converges to some function u ∈ C2(Ω̄) ∩ H3(Ω) in both spaces C2(Ω̄) and H3(Ω), the corresponding
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sequence {$n} is H2[0, 1 − ε]-Cauchy. Since it already converges to $ in the C1[0, 1] topology, we deduce
that $ ∈ H2[0, 1− ε] whenever u ∈ H3(Ω) and also that the mapping H3(Ω) → H2[0, 1− ε], u 7→ $ = $u,
is continuous. Now we see that, in case {un} → u in C2(Ω̄) is, in addition, bounded in the H3(Ω) topology,
{$n} is bounded in H2[0, 1− ε]. The Lemma is proven.

Due to the singularity of ∇ϕ/‖∇ϕ‖2 at Ω0, our just developed change of variables behaves nicely only
far away from {1}× SN−1. To know more about the convergence of {pn} to p (particularly, near 1), we need
different changes of variables, also carrying spheres into level sets, but being regular up to {1} × SN−1. To
develop these changes of variables is the aim of the next section.

2.3 A suitable change of variables

We start this section by an auxiliary lemma which will be used repeatedly through the proof of our next
theorem.

Lemma 2.3.1. Let C be an open subset of the cylinder [0,∞[×SN−1, let m ∈ L∞[0, 1] be given and let
1 < r <∞. We assume that {0} × SN−1 ⊂ C and, moreover, it is star-shaped with respect to {0} × SN−1 in
the following sense:

(tρ, θ) ∈ C ∀(ρ, θ) ∈ C, ∀t ∈ [0, 1] .

For any z ∈ Lr(C), we consider the mapping

Z : C → R , Z(ρ, θ) :=
∫ 1

0

m(t)z(tρ, θ) dt

Then, the following hold:

1. Z ∈ Lr(C) and
‖Z‖Lr ≤ r

r − 1
‖m‖∞‖z‖Lr . (2.17)

In particular, the mapping Lr(C) → Lr(C), z 7→ Z, is continuous.

2. If z is continuous, Z is continuous.

3. If z ∈W 1,r(C), then Z ∈W 1,r(C) and

∂ρZ(ρ, θ) =
∫ 1

0

m(t) t ∂ρz(tρ, θ) dt , ∇θZ(ρ, θ) =
∫ 1

0

m(t)∇θz(tρ, θ) dt . (2.18)

In particular, the mapping W 1,r(C) →W 1,r(C), z 7→ Z, is continuous.

Proof. To prove 1., it is not restrictive to assume C = [0,∞[×SN−1. (Otherwise, simply extend z by zero).
Then, Fubini’s Theorem ensures that, for almost every θ ∈ SN−1, the mapping zθ : [0,∞[→ R defined by
zθ(ρ) := z(ρ, θ) belongs to Lr[0,∞[; in particular, Z(ρ, θ) is defined for a.e. θ ∈ SN−1 and all ρ ≥ 0. Further,
given θ ∈ SN−1 such that zθ ∈ Lr[0,∞[, we have

∣∣Z(ρ, θ)
∣∣ = ∣∣∣∣∫ 1

0

m(t)z(tρ, θ) dt
∣∣∣∣ ≤ ∫ 1

0

∣∣m(t)z(tρ, θ)
∣∣ dt ≤ ‖m‖∞

∫ 1

0

∣∣z(tρ, θ)∣∣ dt .
Thus, Hardy’s inequality (see, for instance, [72], pp. 72), shows that for such a θ ∈ SN−1, Zθ : [0,∞[→ R
defined by ρ 7→ Z(ρ, θ), belongs to Lr[0,∞[ and verifies

‖Zθ‖Lr ≤ r

r − 1
‖m‖∞‖zθ‖Lr .

Estimation (2.17) follows now from Fubini’s Theorem.

35



On the other hand, statement 2. is a consequence of the Theorem of continuous dependence of integrals
with respect to parameters.

To prove 3. simply observe that, in case z ∈ C1(C), the theorem of derivation of integrals with respect to
parameters gives that the associated mapping Z also belongs to C1(C) and its partial derivates are given by
(2.18). Given an arbitrary function z ∈ W 1,r(C), take a sequence {zn}n ⊂ C1(C) ∩W 1,r(C) with {zn} → z
in W 1,r(C). The corresponding sequence {Zn} ⊂ C1(C) defined by

Zn(ρ, θ) :=
∫ 1

0

m(t)zn(tρ, θ) dt , (ρ, θ) ∈ C , (2.19)

verifies

∂ρZn(ρ, θ) =
∫ 1

0

tm(t)∂ρzn(tρ, θ) dt , ∇θZn(ρ, θ) =
∫ 1

0

m(t)∇θzn(tρ, θ) dt . (2.20)

It follows from 1., (2.19) and (2.20) that

Zn → Z ,{
∇θZn

}
→
[
(ρ, θ) 7→

∫ 1

0

m(t)∇θz(tρ, θ) dt
]
,

{
∂ρZn

}
→
[
(ρ, θ) 7→

∫ 1

0

tm(t)∂ρz(tρ, θ) dt
]

in Lr(C). We deduce here that Zn is W 1,r(C)-Cauchy, and, consequently, it is W 1,r(C)-convergent. Thus,
Z ∈W 1,r(C) and (2.18) holds.

We construct now the promised change of variables carrying N − 1-dimensional spheres into level sets
around nondegenerate critical points.

Theorem 2.3.2. Let Ω be an open and bounded, regular subset of RN , and let u ∈ C2(Ω̄) be given. We
assume that

(a) u(Ω) = 0 ∀Ω ∈ ∂Ω

and, for some Ω0 ∈ Ω,

(b) u(Ω0) = 1

(c) D2u(Ω0) is strictly negative definite

(d) 〈∇u(Ω),Ω− Ω0〉 < 0 ∀Ω ∈ Ω̄, Ω 6= Ω0.

Then, there exists an unique C2-change of variables Γ :
]
0,
√

2
]
× SN−1 → Ω̄\{Ω0} such that

u(Γ(ρ, θ)) = 1− ρ2

2
∀(ρ, θ) ∈

]
0,
√

2
]
× SN−1 (2.21)

Γ(ρ, θ) ∈ Ω0 + R+θ ∀(ρ, θ) ∈
]
0,
√

2
]
× SN−1 (2.22)

Furthermore, Γ ∈ C1
([

0,
√

2
]
× SN−1

)
and the mappings

F :
]
0,
√

2
]
× SN−1 →MN×(N−1)(R) , (ρ, θ) 7→ ∂2Γ

∂ρ∂θ
(ρ, θ) (2.23)

G :
]
0,
√

2
]
× SN−1 → RN , (ρ, θ) 7→ ρ

∂2Γ
∂ρ2

(ρ, θ) (2.24)
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are continuously extensible on
[
0,
√

2
]
× SN−1. The following hold:〈

∂Γ
∂ρ

(0, θ), θ
〉
> 0,

∂Γ
∂θ

(0, θ) = 0,
(
∂Γ
∂ρ
,
∂2Γ
∂ρ∂θ

)
(0, θ) is inversible ∀θ ∈ SN−1 . (2.25)

Finally, if, in addition u ∈ H3(Ω) , then Γ ∈ H2
([

0,
√

2
]
× SN−1

)
, and both F and G are H1 mappings

on
[
0,
√

2
]
× SN−1.

Proof. We deduce from (a) and (d) that Ω is star-shaped with respect to Ω0 and

0 ≤ u(Ω) < 1 = u(Ω0) ∀Ω ∈ Ω̄, Ω 6= Ω0 .

Let us consider the set
C :=

{
(ρ, θ) ∈ [0,+∞[×SN−1 : Ω0 + ρθ ∈ Ω̄

}
.

It is a closed, bounded subset of the semi-infinite cylinder [0,+∞[×SN−1, and {0}×SN−1 ⊂ C. Moreover,
for any θ ∈ SN−1,

Cθ := {ρ ∈ [0,+∞[: (ρ, θ) ∈ C} = {ρ ∈ [0,+∞[: Ω0 + ρθ ∈ Ω̄}

is a compact interval which starts at 0 .
We next consider the C2 mapping

v : C → R, (ρ, θ) 7→ u(Ω0 + ρθ)

We observe that, for any θ ∈ SN−1, v(·, θ) : Cθ → [0, 1], ρ 7→ v(ρ, θ) is strictly decreasing,

∂ρv(ρ, θ) = 〈∇u(Ω0 + ρθ), θ〉 < 0 ∀ρ ∈ Cθ, ρ > 0

and surjective. We call w(·, θ) : [0, 1] → R its inverse, and the implicit function theorem says that

w :]0, 1[×SN−1 → R

is a C2 mapping. On the other hand, w : [0, 1]× SN−1 → R is continuously defined.
Now, conditions (2.21) and (2.22) can be rewritten in the form

Γ(ρ, θ) = Ω0 + k(ρ, θ)θ, (ρ, θ) ∈
]
0,
√

2
]
× SN−1 (2.26)

where k :
]
0,
√

2
]
× SN−1 → R+

0 should verify

k(ρ, θ) ∈ Cθ, v(k(ρ, θ), θ) = 1− ρ2

2
, ∀ρ ∈

]
0,
√

2
]
, θ ∈ SN−1, (2.27)

that is,

k(ρ, θ) = w

(
1− ρ2

2
, θ

)
, (ρ, θ) ∈ [0,

√
2]× SN−1 (2.28)

At this point observe that, if k is defined by (2.28), the mapping Γ in (2.26) is a truly C2 diffeomorphism
from

]
0,
√

2
]
× SN−1 into Ω̄\{Ω0}, its inverse being given by

Ω̄\{Ω0} →
]
0,
√

2
]
× SN−1, Ω 7→

(√
2
√

1− u(Ω),
Ω− Ω0

‖Ω− Ω0‖

)
.

Further, k ∈ C
(
[0,
√

2]× SN−1
)
, and, consequently, Γ(ρ, θ) = Ω0 + k(ρ, θ)θ itself is continuously defined on

[0,
√

2]× SN−1.
Next, let us show that Γ is indeed continuously derivable on this set. Of course, it will suffice to check

that k ∈ C1([0,
√

2]× SN−1). In order to do this, we will simply derivate in the equality
√

2
√

1− v(k(ρ, θ), θ) = ρ ∀(ρ, θ) ∈
]
0,
√

2
]
× SN−1 (2.29)
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which follows from the definition of k in (2.28). First of all, let us define

s : C → R, (ρ, θ) 7→
√

1− v(ρ, θ) =
√

1− u(Ω0 + ρθ)

Since v ∈ C2(C), s ∈ C2
(
C\({0} × SN−1)

)
. Straightforward computations show, for (ρ, θ) ∈ C, ρ 6= 0,

∂s

∂ρ
(ρ, θ) = − 〈∇u(Ω0 + ρθ), θ〉

2
√

1− u(Ω0 + ρθ)
= −

〈
∇u(Ω0+ρθ)

ρ , θ
〉

2
√

1−u(Ω0+ρθ)
ρ2

(2.30)

∇θs(ρ, θ) = −ρ Πθ[∇u(Ω0 + ρθ)]
2
√

1− u(Ω0 + ρθ)
= −Πθ[∇u(Ω0 + ρθ)]

2
√

1−u(Ω0+ρθ)
ρ2

= −ρ
Πθ

[
∇u(Ω0+ρθ)

ρ

]
2
√

1−u(Ω0+ρθ)
ρ2

(2.31)

being, for each θ ∈ SN−1, Πθ : RN → RN the orthogonal projection onto 〈θ〉⊥, that is, Πθ(y) := y − 〈y, θ〉θ .
We consider the mappings

β : C → RN ; (ρ, θ) 7→ ∇u(Ω0 + ρθ)
ρ

=
∫ 1

0

H2u(Ω0 + tρθ)θ dt (2.32)

α : C → R; (ρ, θ) 7→ 1− u(Ω0 + ρθ)
ρ2

= −
∫ 1

0

t〈β(tρ, θ), θ〉 dt (2.33)

which are, as a consequence of Lemma 2.3.1, continuous on C. Furthermore, α(ρ, θ) > 0 for every (ρ, θ) ∈ C,
and, in case u ∈ H3(Ω), β ∈ H1(C,RN ) and α ∈ H1(C) . Now, (2.30) and (2.31) read

∂s

∂ρ
(ρ, θ) = −〈β(ρ, θ), θ〉

2
√
α(ρ, θ)

(2.34)

∇θs(ρ, θ) = −ρ
Πθ

(
β(ρ, θ)

)
2
√
α(ρ, θ)

(2.35)

for any (ρ, θ) ∈ C, ρ 6= 0. We deduce that

s ∈ C1(C), ∂s

∂ρ
(ρ, θ) > 0 ∀(ρ, θ) ∈ C ,

and, since α is bounded away from 0, in case u ∈ H3(Ω) we further have

s ∈ H2(C) .

Thus, derivating in (2.29), which we may rewrite as
√

2 s(k(ρ, θ), θ) = ρ , (ρ, θ) ∈
]
0,
√

2
]
× SN−1,

we obtain

∂k

∂ρ
(ρ, θ) =

1√
2 ∂s

∂ρ (k(ρ, θ), θ)
, ∇θk(ρ, θ) = −∇θs(k(ρ, θ), θ)

∂s
∂ρ (k(ρ, θ), θ)

, (ρ, θ) ∈
]
0,
√

2
]
× SN−1 . (2.36)

Consequently,

k ∈ C1
([

0,
√

2
]
× SN−1

)
,

∂k

∂ρ
(ρ, θ) > 0 ∀(ρ, θ) ∈

[
0,
√

2
[
× SN−1 ,

that is,

Γ ∈ C1
([

0,
√

2
]
× SN−1,RN

)
,

〈
∂Γ
∂ρ

(ρ, θ), θ
〉
> 0 ∀(ρ, θ) ∈

[
0,
√

2
]
× SN−1 ,
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and, since ∂s
∂ρ is bounded away from 0, in case u ∈ H3(Ω), the function k belongs to H2

([
0,
√

2
]
× SN−1

)
and we conclude

Γ ∈ H2
(]

0,
√

2
]
× SN−1,RN

)
.

On the other hand, derivating in (2.30) and (2.31), for (ρ, θ) ∈ C, ρ 6= 0, we obtain

L(ρ, θ) :=
∂∇θs

∂ρ
(ρ, θ) =

= −Πθ[∇u(Ω0 + ρθ)] + ρΠθ[D2u(Ω0 + ρθ)θ]
2
√

1− u(Ω0 + ρθ)
− ρ〈∇u(Ω0 + ρθ), θ〉Πθ[∇u(Ω0 + ρθ)]

4[1− u(Ω0 + ρθ)]3/2
=

= −
Πθ

[
∇u(Ω0+ρθ)

ρ

]
+ Πθ[D2u(Ω0 + ρθ)θ]

2
√

1−u(Ω0+ρθ)
ρ2

−

〈
∇u(Ω0+ρθ)

ρ , θ
〉

Πθ

[
∇u(Ω0+ρθ)

ρ

]
4
[

1−u(Ω0+ρθ)
ρ2

]3/2
=

= −
Πθ

(
β(ρ, θ)

)
+ Πθ[D2u(Ω0 + ρθ)θ]

2
√
α(ρ, θ)

−
〈β(ρ, θ), θ〉Πθ

(
β(ρ, θ)

)
4 [α(ρ, θ)]3/2

(2.37)

M(ρ, θ) := ρ
∂2s

∂ρ2
(ρ, θ) = −ρ〈D

2u(Ω0 + ρθ)θ, θ〉
2
√

1− u(Ω0 + ρθ)
− ρ〈∇u(Ω0 + ρθ), θ〉2

4[1− u(Ω0 + ρθ)]3/2
=

= −〈D
2u(Ω0 + ρθ)θ, θ〉

2
√

1−u(Ω0+ρθ)
ρ2

−

〈
∇u(Ω0+ρθ)

ρ , θ
〉2

4
[

1−u(Ω0+ρθ)
ρ2

]3/2
= −〈D

2u(Ω0 + ρθ)θ, θ〉
2
√
α(ρ, θ)

− 〈β(ρ, θ), θ〉2

4 [α(ρ, θ)]3/2
(2.38)

where β and α are the mappings defined in (2.32) and (2.33) respectively. Thus, both L and M are contin-
uously defined on C and, in case u ∈ H3(Ω), these functions are in H1(C). Derivating again in (2.36), we
find

∂∇θk

∂ρ
(ρ, θ) =

∂k

∂ρ
(ρ, θ)

[
k(ρ, θ) ∂2s

∂ρ2 (k(ρ, θ), θ)
]
∇θs(k(ρ,θ),θ)

k(ρ,θ) − ∂s
∂ρ (k(ρ, θ), θ)∂∇θs

∂ρ (k(ρ, θ), θ)
∂s
∂ρ (k(ρ, θ), θ)2

=

=
∂k

∂ρ
(ρ, θ)

M
(
k(ρ, θ), θ

) ∫ 1

0
L
(
t k(ρ, θ), θ

)
dt− ∂s

∂ρ

(
k(ρ, θ), θ

)
L
(
k(ρ, θ), θ

)
∂s
∂ρ (k(ρ, θ), θ)2

(2.39)

ρ
∂2k

∂ρ2
(ρ, θ) = −

ρ
k(ρ,θ)

[
k(ρ, θ) ∂2s

∂ρ2 (k(ρ, θ), θ)
]

2 ∂s
∂ρ

(
k(ρ, θ), θ

)3 = −
M
(
k(ρ, θ), θ

)
2 ∂s

∂ρ

(
k(ρ, θ), θ

)3 ∫ 1

0
∂k
∂ρ (tρ, θ) dt

(2.40)

and these functions are continuously defined on
[
0,
√

2
]
× SN−1. On the other hand, in case H3(Ω), it

follows from expressions (2.39) and (2.40) above, together with Lemma 2.3.1 and the fact that both ∂s
∂ρ and

∂k
∂ρ are bounded away from zero, that both (ρ, θ) 7→ ρ∂2k

∂ρ2 (ρ, θ), (ρ, θ) 7→ ∂∇θk
∂ρ (ρ, θ) are H1 mappings on[

0,
√

2
]
× SN−1 . Thus, the definitions of F and G at (2.23) and (2.24) imply that these functions may be

continuously extended to
[
0,
√

2
]
× SN−1 and, in case u ∈ H3(Ω), they belong to H1

([
0,
√

2
]
× SN−1

)
.

It remains to check (2.25). To do this, simply observe that〈
∂Γ
∂ρ

(0, θ), θ
〉

=
〈
∂k

∂ρ
(ρ, θ)θ, θ

〉
=
∂k

∂ρ
(ρ, θ) > 0 ∀(ρ, θ) ∈ [0, ε]× SN−1 ,

∂Γ
∂θ

(ρ, θ)w =
(
∂k

∂θ
(ρ, θ)w

)
θ + k(ρ, θ)w ∀(ρ, θ) ∈ [0, ε]× SN−1,∀w ∈ RN with 〈w, θ〉 = 0 ,
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∂2Γ
∂ρ∂θ

(0, θ)w =
(
∂2k

∂ρ∂θ
(0, θ)w

)
θ +

∂k

∂ρ
(0, θ)w ∀θ ∈ SN−1,∀w ∈ RN with 〈w, θ〉 = 0 ,

and, consequently,

det

(
∂Γ
∂ρ

(0, θ),
∂Γ
∂θ

(0, θ)
)

=
∂k

∂ρ
(0, θ)N > 0 ∀θ ∈ SN−1 .

The Theorem is complete.

At this stage, we want to explore the continuity of the mapping u 7→ Γ = Γu. Thus, assume that we have
a sequence {un} → u in C2(Ω̄). Assume also that maxΩ un = 1 ∀n ∈ N, that u verifies the hypothesis (a),
(b), (c) of Lemma 2.3.2 and that u(Ω) < 1 ∀Ω ∈ Ω with Ω 6= Ω0. Then, (d) may not hold, but it is possible
to find some 0 < ε < 1 such that

〈∇u(Ω),Ω− Ω0〉 < 0 ∀Ω ∈ Ω\{Ω0} with u(Ω) ≥ 1− ε2

2
.

and thus, we have an associated C2-diffeomorphism

Γ :]0, ε[×SN−1 → Ω̃\{Ω0} where Ω̃ :=
{

Ω ∈ Ω : u(Ω) > 1− ε2

2

}
,

which is built in the following form: for any (ρ, θ) ∈]0, ε[×SN−1, let Γ(ρ, θ) be the only point z ∈ Ω̃∩(Ω0+R+θ)
such that u(z) = 1− ρ2

2 . For any n, denote Ω̃n := {Ω ∈ Ω : un(Ω) > 1− ε2

2 } . If n is big enough, un attains the
value 1 only at one single point Ωn, which belongs to Ω̃n, and the sequence {Ωn} converges to Ω0. Indeed, for
big indexes n, D2un(Ωn) will be negative definite and 〈∇un(Ω),Ω−Ωn〉 < 0 ∀Ω ∈ Ω̃n, Ω 6= Ωn. Thus, we may
also consider, for each n ∈ N big enough, the associated C2-diffeomorphism Γn :]0, ε[×SN−1 → Ω̃n\{Ωn},
together with the related mappings Fn : [0, ε] × SN−1 →MN×(N−1)(R) and Gn : [0, ε] × SN−1 → RN ; F :
[0, ε]× SN−1 →MN×(N−1)(R) and G : [0, ε]× SN−1 → RN . We arrive at the following continuity result:

Corollary 2.3.3. Under the assumptions above, {Γn} → Γ in C2(K) for any compact set K ⊂
]
0, ε
]
×SN−1.

The sequence converges indeed in the C1
([

0, ε
]
× SN−1

)
topology and, moreover,{

Fn

}
n
→ F ,

{
Gn

}
n
→ G (2.41)

uniformly on [0, ε] × SN−1. Finally, if {un} is contained and bounded in H3(Ω), the sequence {Γn}n is
contained and bounded in H2([0, ε]×SN−1), while {Fn}n and {Gn}n are contained and bounded in H1([0, ε]×
SN−1) . In case {un} → u in H3(Ω), {Γn} → Γ in H2([0, ε] × SN−1), while Fn → F and Gn → G in
H1([0, ε]× SN−1) .

This result follows from our proof of Lemma 2.3.2. All objects we constructed there depended continuously
on u in the adequate topologies.

2

2.4 From integrals on the domain Ω to one-dimensional integrals

At this stage, we plan to use the results obtained in the previous section in orden to continue the work initiated
in Section 2.2 and rewrite both the sequence {pn} and its limit p considered there in a more convenient form.
This procedure will likely provide further results on the convergence of {pn} to p. As established in Sections
2.1 and 2.2, we call ϕ the first eigenfunction of −∆ when acting on H1

0 (Ω), we choose some h̃ ∈ L̃ip(Ω),
and we denote by ũh̃ the only solution in H̃1

0 (Ω) ∩ C1(Ω̄) ∩ H3(Ω) of the linear problem −∆u − λ1u = h̃.
We choose a sequence {v̄n} of real numbers with |v̄n| ≥ 1 ∀n ∈ N and an arbitrary bounded sequence
{ṽn} ⊂ H̃1

0 (Ω) ∩ C2(Ω̄). It will be assumed that {ṽn} → 0 in C1(Ω̄), and that the related sequence {ϕn}n

defined by expressions (2.8) and (2.9) converges to ϕ in C2(Ω̄), while it is contained and bounded in H3(Ω).
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Since our hypothesis [C2] guarantees that the eigenfunction ϕ has an unique critical point Ω0 and its second
derivative is not degenerate there, as detailed at the end of last section it is possible to find ε > 0 such that

〈∇ϕ(Ω),Ω− Ω0〉 < 0 ∀Ω ∈ Ω with Ω 6= Ω0 and ϕ(Ω) ≥ 1− ε2

2
.

If n is big enough, also the maximum of ϕn is attained at a single point Ωn and 〈∇ϕn(Ωn),Ω − Ωn〉 <
0 ∀Ω ∈ Ω\{Ωn} with ϕn(Ω) ≥ 1 − ε2

2 . After possibly skipping a finite number of terms of the sequence, it
will be assumed that these things happen for all n ∈ N. Using the change of variables theorem we obtain, for
1− ε2

2 < t < 1,

pn(t) =
1√

2− 2t

∫
SN−1

∣∣JΓn

(√
2− 2t, θ

)∣∣ dsθ, p(t) =
1√

2− 2t

∫
SN−1

∣∣JΓ
(√

2− 2t, θ
)∣∣ dsθ

being Γn,Γ : [0, ε] × SN−1 → Ω ⊂ RN the changes of variables associated to ϕn and ϕ respectively and
JΓn, JΓ their Jacobian determinants. This leads us to consider the sequence {σn}n of C1[0, ε/

√
2] functions

defined by

σn(ρ) :=
1√
2

∫
SN−1

∣∣∣JΓn

(√
2 ρ, θ

) ∣∣∣dsθ, 0 ≤ ρ ≤ ε/
√

2 , (2.42)

and whose relation with {pn} is given by:

pn(t) =
σn

(√
1− t

)
√

1− t
, t ∈

]
1− ε2

2
, 1
[

(2.43)

Expression (2.43) above suggests how to extend each function σn to a C1[0, 1] function. We define

σn(ρ) := ρ pn(1− ρ2) , 0 < ρ < 1 ,

so that

pn(t) =
σn(

√
1− t)√

1− t
, 0 < t < 1 .

Thus, (2.43) may be rephrased by saying that the new definition of the sequence {σn} agrees with the old
one on [0, ε] . It follows now from Lemma 2.2.2 together with (2.41) in Corollary 2.3.3 that {σn} converges
in C1[0, 1] to the H2[0, 1] function σ defined by

σ(ρ) := ρp(1− ρ2) , 0 ≤ ρ ≤ 1 .

Moreover, {σn} is contained and bounded in H2[0, 1].
At this point, we are ready to study the asymptotic behavior of sequences of the kind of Υh̃(ūn, ũn) that

we considered in Section 2.2. We remember from (2.10) that

Υh̃(ūn, ũn) =
∫ 1

0

G1(dnt)pn(t)dt .

Of course, the Riemann-Lebesgue Lemma implies Υh̃(ūn, ũn) → 0 as n → ∞. Thus, in orden to obtain
some information on the sign of Υh̃(ūn, ũn) for n big, we must take care of higher terms in the asymptotic
expansion of this function around infinity. By writing the Jacobian determinants as finite sums of finite
products, we see that

0 < lim
ρ→0

σn(ρ)
ρN−1

< +∞ ∀n ∈ N ; 0 < lim
ρ→0

σ(ρ)
ρN−1

< +∞. (2.44)

In particular, since N ≥ 2, σn(0) = 0 ∀n ∈ N . It motivates the Lemma below.
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Lemma 2.4.1. Let g ∈ C(R/Z) have zero mean, and let {ξn} ⊂ H2[0, 1] be a bounded sequence with
ξn(0) = 0 ∀n ∈ N. We assume that it converges in C1[0, 1] to some C1[0, 1] function ξ. Let, finally, {dn} be
a sequence of real numbers with |dn| → ∞. Then,

lim
n→∞

[
dn

∫ 1

0

g(dnt)
ξn(

√
1− t)√

1− t
dt−G1(dn)ξ′(0) +G1(0)ξ(1)

]
= 0 ,

being G1 the primitive of g with zero mean.

Proof. Integration by parts gives

dn

∫ 1

0

g(dnt)
ξn(

√
1− t)√

1− t
dt−G1(dn)ξ′n(0) +G1(0)ξn(1) = −1

2

∫ 1

0

G1(dnt)
ξn(

√
1−t)√

1−t
− ξ′n(

√
1− t)

1− t
dt .

We consider the sequence {ζn} ⊂ L1[0, 1] defined by the rule

ζn(x) =
ξn(x)

x − ξ′n(x)
x

=
∫ 1

0

[
t

∫ 1

0

ξ′′n(stx) ds
]
dt−

∫ 1

0

ξ′′n(tx) dt ; 0 < x < 1 ,

so that

−
∫ 1

0

G1(dnt)
ξn(

√
1−t)√

1−t
− ξ′n(

√
1− t)

1− t
dt = −

∫ 1

0

G1(dnt)
ζn(

√
1− t)√

1− t
dt .

Observe that {ζn} → 0 uniformly on [ε, 1] for any 0 < ε < 1. Further, we have

|ζn(x)| ≤
∫ 1

0

t

∫ 1

0

∣∣∣ξ′′n(stx)
∣∣∣ ds dt− ∫ 1

0

∣∣∣ξ′′n(tx)
∣∣∣ dt ≤ ∫ 1

0

∫ 1

0

∣∣∣ξ′′n(stx)
∣∣∣ ds dt− ∫ 1

0

∣∣∣ξ′′n(tx)
∣∣∣ dt

Thus, Hardy’s inequality (see, for instance, [72], pp. 72), implies that {ζn} is, indeed, a bounded sequence
in L2[0, 1]. Now, given any 0 < a < 1 which we momentarily fix, we have∣∣∣∣∫ 1

0

G1(dnt)
ζn(

√
1− t)√

1− t
dt

∣∣∣∣ ≤ ∣∣∣∣∫ a

0

G1(dnt)
ζn(

√
1− t)√

1− t
dt

∣∣∣∣+ ∣∣∣∣∫ 1

a

G1(dnt)
ζn(

√
1− t)√

1− t
dt

∣∣∣∣ .
The first term in the sum above converges to 0 as n→∞. This is a consequence of the Riemann-Lebesgue

Lemma (see [85]). Concerning the second, we have

∣∣∣∣∫ 1

a

G1(dnt)
ζn(

√
1− t)√

1− t
dt

∣∣∣∣ ≤ ∫ 1

a

∣∣G1(dnt)
∣∣

(1− t)1/4

∣∣ζn(
√

1− t)
∣∣

(1− t)1/4
dt ≤

≤

√∫ 1

a

G1(dnt)2√
1− t

dt

√∫ 1

a

ζn(
√

1− t)2√
1− t

dt ≤ ‖G1‖∞

√∫ 1

a

1√
1− t

dt

√∫ 1

√
1−a

ζn(x)2 dx ≤

≤ ‖G1‖∞
√

2 4
√

1− a‖ζn‖L2[0,1]

and we obtain

lim sup
n→∞

∣∣∣∣∫ 1

0

G1(dnt)
ζn(

√
1− t)√

1− t
dt

∣∣∣∣ ≤ ‖G1‖∞
√

2 4
√

1− a sup
n
‖ζn‖L2[0,1] .

Since it is valid for any 0 < a < 1, we conclude

lim
n→∞

∫ 1

0

G1(dnt)
ζn(

√
1− t)√

1− t
dt = 0 ,

proving the lemma.
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2.5 Does the action functional attain its minimum?

We are now ready to start to obtain consequences of the work carried out in previous sections. Under the
framework established in Section 2.4, we choose a divergent sequence {v̄n} of real numbers,

|v̄n| → ∞ ,

and we take ṽn := 0 ∀n ∈ N. Thus, the related sequence {ϕn}n, defined in expressions (2.8) and (2.9),
converges to ϕ both in C2(Ω̄) and H3(Ω), and it implies that the related sequence {σn}, defined as in (2.42),
converges to σ both in C1[0, 1] and H2[0, 1]. Using Lemma 2.4.1 we deduce that

lim
n→∞

[
v̄nΥh̃(v̄n, 0)−G2(v̄n + ũh̃(Ω0))σ′(0) +G2(0)σ(1)

]
=

= lim
n→∞

[
v̄n

∫
Ω

G1(v̄nϕ+ ũh̃)dx−G2(v̄n + ũh̃(Ω0))σ′(0) +G2(0)σ(1)
]

= 0 , (2.45)

and thus, if the sequence v̄n is taken in such a way that G2(v̄n + ũh̃(Ω0)) = 0 ∀n ∈ N, we really have

lim
n→∞

v̄nΥh̃(v̄n, 0) = −G2(0)σ(1) . (2.46)

Of course, for any dimension N ∈ N, we have

σ(1) = p(0) =
∫

∂Ω

1
‖∇ϕ(x)‖

dsx ∈]0,∞[ ,

and we conclude

Theorem 2.5.1. Assume that G2(0) 6= 0, and take any h̃ : Ω → R Lipschitz with∫
Ω

h̃(x)ϕ(x)dx = 0 ,

and let h̄ = 0, h = h̃. Then, the action functional Φh in (2.4) attains its global minimum in H1
0 (Ω), which

is negative.

Proof. Expression (2.46) implies in particular that, for n big, Υh̃(v̄n, 0) has the same sign as −G2(0)σ(1) if
v̄n → +∞ and the opposite if v̄n → −∞. The theorem follows.

In the case N = 2, (2.44) means that σ′(0) 6= 0. We immediately conclude:

Theorem 2.5.2. Assume
N = 2 .

Take any h̃ : Ω → R Lipschitz with ∫
Ω

h̃(x)ϕ(x)dx = 0 ,

and let h̄ = 0, h = h̃. Then, the action functional in (2.4) attains its global minimum in H1
0 (Ω). This

minimum is strictly negative.

Proof. In case G2(0) 6= 0, the thesis is given by Theorem 2.5.1. In case G2(0) = 0, it follows from (2.45) that

lim
n→∞

[
ūnΥh̃(ūn, 0)−G2(ūn + ũh̃(Ω0))σ′(0)

]
= 0 .

The result follows by taking the sequence {ūn} → ∞ with G2(ūn + ũh̃(Ω0)) = minR G2 < 0 ∀n ∈ N .
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In case N ≥ 3, at least for n big enough, pn ∈ W 1,1[0, 1], and pn(1) = 0 ∀n ∈ N. Thus, if G2(0) = 0,
integration by parts gives

dnΥh̃(ūn + ũn) = dn

∫ 1

0

G1(dnt)pn(t)dt = dn

∫ 1

0

G1(dnt)
σn(

√
1− t)√

1− t
dt =

=
∫ 1

0

G2(dnt)
σ′n(

√
1− t)/

√
1− t− σn(

√
1− t)/(1− t)√

1− t
dt (2.47)

This leads us to consider the sequence {Θn}n of L2[0, 1] mappings defined by

Θn(ρ) :=
σ′n(ρ)
ρ

− σn(ρ)
ρ2

, 0 < ρ < 1 ,

so that

ūnΥh̃(ūn + ũn) =
∫ 1

0

G2(dnt)
Θn(

√
1− t)√

1− t

It follows from the expression of the Jacobian determinant as sum of products of partial derivatives,
Corollary 2.3.3 and (2.42) that the sequence Θn is indeed contained and bounded in H1[0, 1]. Further, it
converges uniformly to the H1[0, 1] function

Θ(ρ) :=
σ′(ρ)
ρ

− σ(ρ)
ρ2

, 0 < ρ < 1 .

On the other hand, using (2.44) we find that, if N = 3,

Θ(0) > 0 .

All this motivates the proposition below

Proposition 2.5.3. Let g ∈ C(R/TZ), g 6≡ 0, have zero mean, and let {ξn} ⊂ H1[0, 1] be a bounded sequence.
We assume that {ξn} converges uniformly to some function ξ ∈ H1[0, 1] with ξ(0) > 0. We take a sequence
{dn}n with {dn} → +∞ and G1(dn) = maxR G1 for any n ∈ N, G1 being a primitive of g. Then,

lim
n→∞

{
dn

∫ 1

0

g(dnt)
ξn(

√
1− t)√

1− t
dt

}
= +∞ . (2.48)

Proof. Integrating by parts we obtain:

dn

∫ 1

0

g(dnt)
ξn(

√
1− t)√

1− t
dt = [max

R
G1 −G1(0)]ξn(0) +

∫ 1

0

[max
R

G1 −G1(dnt)]
d

dt

[
ξn(

√
1− t)√

1− t

]
dt .

We observe that
d

dt

[
ξn(

√
1− t)√

1− t

]
=
ξn(

√
1− t)−

√
1− t ξ′n(

√
1− t)

2[1− t]
3
2

for any 0 ≤ t < 1 and all n ∈ N. We choose K0 > 0, 0 < a < 1 and n0 ∈ N such that, for n ≥ n0,

ξn
(√

1− t
)
≥ K0 ∀t ∈ [a, 1] .

For n ≥ n0, we define

An :=
{
t ∈]a, 1[: ξn

(√
1− t

)
−
√

1− t ξ′n
(√

1− t
)
< 0
}

=
{
t ∈]a, 1[:

d

dt

[
ξn(

√
1− t)√

1− t

]
< 0
}
,

and
Bn :=

{√
1− t : t ∈ An

}
⊂]0, 1[ ∀n ∈ N.
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Observe that ξ′n(x) > K0
x ∀x ∈ Bn, ∀n ≥ n0 . Since {ξ′n} is bounded in L2[0, 1], it implies that the

sequence of real numbers ∫
Bn

1
x2

dx , n ∈ N

is bounded. Thus, the sequence

∫
An

∣∣∣∣ ddt
[
ξn(

√
1− t)√

1− t

]∣∣∣∣ dt =
∫

An

∣∣∣∣ξn(
√

1− t)−
√

1− t ξ′n(
√

1− t)
2[1− t]

3
2

dt

∣∣∣∣ =
=
∫

Bn

∣∣∣∣ξn(x)− x ξ′n(x)
x2

∣∣∣∣ dx ≤ (max
[0,1]

|ξn|
)∫

Bn

1
x2

dx+

√∫
Bn

1
x2

dx

√∫ 1

0

ξ′n(x)2 dx . (2.49)

is also bounded. In another words, it is possible to find a constant 0 < C <∞ such that∫
An

∣∣∣∣ ddt
[
ξn(

√
1− t)√

1− t

]∣∣∣∣ dt ≤ C ∀n ∈ N, n ≥ n0 ,

and we deduce that, for n ≥ n0,∫ 1

a

[max
R

G1 −G1(dnt)]
d

dt

(
ξn(

√
1− t)√

1− t

)
dt ≥ −2‖G‖∞

∫
An

∣∣∣∣ ddt
[
ξn(

√
1− t)√

1− t

]∣∣∣∣ dt ≥ −2‖G‖∞C

is bounded by below. On the other hand,∫ a

0

[max
R

G1 −G1(dnt)]
d

dt

(
ξn(

√
1− t)√

1− t

)
dt =

= max
R

G1

(
ξn(

√
1− a)√

1− a
− ξn(0)

)
−
∫ a

0

G1(dnt)
d

dt

(
ξn(t)√
1− t

)
dt

Thus, by the Riemann-Lebesgue Lemma,

lim
n→∞

∫ a

0

[max
R

G1 −G1(dnt)]
d

dt

(
ξn(

√
1− t)√

1− t

)
dt = max

R
G1

(
h(
√

1− a)√
1− a

− h(0)
)

and consequently,

lim inf
n→∞

{
dn

∫ 1

0

g(dnt)
ξn(

√
1− t)√

1− t
dt

}
≥ [max

R
G1 −G1(0)]h(0)− 2‖G‖∞C + max

R
G1

(
h(
√

1− a)√
1− a

− h(0)
)

so that, letting a→ 1,

lim
n→∞

{
dn

∫ 1

0

g(dnt)
ξn(

√
1− t)√

1− t
dt

}
= +∞ ,

as stated.

Note 2.5.4. By replacing g by −g, we observe that, in case the sequence {dn} is chosen in such a way that
G1(dn) = minR G1 ∀n ∈ N, then

lim
n→∞

dn

∫ 1

0

g(dnt)
ξn(

√
1− t)√

1− t
dt = −∞ .

We immediately conclude:

Corollary 2.5.5. Assume N = 3. Then, the action functional in (2.4) attains its global minimum in H1
0 (Ω).

This minimum is strictly negative.
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Proof. It is an immediate consequence of our study above: In case G2(0) 6= 0 it follows from Theorem 2.5.1
and, otherwise, from Proposition 2.5.3 and the preceding discussion.

Derivate now in (2.43) to find

p′n(t) =
σn(

√
1−t)√

1−t
− σ′n(

√
1− t)

2(1− t)
, 0 < t < 1 . (2.50)

Thus, from (2.42) and the expression of the determinant as finite sum of finite products, we see that, if N ≥ 3,
{p′n} → p′ in L1[0, 1]. This fact was already stated in [74]. Derivating again in (2.50) we obtain

p′′n(t) =
2σn(

√
1−t)√

1−t
− 2σ′n(

√
1− t) + σ′′n(

√
1− t)

√
1− t

(1− t)2
, 0 < t < 1 , (2.51)

and, again thanks to (2.42) and the expression of the determinant as finite sum of finite products, we see
that, since σn → σ in H2[0, 1], in case N ≥ 4, the sequence {pn} converges to p in W 2,1[0, 1].

First of all, let us recall (2.16) in order to estimate the value p′(0). We have

p′(0) =
∫

∂Ω

∣∣∣JΥ(x, 0)
∣∣∣∥∥∥∇ϕ(x)
∥∥∥2

∆ϕ(x)− 2
∇ϕ(x)TH2ϕ(x)∇ϕ(x)∥∥∥∇ϕ(x)

∥∥∥2

 dsx = −2
∫

∂Ω

∂2ϕ/∂ν2(θ)
‖∇ϕ(θ)‖3

dsθ

being ∂2ϕ/∂ν2 the second derivative of ϕ with respect to the unit normal of ∂Ω.
However, in case Ω is convex, ∫

∂Ω

∂2ϕ/∂ν2(θ)
‖∇ϕ(θ)‖3

dsθ > 0 . (2.52)

To see this, fix an arbitrary point θ0 ∈ ∂Ω, a tangent vector w0 ∈ Tθ(∂Ω) and a C2 curve γ0 :] − 1, 1[→ ∂Ω
with γ(0) = θ0, γ

′
0(0) = w0. The convexity of Ω implies that

〈∇ϕ(θ0), x− θ0〉 ≥ 0 ∀x ∈ Ω̄ ,

and, consequently,
〈∇ϕ(θ0), γ(t)− θ0〉 ≥ 0 ∀t ∈]− 1, 1[ .

However,
〈∇ϕ(θ0), γ0(0)− θ0〉 = 〈∇ϕ(θ0), 0〉 = 0 = 〈∇ϕ(θ0), w0〉 = 〈∇ϕ(θ0), γ′0(0)〉 ,

which implies that
〈∇ϕ(θ0), γ′′0 (0)〉 ≥ 0 .

On the other hand, derivating twice in the equality

ϕ(γ(t)) = 0 ,

which holds for any t ∈]− 1, 1[, we find

wT
0 D

2ϕ(θ)w0 + 〈∇ϕ(θ0), γ′′0 (0)〉 = 0

or, what is the same,
wT

0 D
2ϕ(θ0)w0 = −〈∇ϕ(θ0), γ′′0 (0)〉 ≤ 0 . (2.53)

Since ∆ϕ(θ0) = 0, we deduce that
∂2ϕ

∂ν2
(θ0) ≥ 0 ,

and the equality holds if and only if wTD2ϕ(θ0)w = 0 ∀w ∈ Tθ0(∂Ω) . Since θ0 ∈ ∂Ω was taken arbitrary, we
deduce that, ∫

∂Ω

∂2ϕ/∂ν2(θ)
‖∇ϕ(θ)‖3

dsθ ≥ 0 ,
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and the equality holds, if and only if,

wTϕ′′(θ)w = 0 ∀θ ∈ ∂Ω, ∀w ∈ Tθ(∂Ω) .

But, remembering (2.53), it would mean that all curvature functions of ∂Ω vanish at every point of ∂Ω.
Thus, ∂Ω would be contained in a affine hyperplane of RN , which is not possible. It proves (2.52).

Assume now N ≥ 4 and Ω is convex. Assume also G2(0) = 0 and G3(0) < 0. Integrating by parts twice,
we find

d2
nΥh̃(v̄n, 0) = d2

n

∫
Ω

G1(v̄nϕ+ ũh̃)dx = d2
n

∫ 1

0

G1(dnt)pn(t)dt = G3(0)p′n(0) +
∫ 1

0

G3(dnt)p′′n(t)dt .

Using the Riemann-Lebesgue lemma we conclude that lim
n→∞

d2
nΥh̃(v̄n, 0) = −G3(0)p′(0) < 0. It implies

that, if n is big enough, Υh̃(v̄n, 0) < 0, and the minimum of the action functional (2.4) is negative. It finishes
the proof of Theorem 2.1.2, and Theorem 2.1.3 becomes now a consequence of Lemma 2.2.1 .

2.6 The multiplicity problem: A topological approach

In the final section of this chapter we will study the boundedness (or unboundness) of the set of solutions
of (2.1) for given h ∈ Lip(Ω) and g ∈ Lip(R/TZ). In case g is real analytic of a small Lipschitz constant,
this boundedness is equivalent to its finiteness, as it is well known. Straightforward arguments, using the
Riemann-Lebesgue Theorem show that the solution set is indeed bounded (in the W 2,r(Ω) topology for any
1 < r < +∞) if h̄ 6= 0, so that we may well concentrate in the case

h = h̃ ∈ L̃ip(Ω) .

As announced in Section 2.1, it turns out that the space dimension N plays a key role in the answer of this
problem, and, while for N = 2 or 3 this set is always unbounded, for N ≥ 5 it may be bounded. We see this
below.

Consider the linear differential operator

L : H1
0 (Ω) ∩H2(Ω) → L2(Ω), Lu := −∆u− λ1u, ∀u ∈ H1

0 (Ω) ∩H2(Ω), (2.54)

and the Nemytskii operator associated with g

N : L2(Ω) → L2(Ω),
(
Nu
)
(x) := g(u(x)) ∀x ∈ Ω , ∀u ∈ L2(Ω) , (2.55)

so that (2.3) is equivalent to the functional equation

Lv +N (v + ũh̃) = 0 , v ∈ H1
0 (Ω) ∩H2(Ω) . (2.56)

Let Q : L2(Ω) → L2(Ω) be the linear projection given by

Q(h) =
(

1
‖ϕ‖22

∫
Ω

h(x)ϕ(x)dx
)
ϕ

We observe that kerQ = L̃2(Ω) = imL , kerL = 〈ϕ〉. Now, (2.56) may be rewritten as the so called
Lyapunov-Schmidt system

L(v) + [I −Q]N (v + ũh̃) = 0
0 = QN (v + ũh̃) (2.57)

where I stands for the identity operator in L2(Ω). We call K : L̃2(Ω) → H̃1
0 (Ω) ∩ H2(Ω) the inverse

isomorphism of L : H̃1
0 (Ω) ∩H2(Ω) → L̃2(Ω), (so that ũh̃ = Kh̃), and (2.57) adopts the form

ṽ +K[I −Q]N (v̄ϕ+ ṽ + ũh̃) = 0 (2.58)

0 =
∫

Ω

g(v̄ϕ(x) + ṽ(x) + ũh̃(x))ϕ(x) dx (2.59)
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where we have used (2.2) in order to write v as v = v̄ϕ + ṽ, v̄ ∈ R, ṽ ∈ H̃1
0 (Ω). Let us call Σ the set of

solutions of the auxiliary equation (2.58), which is indeed the same equation which we considered in (2.5),

Σ :=
{

(v̄, ṽ) ∈ R× L̃2(Ω) : ṽ = K[I −Q]N (v̄ϕ+ ṽ + ũh̃)
}
.

On the first hand, as seen in Section 2.2, regularity theory shows that Σ ⊂ R×W 3,r(Ω) for any 1 < r <
+∞. On the other, it follows from the Schauder fixed point theorem -note that N is completely continuous-
that for any v̄ ∈ R there exists some ṽ ∈ L̃2(Ω) such that (v̄, ṽ) ∈ Σ. This is something we already know from
Section 2.2, where we arrived at this same fact from a different argument. Let {(v̄n, ṽn)} be any sequence
in Σ with |vn| ≥ 1 ∀n ∈ N, |v̄n| → +∞. As in previous sections, we consider the sequences {dn} and {ϕn}
defined by (2.8) and (2.9). And following a similar reasoning we used in Sections 2.2 and 2.4, the co-area
formula and the change of variables theorem give us, for n big enough, the relation∫

Ω

g(v̄ϕ(x) + ṽ(x) + ũh̃(x))ϕ(x) dx =
∫

Ω

g(dnϕn(x))ϕ(x) dx =
∫ 1

0

g(dnt)qn(t)dt ∀n ∈ N ,

where the sequence {qn} ⊂ C[0, 1] is defined by

qn(t) :=
∫
{ϕn(x)=t}

ϕ(x)
‖∇ϕn(x)‖

dsx =

=
1√

2− 2t

∫
SN−1

ϕ
(
Γn(

√
2− 2t, x)

) ∣∣JΓn(
√

2− 2t, x)
∣∣ dsx =

τn(
√

1− t)√
1− t

, 0 < t < 1 , (2.60)

being

τn(ρ) :=
1√
2

∫
SN−1

ϕ
(
Γn(

√
2 ρ, x)

) ∣∣∣JΓn(
√

2 ρ, x)
∣∣∣ dsx , 0 < ρ < 1 . (2.61)

Using the same type of arguments we displayed in Section 2.4 with {σn} and σ, one checks that {τn}
converges in C1[0, 1] to the function τ : [0, 1] → R defined by

τ(ρ) :=
1√
2

∫
SN−1

ϕ
(
Γ(
√

2 ρ, x)
) ∣∣∣JΓ(

√
2 ρ, x)

∣∣∣ dsx = (1− ρ2)σ(ρ) , 0 < ρ < 1 . (2.62)

Moreover, {τn} is bounded in H2[0, 1]. On the other hand, τn(0) = 0 ∀n ∈ N. Thus, we are in position
to apply Lemma 2.4.1 to deduce that

lim
n→∞

[
dn

∫
Ω

g(dnϕn(x))ϕ(x) dx−G1(dn)τ ′(0) +G1(0)τ(1)
]

=

= lim
n→∞

[
dn

∫
Ω

g(dnϕn(x))ϕ(x) dx−G1(v̄n + ũh̃(Ω0))σ′(0)
]

= 0 ,

since limn→∞
[
G1(dn) − G1(v̄n + ũh̃(Ω0))

]
σ′(0) = 0. In case N = 2, as seen in Section 2.4, σ′(0) > 0. It

means that, if {v̄+
n } is chosen in such a way that G1(v̄+

n + ũh̃(Ω0)) = maxR G1 ∀n ∈ N,

lim
n→∞

d+
n

∫
Ω

g(d+
nϕn(x))ϕ(x) dx =

(
max

R
G1

)
σ′(0) > 0 ,

while, in case G1(v̄−n + ũh̃(Ω0)) = minR G1 ∀n ∈ N,

lim
n→∞

d−n

∫
Ω

g(d−nϕn(x))ϕ(x) dx =
(
min

R
G1

)
σ′(0) < 0 .

Thus, continuation results based upon the continuity property of the Leray-Schauder topological degree, may
be used, in a similar way as in the proof of Theorem 1.1.2 in the previous chapter in order to show Theorem
2.1.1 in the two dimensional case.
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In case N = 3, σ′(0) = 0, but the sequence {qn}n is contained in W 1,1[0, 1], (in a similar way as happened
with {pn}), and, integrating by parts, we find

d2
n

∫
Ω

g(dnϕn(x))ϕ(x) dx = d2
n

∫ 1

0

g(dnt)
τn(

√
1− t)√

1− t
dt =

= dn

∫ 1

0

G1(dnt)

(
τ ′n(

√
1− t)− τn(

√
1−t)√

1−t

)
/
√

1− t

2
√

1− t
dt ,

so that, in case {ū+
n } has been chosen in such a way that G2(d+

n ) = maxR G2, Proposition 2.5.3 implies that

lim
n→∞

(d+
n )2

∫
Ω

g(d+
nϕn(x))ϕ(x) dx = +∞ ,

while, in case {ū−n } is taken with G2(d−n ) = minR G2,

lim
n→∞

(d−n )2
∫

Ω

g(dnϕn(x))ϕ(x) dx = −∞ ,

implying Theorem 2.1.1 in the three dimensional case.
Assume now that N ≥ 5 and Ω is convex, and let B ⊂ L̃2(Ω) ∩ Lip(Ω) be a bounded set. Let us see that

there exists some positive number ε = εB > 0 such that, if h̃ ∈ B and

ĝ ∈ Oε :=

{
g ∈ Lip(R/TZ,R) :

∫ T

0

g(u)du = 0, |G1(0)| > 1
2
‖G1‖∞, ‖g‖∞ < ε, ‖g′‖∞ < ε

}
,

then, the set of solutions of (2.1)
(
or (2.3)

)
, is bounded. Otherwise, it would be possible to find sequences

{gm} ⊂ Lip(R/TZ,R) with gm ∈ O1/m ∀m ∈ N, and {h̃m}m ⊂ B, such that, for each m ∈ N, the set of
solutions of the equation

−∆vm − λ1vm + gm(vm + ũh̃m
) = 0, vm ∈ H1

0 (Ω) , (2.63)

is unbounded. Let us take, for eachm, a solution vm = v̄m+ṽm with |v̄m| ≥ 1 and ṽm ∈ H̃1
0 (Ω)∩C2(Ω̄)∩H3(Ω)

of (2.63). Relation (2.58) reads

−∆ṽm − λ1ṽm + gm

(
v̄mϕ(x) + ṽm + ũh̃

)
−
[∫

Ω

gm

(
v̄mϕ(y) + ṽm(y) + ũh̃(y)

)
ϕ(y) dy

]
ϕ(x) = 0

for any m ∈ N.
It follows that {ṽm} → 0 both in C1(Ω̄) and in H2(Ω). Derivating in the equality above we find

−∆∂xi

(
ṽm/v̄m

)
− λ1∂xi

(
ṽm/v̄m) = −

(
∂xi

ϕ+ ∂xi
ṽm/v̄m + ∂xi

ũh̃/vm

)
g′
(
v̄mϕ+ ṽm + ũh̃

)
+

+
1
v̄m

1
‖ϕ‖22

[∫
Ω

g(v̄mϕ(y) + ṽm(y) + ũh̃(y))ϕ(y) dy
]
∂xi

ϕ , 1 ≤ i ≤ N ,

and we deduce that the sequence {ṽm/v̄m} converges to 0 in W 3,r(Ω) for any 1 < r < ∞. In particular, it
converges to 0 in C2(Ω̄) ∩H3(Ω). Consequently, the sequence {ϕm} defined as in (2.9),(2.8), converges to ϕ
both in C2(Ω) and H3(Ω) and the sequence {τm}, defined as in (2.61) converges to τ in H2[0, 1]. Thus, a
similar reasoning to the one carried out in the previous section in order to show Theorem 2.1.2 for N ≥ 5,
shows that the sequence {qm} defined by (2.60) converges in W 2,1[0, 1] to the function q : [0, 1] → R defined
by

q(t) =
t√

2− 2t

∫
SN−1

|JΓ(
√

2− 2t, θ)|dsθ = t

∫
{ϕ(x)=t}

1
‖∇ϕ(x)‖

dx = tp(t) , 0 < t < 1.

We have proved that, given ε > 0, there exists some index m0 ∈ N such that, for any v = v̄ϕ+ ṽ solution
of the equation
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−∆v − λ1v + gm0(v + ũh̃m0
) = 0, v ∈ H1

0 (Ω) ,

with |v̄| ≥ 1, we have
‖q′′v − q′′‖L1[0,1] < ε .

We choose ε = −q′(0)/4 = −p′(0)/4 > 0. Since the set of solutions vm0 of equation (2.63) (for m = m0) is
H1

0 (Ω)-unbounded, it is possible to find a sequence of solutions {vn}n with vn = v̄nϕ+ ṽn, {|v̄n|} → ∞. We
call g := gm0 , h̃ := h̃m0 . Since the corresponding sequence {qn} is contained in W 2,1[0, 1], we may integrate
twice by parts, to find

d2
n

∫
Ω

g(vn + ũh̃)ϕ(x) dx = d2
n

∫
Ω

g(dnϕn(x))ϕ(x) dx = d2
n

∫ 1

0

g(dnt)qn(t)dt =

= −dn

∫ 1

0

G1(dnt)q′n(t)dt = G2(0)q′m(0) +
∫ 1

0

G2(dnt)q′′n(t)dt ,

so that∣∣∣∣d2
n

∫
Ω

g(vn + ũh̃)ϕ(x) dx−G2(0)q′(0)
∣∣∣∣ ≤ ∣∣∣G2(0)

∣∣∣ ∣∣∣q′m(0)− q′(0)
∣∣∣+

+
∣∣∣∣∫ 1

0

G2(dnt)q′′(t)dt
∣∣∣∣+ ∫ 1

0

∣∣∣G2(dnt)
∣∣∣ ∣∣∣q′′n(t)− q′′(t)

∣∣∣dt ≤ ∣∣∣G2(0)
∣∣∣ ∣∣∣q′m(0)− q′(0)

∣∣∣+
+
∣∣∣∣∫ 1

0

G2(dnt)q′′(t)dt
∣∣∣∣+ ‖G2‖∞|q′(0)|/4 ,

and then,

lim sup
∣∣∣∣d2

n

∫
Ω

g(vn + ũh̃)ϕ(x) dx−G2(0)q′(0)
∣∣∣∣ ≤ ‖G2‖∞|q′(0)|/4 .

It implies in particular that, for n big enough

lim sup
∣∣∣∣d2

n

∫
Ω

g(vn + ũh̃)ϕ(x) dx
∣∣∣∣ ≥ ∣∣∣G2(0)q′(0)

∣∣∣− ‖G2‖∞|q′(0)|/4 > ‖G2‖∞|q′(0)|/4 ,

a contradiction. It finishes the proof of Theorem 2.1.1.
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Chapter 3

On the multiplicity of periodic
solutions for pendulum-type equations

3.1 Introduction

In this chapter we turn back to ordinary, resonant, pendulum-like equations. We deal with boundary value
problems of the type {

u′′ + cu′ + g(u) = e(t) = ē+ ẽ(t)
u(T )− u(0) = k; u′(T )− u′(0) = k′

(3.1)

where the following hypothesis are made:

[H3]

1. k, k′, T, c are given real constants with T > 0,

2. g ∈ C1(R/2πZ) is a continuous, 2π-periodic function with zero mean, i.e.,∫ 2π

0

g(u)du = 0,

3. e ∈ L1(R/TZ) is decomposed as e = ē+ ẽ, where

ē ∈ R, ẽ ∈ L̃1(R/TZ) :=

{
e ∈ L1(R/TZ) :

1
T

∫ T

0

e(s)ds =
k′ + ck

T

}
.

Simply integrate both sides of the differential equation in (3.1) to check that, in case g ≡ 0, a necessary
condition for the linear problem (3.1) to have a solution, is e = ẽ ∈ L̃1(R/TZ), which is easily shown to be
also sufficient. Further, the whole set of solutions can be obtained by adding all constant functions to any
particular solution. This case being completely understood, we will always assume that g is nontrivial in
what follows. On the other hand, the simple change of variables û(t) := u(T − t), 0 ≤ t ≤ T shows that it is
not restrictive to assume c ≥ 0.

Observe also that, in case u is a solution of (3.1), u + 2π is again a solution. These solutions are called
geometrically equal (they coincide when seen in the circumference R/2πZ), and our objective in this chapter
is, for given T, k, k′, c, g, to find external forcing terms e such that (3.1) has at least, or exactly, a prefixed
even number 2n of geometrically different solutions.

This problem, which contains in particular the periodic problem (k = k′ = 0) for the dissipative pendulum
equation (g(u) = Λ sin(u)), has therefore a long history that may be found, for instance, in [57]. As a
consequence, many aspects of this problem are known even though also many important and profound
questions remain still open.
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Most results in literature in connection with this problem deal with the periodic setting:{
u′′ + cu′ + g(u) = e(t) = ē+ ẽ(t)
u(T )− u(0) = 0; u′(T )− u′(0) = 0

(3.2)

In this framework, it was proved in the 1984 work by Mawhin and Willem [62] that, if the problem is
conservative, (c = 0), for any given e = ẽ ∈ L̃1(R/TZ) = {h ∈ L1(R/TZ) :

∫ T

0
h(s)ds = 0}, problem (3.2)

has, at least, two different solutions. This result, which turns out to be false for the nonconservative case,
(just remember the first counterexample, given by Ortega [64], showing that, if c 6= 0, (3.2) may not have
solutions at all even for e = ẽ ∈ L̃1(R/TZ)), was attained through the use of variational arguments.

More recently, it was proved by Donati [28] that, in the periodic problem for the conservative, forced
pendulum equation,

(
g(u) = Λ sin(u)

)
, it is always possible to find forcing terms e = ẽ ∈ L̃1(R/TZ) such

that (3.2) has, at least, four geometrically different solutions. This result was extended by Ortega [65], who
established that, in the same framework, it is possible to change 4 by any number. Independently, it was
shown by Katriel ([42]) that, in case g is not a trigonometric polynomial, has C2 regularity and verifies
g(x+ π) = −g(x) ∀x ∈ R, for arbitrary damping c the number of geometrically different solutions of (3.2) is
not bounded as e = ẽ varies in L̃1 (R/TZ).

All these partial results lead to the following question: Are additional assumptions for g ∈ C(R/2πZ)
with zero mean, essential to find, for each n ∈ N, forcing terms e ∈ L1 (R/TZ) such that problem (3.1) has,
at least, n geometrically different periodic solutions? In this chapter we complete the work initiated in [80]
to show the answer to be ‘no’:

Theorem 3.1.1. Assume g ∈ C(R/2πZ) is not trivial. Then, for each n ∈ N,

Sn :=
{
e ∈ L1 (R/TZ) such that (3.1) has at least n geometrically different solutions

}
has nonempty interior in L1 (R/TZ). Moreover,

1.
◦
Sn ∩L̃1 (R/TZ) 6= ∅ if c = 0 or g is not a trigonometric polynomial.

2.

◦
Sn ∩

{
e = ẽ+ ē ∈ L1 (R/TZ) : ẽ ∈ L̃1(R/TZ), −ε < ē < 0

}
6= ∅ 6=

6=
◦
Sn ∩

{
e = ē+ ẽ ∈ L1 (R/TZ) : ẽ ∈ L̃1(R/TZ), 0 < ē < ε

}
for every ε > 0 in case g is a trigonometric polynomial and c 6= 0.

As a consequence, there are (infinitely many) analytic functions e ∈ CΩ(R/TZ) such that problem (3.1)
has at least n solutions. On the other hand, in view of Theorem 3.1.1, the following question arises:

Is it true that
◦
Sn ∩L̃1(R/TZ) 6= ∅ independently of g, c?

We do not give the answer to this question, which seems likely to be positive.
Theorem 3.1.1 is proved in two stages. In the first one, we start by considering as forcing term e, a

constant function
e = ē .

For a certain value ē = ēα,T of this constant, (which is zero if α = 0) the differential equation in (3.1) has
a closed orbit, which is T -periodic in the cylinder R/2πZ, and this orbit generates a continuum of solutions
u of this equation. These are solutions of (3.1) for k = 2π, k′ = 0, and, thus, T -periodic solutions for the
equation

u′′ + cu′ + g(u) = ēα,T − 2πδ′ ,

being δ′ the derivative of the usual Dirac delta function at an arbitrary, given instant of time. At this stage,
bifurcation results which follow from the implicit function theorem, allow us to obtain, for suitable curves of
L1(R/TZ) functions bifurcating from ēc,T − 2πδ′, many corresponding curves of solutions bifurcating from
this continuum.
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However, in order to ensure this argument to work, we further need (together with regularity) some
additional nondegeneracy hypothesis. It was shown by Ortega [65] that these hypothesis are met in case
g(u) = A sinu and c = 0. This is not the case for general nonlinearities g, not even for c = 0, as it is shown
in Remark 3.3.2. However, we show here that the hypothesis always hold when g is the restriction to the real
line of an entire function on the complex plane. This allows us to prove Theorem 3.1.1 in this particular case.
It is also possible to ensure nondegeneracy hypothesis in another cases; this gives rise to Theorems 3.1.2 and
3.1.3 below.

In a second stage, we take a nonlinearity function g which is assumed to be not a trigonometric polynomial.
The main idea here comes from Katriel’s work [42]. For the limit case of zero period (T = 0), it could be
thought, of course, in a heuristic way, that the forced pendulum-type equation u′′ + cu′ + g(u) = 0 has the
following curve of ‘periodic solutions’: for any a ∈ R, we may consider the ‘solution’ which remains still at
a along this zero-length time period. Under some regularity, symmetry and nondegeneracy hypothesis on g,
Katriel was able to bifurcate, for small positive time period T , forcing terms e with many associated periodic
solutions.

Here, we modify Katriel’s argument so that regularity and symmetry hypothesis are no longer needed.
And, in the second hand, we manage to bifurcate forcing terms with many associated ordered branches of
strictly lower and upper solutions, so that we are in the appropriate framework to use topological arguments
in order to obtain open sets of forcing terms with the same properties.

Subsequently, we devote ourselves to the study of the particular interesting case of conservative, pendulum-
type systems: {

u′′ + g(u) = e(t) = ē+ ẽ(t)
u(T )− u(0) = k; u′(T )− u′(0) = k′

(3.3)

This time we may use our better knowledge of the problem to explore exact multiplicity results. To get
a feeling of what we should expect, observe that, in case g is 2π

p -periodic for some p ∈ N, the number of
geometrically different solutions of (3.3) (or (3.1)), if finite, is always a multiple of p. Consequently, we impose
a new assumption on g implying, in particular, that its minimal period is 2π.

[G3] g ∈ C2(R/2πZ) has a primitive G which attains its maximum only once in [0, 2π[.

Then, if the time period T is big enough, it is possible to show the existence of forcing terms e = ẽ ∈
L̃1(R/TZ) such that problem (3.3) has exactly a prefixed even number 2n of solutions.

Theorem 3.1.2. Assume [G3]. Then, for each given n ∈ N there exists T0 = T0(n) > 0 such that, for any
T > T0(n), there exists an open set On,T ⊂ L1(R/TZ) with On,T ∩ L̃1(R/TZ) 6= ∅, and with the property
that for any e ∈ On,T , problem (3.3) has exactly 2n geometrically different solutions.

In particular cases, say, in the case of the pendulum equation, we are able to estimate the quantity T0(n).
We obtain:

Theorem 3.1.3. Assume g(x) = Λ sin(x), Λ 6= 0, and let n ∈ N be given. If

T ≥ 12 log

(√
3 + 1√

2

)
n√
|Λ|

(3.4)

then, there exists an open set On,T ⊂ L1(R/TZ) with On,T ∩ L̃1(R/TZ) 6= ∅, such that for any e ∈ On,T ,
problem (3.3) has exactly 2n geometrically different solutions.

Thus, it remains an open problem to decide whether this result continues to hold without assuming (3.4).
Next result will follow from Theorem 3.1.2 above.

Corollary 3.1.4. Assume [G3]. Then, for each given n ∈ N, there exists a discrete and closed set Fn ⊂ R+,
such that, for any T ∈ R+\Fn, there exists an open set On,T ⊂ L1(R/TZ) with On,T ∩ L̃1(R/TZ) 6= ∅, and
with the property that, for any e ∈ On,T , problem (3.3) has exactly 2n geometrically different solutions.

In particular, there exists a countable subset F of R+ such that, for any T ∈ R+\F and for any n ∈ N,
there exists an open set On,T ⊂ L1(R/TZ) with On,T ∩ L̃1(R/TZ) 6= ∅, with the property that, for any
e ∈ On,T , problem (3.3) has exactly 2n geometrically different solutions.
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Some remarks on the notation. Through this chapter, a function of several variables, S = S(x1, x2, . . . , xp),
defined on a open subset of the cartesian product of the Banach spaces X1, X2, . . . , Xp, will be called C1 (or
continuously differentiable) with respect to xi if it is continuous and the partial derivative ∂xi

S is continuously
defined on the whole domain of S. We write T := R/TZ, (so that L1(T) ≡ L1(R/TZ), C(T) ≡ {f ∈
C(R/TZ) : f(T )− f(0) = 0}, C1(T) ≡ {f ∈ C1(R/TZ) : f(T )− f(0) = 0 = f ′(T )− f ′(0)}, W1,1(T) ≡ {f ∈
W1,1(R/TZ) : f(0) = f(T )}, etc). Given s ∈ R we call τs the associated translation operator

(
defined by

τsf(x) := f(s+ x)
)
. A (real) trigonometric polynomial of degree r ∈ N on T is a function P : T → R of the

form P (t) = p0 +
∑r

j=1[pj cos(j 2π
T t) + qj sin(j 2π

T t)] for some real coefficients pj , qj with p2
j + q2j 6= 0, or, in

complex notation, P (t) =
∑r

j=−r Ωje
ij 2π

T t for some complex coefficients Ωj with Ω−j = Ωj and Ωr 6= 0.

3.2 The abstract framework: A bifurcation result

The implicit function theorem may be used to obtain the existence of nontrivial branches of solutions bifur-
cating from a trivial one. There are many results of this type in the literature, see, for instance, [3], [22].
This section is devoted to recall some general bifurcation arguments, which we will need later.

Let X,Y be real Banach spaces, let U ⊂ X, V ⊂ Y be open and y0 ∈ V ; let I ⊂ R be an open interval
with 0 ∈ I; finally, let H : I × U × V → X, (λ, x, y) 7→ H(λ, x, y) be a C1 mapping. We think of λ, x, y as
being the bifurcation parameter, the variable, and an extra perturbation parameter respectively.

We are interested in the solutions of the equation

H(λ, x, y) = 0; λ ∈ I, x ∈ U, y ∈ V, (3.5)

for λ 6= 0.
We assume that for (λ, y) = (0, y0) there exists a trivial branch of solutions given by the C1 curve

γ : R → U ⊂ X
H(0, γ(s), y0) = 0 ∀s ∈ R (3.6)

The curve γ is further assumed to have the following property: There exists some closed, linear hyperplane
X̃ ⊂ X such that

γ′(s) /∈ X̃ ∀s ∈ R (3.7)

(in particular, γ should be injective and γ′(s) 6= 0 ∀s ∈ R). Derivating (3.6) with respect to s, we obtain

∂xH(0, γ(s), y0)γ′(s) = 0 ∀s ∈ R, (3.8)

and consequently,
0 6= γ′(s) ∈ ker ∂xH(0, γ(s), y0) ∀s ∈ R

We further assume that

(a) ∂xH(0, γ(s), y0) : X → X is a Fredholm operator of zero index for every s ∈ R

(b) dim ker ∂xH(0, γ(s), y0) = 1,
(
that is, ker ∂xH(0, γ(s), y0) = 〈γ′(s)〉

)
∀s ∈ R.

Hypothesis (a) implies the equality[
im ∂xH(0, γ(s), y0)

]⊥
= ker ∂xH(0, γ(s), y0)∗ ∀s ∈ R, (3.9)

((·)∗ denoting adjoint operator), which allows us to use the implicit function theorem to obtain the existence
of a continuous curve1 σ : R → X∗ such that

‖σ(s)‖∗ = 1, 〈σ(s)〉 =
[
im ∂xH(0, γ(s), y0)

]⊥
∀s ∈ R. (3.10)

1Observe that, due to hypothesis (b), -after, possibly, a reparametrization- γ will be of class Cp+1(R), p ≥ 1, provided
U → X, x 7→ H(0, x, y0) has class Cp+1. In this case, σ will be of class Cp(R).
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Using a partition of the unity argument, it is not difficult to show the existence of a C∞ curve m : R → X
such that

m(t) /∈ im ∂xH(t, γ(t), y0) ∀t ∈ R

Thus, for any t ∈ R, the spaceX splits asX = 〈m(t)〉⊕im ∂xH(t, γ(t), y0) and also asX = 〈γ′(t)〉⊕X̃. We use
this latter splitting together with the inverse function theorem to uniquely write each element x ∈ X in a small
(‘tubular’) open neighborhood of γ(J ) as x = γ(t)+x̃, t ∈ J , x̃ ∈ X̃ near 0, and we call Πt : X → 〈m(t)〉 ≡ R
the linear projection associated with the first one. Observe that Πt(x) = 〈x,σ(t)〉

〈m(t),σ(t)〉m(t) ∀t ∈ R, ∀x ∈ X.
With this notation, equation (3.5) can be rewritten as the system(

IX −Πt

)
H(λ, γ(t) + x̃, y) = 0 (3.11)

ΠtH(λ, γ(t) + x̃, y) = 0 (3.12)

This is the so-called Lyapunov-Schmidt system for (3.5). Usually, (3.11) is referred to as the auxiliary
equation and (3.12) as the bifurcation equation of the system.

Let us fix instants −∞ < a < b < +∞ and denote J :=]a, b[. Our task will be to study the bifurcation
branches, alongside with λ, of solutions of equation (3.5) emanating from the curve γ|J : J → X. Using the
implicit function theorem we may solve equation (3.11) near {0} × γ(J )× {0}, obtaining:

Lemma 3.2.1. There exist open sets U ⊂ X with γ(J ) ⊂ U ⊂ U , I ⊂ R with 0 ∈ I ⊂ I, V ⊂ Y with
y0 ∈ V ⊂ V , and a C1 mapping Ψ : I × J × V → X̃ such that{

(λ, x, y) ∈ I × U × V : (IX −Πt)H(λ, x, y) = 0
}

=

=
{
(λ, γ(t) + Ψ(λ, t, y), y) : (λ, t, y) ∈ I × J × V

}
This means that, on I × U × V, equation (3.5) reads

〈H(λ, γ(t) + Ψ(λ, t, y), y), σ(t)〉 = 0, (λ, t, y) ∈ I × J × V

We start by exploring the structure of the solution set of this equation for y = y0. We define

ξ : I × J ⊂ R2 → R, (λ, t) 7→ 〈H(λ, γ(t) + Ψ(λ, t, y0), y0), σ(t)〉

Of course, ξ is a C1 mapping and verifies ξ(0, t) = 0 ∀t ∈ J . Further,

∂λξ(0, t) = 〈∂λH(0, γ(t), y0) + ∂xH(0, γ(t), y0)∂λΨ(0, t, y0), σ(t)〉 =
= 〈∂λH(0, γ(t), y0), σ(t)〉 ∀t ∈ J

Therefore, the mapping ϑ : I × J → R defined by the rule

(λ, t) 7→

{
1
λξ(λ, t) = 1

λ 〈H(λ, γ(t) + Ψ(λ, t, y0), y0), σ(t)〉 if λ 6= 0
〈∂λH(0, γ(t), y0), σ(t)〉 if λ = 0

is continuous. We recall that equation (3.5) with y = y0, λ ∈ I\{0}, x ∈ U , reduces to ϑ(λ, t) = 0, t ∈ J .
Thus, we are lead to consider the real-valued, continuous curve:

Γ : R → R, t 7→ 〈∂λH(0, γ(t), y0), σ(t)〉 (3.13)

A remarkable fact of this formula is that no explicit mention to Ψ appears in the right hand side, even
though it was built using this function. In particular, the curve Γ : J → R does not depend on the
particular choices of X̃, m.

It does not seem strange now that, under suitable nondegeneracy hypothesis, zeroes of Γ could be bifur-
cated to zeroes of ξ(λ, ·) and, consequently, to zeroes of H(λ, ·, y0) for |λ| small. This is shown below.
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Lemma 3.2.2. Let U∗ be any open subset of U with U∗ ⊃ γ(J ), and let a < c0 < c1 < . . . < cp < b verify

(−1)iΓ(ci) > 0 i = 0, . . . , p (3.14)

Then, there exists some ε∗ > 0 with I∗ :=]0, ε∗[⊂ I such that H(λ, γ(ci)+Ψ(λ, ci, y0), y0) ∈ (−1)iR+m(ci) ∀λ ∈
I∗, ∀i : 0, . . . , p. In particular, for any λ ∈ I∗, equation (3.5) with y = y0 has, at least, p different solutions
x ∈ U for all λ ∈ I∗.

Furthermore, for any λ̃ ∈ I∗, there exist an open interval Ĩ ⊂ I∗ with λ̃ ∈ Ĩ and an open set Ṽ ⊂ V with
y0 ∈ Ṽ such that H(λ, γ(ci) + Ψ(λ, ci, y), y) ∈ (−1)iR+m(ci) ∀λ ∈ I∗, ∀y ∈ Ṽ, ∀i : 0, . . . , p. In particular,
equation (3.5) has at least p different solutions x ∈ U∗ for all λ ∈ Ĩ, y ∈ Ṽ.

Of course, all this is a simple consequence of the continuity of ϑ; if it is positive somewhere, it remains
positive in a neighborhood, and, whenever ϑ(λ, ·) has different sign at two instants ci, ci+1, it vanishes
somewhere between them.

To proceed, we will need some extra regularity on H. Namely, let us assume that both mappings

I × U → X, (λ, x) 7→ ∂λH(λ, x, y0) and I × U → L(X), (λ, x) 7→ ∂xH(λ, x, y0)

are C1 with respect to x. If this is the case, σ is a C1 curve and ϑ is itself continuously differentiable with
respect to t. In particular, Γ : R → R is C1.

Let us call Ua,b the open subset of U delimited by the (affine) hyperplanes γ(a) + X̃ and γ(b) + X̃. We
further assume:

(c) ∂yH : I × Ua,b × V → L(Y,X) and ∂λH : I × Ua,b × V → X are bounded.

(d) For any sequence {xn}n ⊂ Ua,b such that {H(0, xn, y0)} → 0,
{
dist

(
xn, γ(R)

)}
→ 0.

The purpose of these two hypothesis is to guarantee that given any open subset O of X containing γ([a, b])
there exist open sets I∗ ⊂ I and V∗ containing 0 and y0 respectively, such that equation (3.5) has no solutions
x ∈ Ua,b\O for any (λ, y) ∈ I∗ × V∗. In this way, under hypothesis ensuring the nondegeneracy of the zeroes
of Γ, the implicit function theorem may be used to obtain precise results on the number of solutions of (3.5)
for x ∈ Ua,b.

Lemma 3.2.3. Assume a < c0 < c1 < . . . < cp < b verify

Γ(ci) = 0, Γ′(ci) 6= 0, i = 0, . . . , p Γ(t) 6= 0 ∀t ∈ [a, b]\{c0, c1, . . . , cp}

Then, there exist ε∗ > 0 with ] − ε∗, ε∗[:= I∗ ⊂ I, and continuous curves γ1, . . . , γp : I∗ → Ua,b ⊂ X which
are, further, C1 on I∗\{0}, such that γi(0) = γ(ci), 1 ≤ i ≤ p, and

{(λ, x) ∈ I∗ × Ua,b : λ 6= 0, H(λ, x, y0) = 0} =
p⋃

i=1

{(λ, γi(λ)) : λ ∈ I∗, λ 6= 0}.

Moreover, given any λ̃ ∈ I∗, λ̃ 6= 0, there exist an open interval Ĩ ⊂ I containing λ̃, an open subset Ṽ ⊂ Y
with y0 ∈ Ṽ ⊂ V , and C1 mappings s̃1, . . . , s̃p : Ĩ × Ṽ → U ⊂ X such that

s̃i(λ, y0) = γi(λ) ∀λ ∈ Ĩ{
(λ, x, y) ∈ Ĩ × Ua,b × Ṽ : H(λ, x, y) = 0

}
=

p⋃
i=1

{
(λ, s̃i(λ, y), y) : (λ, y) ∈ Ĩ × Ṽ

}
.

3.3 A functional framework for the periodic pendulum

The goal of this section is to establish the needed functional setting in order to reformulate problem (3.1) as
a fixed point one for a regular mapping on a Banach space and apply the results in last section.
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Denoting by ϕ the only solution to the linear problem{
ϕ′′ + cϕ′ = ẽ(t)
ϕ(0) = 0; ϕ(T ) = k; ϕ′(T )− ϕ′(0) = k′

the standard change of variables v = u− ϕ transforms problem (3.1) into the periodic problem{
v′′ + cv′ + g(v + ϕ(t)) = ē

v(T )− v(0) = 0; v′(T )− v′(0) = 0
(3.15)

It will be more convenient to work directly on this problem rather than with the original one. Namely,
for any and given ϕ ∈ L1(T) and ē ∈ R we may consider the problem

v′′ + cv′ + g(v + ϕ(t)) = ē, v ∈W2,1(T) (3.16)

We define the linear differential operator

L0 : W2,1(T) → L1(T), L0(v) := v′′ ∀v ∈W2,1(T),

and the Nemytskii operator associated with g

N : L1(T) → L1(T),

[N (v)](x) := g(v(x)) ∀x ∈ T, ∀v ∈ L1(T),

so that (3.16) is equivalent to the functional equation

L0(v) + cv′ +N (v + ϕ) = ē, v ∈W2,1(T) (3.17)

The operator L0 is not injective, but (3.17) is not changed if the same quantity v is subtracted and added,
to get the equality

[L0(v)− v] + [N (v + ϕ) + v + cv′] = ē, v ∈W2,1(T) (3.18)

whose first term is invertible. We denote by K the inverse operator of v 7→ L0(v) − v, which is a compact
operator when seen from L1(T) to W1,1(T). We also observe that K is ‘self-adjoint’ in the sense that∫ T

0

[K(f)](x)g(x)dx =
∫ T

0

f(x)[K(g)](x)dx ∀f, g ∈ L1(T) (3.19)

In this way, equation (3.18) can be rewritten as a fixed point problem

v = −K[N (v + ϕ) + v + cv′ − ē] = −K[N (v + ϕ) + v + cv′]− ē, v ∈W1,1(T) (3.20)

We fix ψ0 in W1,1(T) (which will be determined later) and define

H : R×W1,1(T)×
[
R× L1(T)

]
→W1,1(T),

(
λ, v, ē, ϕ

)
7→ v +K[N (v + λψ0 + ϕ) + v + cv′] + ē (3.21)

It is easily checked that H is C1 and the continuous, linear operator ∂vH(λ, v, ē, ϕ) : W1,1(T) →W1,1(T)
has the form identity minus compact for any (λ, v, ē, ϕ), so that (a) is automatically satisfied. Furthermore,
the partial derivatives ∂λH, ∂ēH : R ×W1,1(T) ×

[
R × L1(T)

]
→ W1,1(T), and ∂ϕH : R ×W1,1(T) ×

[
R ×

L1(T)
]
→ L

(
L1(T),W1,1(T)

)
are clearly bounded, as required in (c). Finally, it is easily checked that, in

case g ∈ C2(R), both mappings

R×W1,1(T) →W1,1(T), (λ, v) 7→ ∂λH(λ, v, ē, ϕ)

R×W1,1(T) → L
(
W1,1(T)

)
, (λ, v) 7→ ∂vH(λ, v, ē, ϕ)

are continuously differentiable with respect to v for any (ē, ϕ) ∈ R× L1(T).
In orden to position ourselves in the abstract framework studied in previous section we still have to find

ē ∈ R and ϕ ∈ L1(T) such that (3.20) has a whole nontrivial curve of solutions. Alternatively, we may try to
find e = ē+ ẽ ∈ L1(T), k, k′ ∈ R such that problem (3.1) has a curve of solutions.

The following proposition has interest by its own.
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Proposition 3.3.1. There exists an unique constant external force ē = ēc,T ∈ R such that{
u′′ + cu′ + g(u) = ē

u(0) = 0; u(t+ T ) = 2π + u(t) ∀t ∈ R;
(3.22)

has solution. This solution is unique (we will call it uc,T ) and verifies

u′c,T (t) > 0 ∀t ∈ R, uc,T

( T
2π
t
)
−→
T→0

t uniformly w.r.t. t ∈ R, for c > 0 fixed. (3.23)

Finally,

ē0,T = 0 ∀T > 0 ēc,T >
2π
T
c ∀c, T > 0 ēc,T −

2π
T
c −→

T→0
0 for c > 0 fixed. (3.24)

Proof. Observe that condition u(0) = 0, which appears in (3.22), is nothing but a normalization condition.
By this, we mean that, since our equation is autonomous and every solution to{

u′′ + cu′ + g(u) = ē

u(t+ T ) = 2π + u(t) ∀t ∈ R;
(3.25)

verifies limt→+∞ u(t) = +∞; limt→−∞ u(t) = −∞, solutions to (3.25) are, up to translations in the time
variable t, solutions to (3.22). Therefore, in order to find ē ∈ R such that (3.22) has at least one solution,
it suffices to show the existence of ē ∈ R such that (3.25) has some solution. At this point we introduce the
change of variables v(t) := u(t)− 2π

T t, which transforms (3.25) into{
v′′ + cv′ + g( 2π

T t+ v) = ē− 2πc
T

v(t+ T ) = v(t) ∀t ∈ R;
(3.26)

and the existence of the constant ē we were looking for, follows now from Schauder’s fixed point theorem.
Thus, we may fix such an ēc,T ∈ R and a corresponding solution uc,T to (3.22) for ē = ēc,T ; vc,T (t) :=
uc,T (t) − 2π

T t. Now, for ē = ēc,T , t 7→ uc,T (t + s) is a solution of (3.25) for every s ∈ R and, consequently,
t 7→ uc,T (t+ s)− 2π

T t = vc,T (t+ s) + 2π
T s is a solution to (3.26) for every s ∈ R .

Second orden, periodic problems such as (3.26), having a nontrivial curve

γ : R →W1,1(T)

s 7→ τsvc,T +
2π
T
s

(3.27)

of solutions for some value ēc,T of ē are usually called degenerate, and have been extensively studied in the
literature. In particular, it is known ([77], see also [67]) that system (3.26) cannot have solutions for ē 6= ēc,T

and not other solutions than {γ(s) : s ∈ R} for ē = ēc,T . We shortly recall the argument for completeness.
Let us take ē ∈ R such that (3.26) has a solution u. We consider the quantities

α := min{s ∈ R : ∃t ∈ R with u(t) = [γ(s)](t)} (3.28)
β := max{s ∈ R : ∃t ∈ R with u(t) = [γ(s)](t)} (3.29)

Then, there exist tα, tβ ∈ R such that

[γ(α)](tα) = u(tα); [γ(α)]′(tα) = u′(tα); [γ(α)](t) ≤ u(t) ∀t ∈ R
[γ(β)](tβ) = u(tβ); [γ(β)]′(tβ) = u′(tβ); [γ(β)](t) ≥ u(t) ∀t ∈ R

and we obtain

ēc,T −
2π
T
c = [γ(α)]′′(tα) + c[γ(α)]′(tα) + g

(
[γ(α)](tα) +

2π
T
tα

)
≤

≤ u′′(tα) + cu′(tα) + g

(
u(tα) +

2π
T
tα

)
= ē− 2π

T
c
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so that
ēc,T ≤ ē

and similarly, comparing u and γ(β) in a neighborhood of tβ , we get

ēc,T ≥ ē

obtaining the equality ē = ēc,T . Now,

[γ(α)](tα) = u(tα); [γ(α)]′(tα) = u′(tα)

so that γ(α) = u. Similarly, γ(β) = u.
A similar reasoning shows indeed that the curves γ(a) and γ(b) do not intersect as soon as a 6= b.

Otherwise, there would exist a, b ∈ R with a < b and t̂ ∈ R such that [γ(a)](t̂) = [γ(b)](t̂). We may define
u := γ(b), and α as in (3.28), and the argument above shows that γ(b) = u = γ(α), which is a contradiction
since α ≤ a < b and consequently, γ(α) and γ(b) have different mean. And we conclude that

a < b→ [γ(a)](t) < [γ(b)](t) ∀t ∈ T

It means also that no different solutions to system (3.22) (ē = ēc,T ) intersect. On the other hand, as
uc,T (t + T ) = uc,T (t) + 2π, there exists some point t0 ∈ R such that u′c,T (t0) > 0. Let us assume that the
same inequality did not hold always and let t1 be the minimum of those t > t0 such that u′c,T (t) = 0. Being
uc,T a solution of the autonomous equation (3.22) (ē = ēc,T ), which is not an equilibrium, u′′c,T (t1) 6= 0, and
we deduce u′′c,T (t1) < 0.

In this way, for s 6= 0 small, uc,T and t 7→ uc,T (t + s) are different solutions to (3.22) -they are different
at t0- but intersecting near t1, which is a contradiction.

Being g bounded, it follows from (3.26) that, for fixed c > 0,∥∥∥∥∥vc,T (·)− 1
T

∫ T

0

vc,T (s)ds

∥∥∥∥∥
L∞(R/TZ)

−→ 0 as T → 0,

so that, as stated, uc( T
2π t) → t uniformly with respect to t ∈ R as T → 0. Finally, to prove (3.24), just

multiply equation (3.26) by 2π
T + v′ and integrate on (R/TZ), to get:

c

2π

∫ T

0

v′c,T (s)2ds = ēc,T −
2πc
T

so that ē0,T = 0, ēc,T > 2π
T c ∀c, T > 0. Furthermore,

ēc,T −
2π
T
c =

1
T

∫ T

0

g(
2π
T
s+ vc,T (s))ds =

1
2π

∫ 2π

0

g(s+ vc,T (
T

2π
s))ds −→

T→0

1
2π

∫ 2π

0

g(s)ds = 0.

Remark 3.3.2. Assume now c ∈ R is fixed. The mapping:

Ψ :

{
g ∈ C1(R/2πZ)\{0} :

∫ T

0

g(s)ds = 0

}
→
{
v ∈ C3(T) : v(0) = 0,

2π
T

+ v′(t) > 0 ∀t ∈ R
}

mapping g into the only solution v to (3.26) with ē = ēc,T− 2π
T c verifying v(0) = 0 is continuous. Furthermore,

it is clearly bijective, its inverse being given by the rule

v 7→ −
(
v′′ + cv′

)
◦
[
2π
T
ι+ v

]−1

+
1
T

∫ T

0

(
v′′ + cv′

)
◦
[
2π
T
ι+ v

]−1

(x)dx

(ι(t) := t ∀t ∈ R), which is also continuous. Then, both laws are homeomorphisms and it is easily checked
that they conserve regularity:

Ψ(g) ∈ Cn+2(T) ⇐⇒ g ∈ Cn(R/2πZ) ∀n ≥ 1

In particular, for any trigonometric polynomial P (t) = p0 +
∑r

j=1[pj cos(j 2π
T t) + qj sin(j 2π

T t)] with P ′(t) >
− 2π

T ∀t ∈ T, there exists g ∈ C∞(R/2πZ) whose associated curve Ψ(g) is exactly P .
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3.4 Many periodic solutions bifurcating from a closed loop at a
constant external force

Thus, we have found that the equation

H(λ, v, ē, ϕ) = 0 v ∈W1,1(T)

with H given in (3.21), has a nontrivial curve γ (given in (3.27)), of solutions for λ = 0, ē = ēc,T − 2π
T c, ϕ =

ϕ0(t) := 2π
T t− Ent

(
2π
T t). To set ourselves under the framework of section 2, we still have to check

(b) dim
[
ker ∂xH(0, γ(s), ēc,T− 2π

T c, ϕ0)
]

= 1,
(
that is, 〈γ′(s)〉 = ker

(
∂xH(0, γ(s), ēc,T , ϕ0)

)
for every s ∈ R.

This is to say that the only solutions of the linear problem{
w′′ + cw′ + g′(uc,T (t+ s))w = 0
w(t+ T ) = w(t) ∀t ∈ R

(3.30)

should be the scalar multiples of τsu′c,T , for every s ∈ R. Equivalently, the only T−periodic solutions of Hill’s
equation

w′′ + cw′ + g′(uc,T (t))w = 0 (3.31)

should be the scalar multiples of u′c,T . To see this we apply the reduction of order method; we already know
that u′c,T is a solution to (3.31) and we conclude that

wc,T (t) := u′c,T (t)
∫ t

0

e−crdr

u′c,T (r)2

is another. Of course, this latter is not T−periodic,

wc,T (0) = 0; wc,T (T ) > 0.

We next establish (d) for any a < b ∈ R. With this aim, take any sequence {vn} ⊂W1,1(T) such that{
H(0, vn, ēc,T −

2π
T
c, ϕ0)

}
n

→ 0{
1
T

∫ T

0

vn(t)dt

}
n

bounded.

For any n ∈ N, write vn := v̄n + ṽn, v̄n := 1
T

∫ T

0
vn(t)dt, ṽn ∈ X̃. By hypothesis, {v̄n} is bounded, so that

it has some convergent subsequence. Let us check that the same thing happens also for {ṽn}. We call, for
each n ∈ N, θn := H(0, vn, ē− 2π

T c, ϕ0), so that

ṽn +K
[
ṽn + cṽ′n] = −K

[
N (v̄n + ṽn + cṽ′n + ϕ0)

]
− ēc,T +

2π
T
c+ θn ∀n ∈ N (3.32)

The sequence {N (v̄n+ ṽn+cṽ′n+ϕ0)} being bounded in L∞(T), there exists a subsequence {vσ(n)} of {vn}
such that

{
K
[
N (v̄σ(n) + ṽσ(n) + cṽ′σ(n) + ϕ0)

]}
n

is convergent in W1,1(T). As the operator v 7→ v+K
[
v+cv′]

is a linear homeomorphism when seen from X̃ to its image (endowed with the W1,1(T) topology), we deduce
from (3.32) that {ṽσ(n)} itself converges in X̃. Thus, there exists a convergent subsequence of {vn} and the
limit must be a zero of H(0, ·, ē− 2π

T c, ϕ0). However, the set of zeroes of this mapping, as shown in Proposition
3.3.1, reduces to γ(R), implying (d). We finally note that hypothesis (c) holds as soon as g ∈ C2(R).

To proceed further with the scheme of Section 2., let us pick a nonzero T-periodic solution νc,T of the
adjoint equation of (3.31),

Ω′′ − cΩ′ + g′(uc,T (t))Ω = 0 (3.33)

In the conservative case, problem (3.30) is self-adjoint and ν0,T can be taken as u′0,T . Consequently, ν0,T

does not change sign on T. Let us see that the same thing happens for νc,T when c ∈ R is arbitrary.
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Lemma 3.4.1. For any c ∈ R, consider the Hill’s equation

y′′ + cy′ + α(t)y = 0 (Ec)

where α : R → R is a given locally integrable, T -periodic function. Then, (Ec) has a T -periodic, positive
solution if and only if (E−c) has a T -periodic, positive solution.

Proof. The solutions of (Ec) are related with those of (E−c) by the rule

y(t) is a solution of (Ec) ⇐⇒ z(t) = ecty(t) is a solution of (E−c) (3.34)

Using a Sturm-Liouville argument we know that, in case (Ec) has a never vanishing solution, the equation
is disconjugate, meaning that any other nonzero solution of (Ec) vanishes, at most, at one single point in R.
Thanks to (3.34) we know that also (E−c) is disconjugate, and therefore, its periodic solution cannot vanish.

Observe that, for any s ∈ R, τsνc,T is a solution to the adjoint problem of (3.30){
Ω′′ − cΩ′ + g′(uc,T (t+ s))Ω = 0
Ω(t+ T ) = Ω(t) ∀t ∈ R

(3.35)

Thus, given h ∈ L1(T), the nonhomogeneous, linear problem{
w′′ + cw′ + g′(uc,T (t+ s))w = h(t)
w(t+ T ) = w(t) ∀t ∈ R

has solution if and only if
∫ T

0
h(t)νc,T (s+ t)dt = 0. Using (3.19) we deduce

im ∂xH
(

0, γ(s), ēc,T −
2π
T
c, ϕ0

)
=

{
v ∈W1,1(T) :

∫ T

0

v(t)
[
L0(τsνc,T )− τsνc,T

]
(t)ds = 0

}

so that, thanks to Lemma 3.4.1 above, we may take m(s) ≡ 1 ∀s ∈ R, and[
im ∂xH

(
0, γ(s), ēc,T −

2π
T
c, ϕ0

)]⊥
= 〈L0(τsνc,T )− τsνc,T 〉 = 〈τs(L0(νc,T )− νc,T )〉 ∀s ∈ R,

equality where the identifications L2(T) ≡ L2(T)∗ ⊂ W1,1(T)∗ have been utilized. In this way, we obtain a
explicit form for the curve σ in (3.10):

σ : R → L2(T) ⊂W1,1(T)∗

s 7→ τs
[
L0(νc,T )− νc,T

]
Finally, we are lead to consider the real valued, continuous curve Γ : R → R given by

s 7→
〈
∂λH

(
0, γ(s), ēc,T −

2π
T
c, ϕ0

)
, σ(s)

〉
=

= −
∫ T

0

(
K
[
Ng′(γ(s) + ϕ0)ψ0

])(
L0(τsνc,T )− τsνc,T

)
dt =

= −
∫ T

0

g′(uc,T (t+ s))νc,T (t+ s)ψ0(t)dt =
∫ T

0

(
ν′′c,T (t+ s)− cν′c,T (t+ s)

)
ψ0(t)dt (3.36)

that is, the convolution of ν′′c,T − cν′c,T and ψ0. In the conservative case, ν0,T = u′0,T and Γ is the
convolution of u′′′0,T and ψ0.

The following result is now an straightforward consequence of Lemma 3.2.2
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Proposition 3.4.2. Let

An :=
2
T

∫ T

0

νc,T (t) cos(n
2π
T
t)dt Bn :=

2
T

∫ T

0

νc,T (t) sin(n
2π
T
t)dt,

be the sequences of Fourier coefficients of νc,T . We assume that, for some n0 ∈ N,

A2
n0

+B2
n0
6= 0

Then, given any ε > 0, it is possible to find ϕ ∈ C∞(T) and v0, . . . , v2n0 ∈ C2(T), %0, . . . , %2n0 ∈ R+ such
that:

v2n0(t) = v0(t) + 2π ∀t ∈ T, %0 = %2n0 (3.37)

v′′q (t) + cv′q(t) + g(vq(t) + ϕ(t)) = ēc,T −
2π
T
c+ (−1)q%q ∀t ∈ T, ∀q = 0, . . . , 2n0 (3.38)

vq−1(t) < vq(t) ∀t ∈ T, ∀q = 1, . . . , 2n0 (3.39)

Proof. Write νc,T as the sum of its Fourier series

νc,T (t) =
∞∑

n=1

[
An cos(

2π
T
nt) +Bn sin(

2π
T
nt)
]
+A0

Being νc,T ∈ C2(T), we are allowed to derivate twice in the infinite sum above to get

ν′′c,T (t) + cν′c,T (t) =

=
∞∑

n=1

[[
− n2

(
2π
T

)2

An + cn
2π
T
Bn

]
cos(

2π
T
nt) +

[
− cn

2π
T
An − n2

(
2π
T

)2

Bn

]
sin(

2π
T
nt)

]

Observe now that, if for some n ∈ N,

−n2
(

2π
T

)2
An +cn 2π

T Bn = 0
−cn 2π

T An −n2
(

2π
T

)2
Bn = 0

then, An = 0 = Bn, since the determinant of the linear system is strictly positive. We conclude that

Cn0 :=
[
cn0

2π
T
Bn0 − n2

0

(
2π
T

)2

An0

]2
+
[
− cn0

2π
T
An0 − n2

0

(
2π
T

)2

Bn0

]2
> 0

At this point, we choose ψ0(t) = 2
T cos( 2π

T n0t) in (3.36). We obtain:

Γ(s) = Ãn0 cos(n0
2π
T
s) + B̃n0 sin(n0

2π
T
s)

for some Ãn0 , B̃n0 ∈ R with
√
Ã2

n0
+ B̃2

n0
=
√
Cn0 > 0. This function has exactly 2n0 zeroes in [0, T [ and,

on each one, its derivative does not vanish. The theorem follows from Lemma 3.2.2

From such a scheme of ordered lower-upper-lower-upper... solutions, it follows immediately the existence
of at least n0 (geometrically) different solutions for the equation {v′′ + cv′ + g(v + ϕ(t)) = ēc,T − 2π

T c} -one
between each pair of consecutive ordered lower and upper solutions. The three solutions theorem (see [4]) in
fact implies the existence of at least 2n0 different solutions for this same equation. These solutions turn to
come from mappings with nonzero degree so that all this keeps its validity under small perturbations. We
state the precise result below:
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Proposition 3.4.3. Let f0 : (R/TZ) × R, (t, x) 7→ f0(t, x) be continuous. Assume v0, v1, v2, v3 ∈ C2(T)
verify:

1. v0(t) < v1(t) < v2(t) < v3(t) ∀t ∈ R.

2. (−1)i
[
v′′i (t) + cv′i(t) + f0(t, vi(t))

]
> 0 ∀t ∈ T, i = 0, . . . , 3.

Then, there exists ε > 0 such that, for any Carathéodory function f : [0, T ]× R → R with∫ T

0

sup
x∈R

({
|f0(t, x)− f(t, x)|

})
dt < ε, (3.40)

the perturbed problem {
w′′ + cw′ + f(t, w) = 0
w ∈W2,1(T)

(3.41)

has at least three solutions w1, w2, w3 verifying

1. v0(t) < w1(t) < v1(t), v2(t) < w3(t) < v3(t) ∀t ∈ T.

2. v1(t̂) < w2(t̂) < v2(t̂) for some t̂ ∈ T.

Proof. Problem (3.41) can be rewritten as

w′′ + cw′ − w + [f(t, w) + w] = 0 w ∈W2,1(T) (3.42)

The advantage in this reformulation is that the linear operator W2,1(T) → L1(T), w 7→ w′′ + cw′ − w, is
invertible. We call K : L1(T) →W2,1(T) its inverse, so that problem (3.42) becomes

w +K[Nf (w) + w] = 0 w ∈ C(T) (3.43)

being Nf the Nemytskii operator associated with g, that is, Nf : C(T) → L1(T) is the continuous mapping
defined by [Nf (x)](t) = f(t, x(t)) ∀t ∈ T, ∀x ∈ C(T).

We consider the completely continuous, nonlinear operator

Tf : C(T) → C(T) w 7→ −K[w +Nf (w)] (3.44)

so that the solutions of (3.41) coincide with the fixed points of Tf . At this point it would be desirable to
compute the Leray-Schauder degree of IC(T) − Tf on convenient open sets. We define

G1 := {w ∈ C(T) : v0(t) < w(t) < v1(t)} G3 := {w ∈ C(T) : v2(t) < w(t) < v3(t)}
G := {w ∈ C(T) : v0(t) < w(t) < v3(t)} G2 := G\(G1 ∪ G3)

Being v0 a strict C2 subsolution and v3 a strict C2 supersolution for problem (3.41) with f = f0, which
is continuous, it follows that there may not exist fixed points of Tf0 on ∂G = {w ∈ C(T) : v0(t) ≤ w(t) ≤
v3(t) ∀t ∈ T}\G. Similarly, there may not exist fixed points of Tf0 on ∂G1, ∂G3 or ∂G2 ⊂ ∂G ∪ ∂G1 ∪ ∂G3.
Indeed, it follows from the method of upper and lower solutions that

deg(IC(T) − Tf0 ,G) = 1 deg(IC(T) − Tf0 ,G1) = 1 deg(IC(T) − Tf0 ,G3) = 1

so that, by the aditivity property of the Leray-Schauder degree,

deg(I − Tf0 ,G2) = −1 (3.45)

On the other hand, Tf0 being completely continuous, I − Tf0 is closed. It means in particular that
(I − Tf0)

(
∂G ∪ ∂G1 ∪ ∂G3

)
is a closed subset of C(T) and, as 0 is not in this set, there exist δ > 0 such

that ‖w − Tf0(w)‖∞ > δ ∀w ∈ ∂G ∪ ∂G1 ∪ ∂G3. The continuity of K as an operator from L1(T) to C(T)
implies that there exists ε > 0 such that ‖K(x)‖∞ < δ ∀x ∈ L1(T) with ‖x‖L1(T) < ε, and this means that
‖Tf (w) − Tf0(w)‖∞ < δ ∀w ∈ C(T), so that w 6= Tf (w) ∀w ∈ ∂G ∪ ∂G1 ∪ ∂G3 as soon as f verifies (3.40).
The invariance by homotopies of the Leray-Schauder degree shows that

deg(IC(T) − Tf ,G) = 1 deg(IC(T) − Tf ,G1) = 1 deg(IC(T) − Tf ,G3) = 1

which proves the theorem.
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Along next results, it will be necessary to take into account, not only the time period T , which was, so
far, fixed, but also all its divisors. Let us call, for any m ∈ N, An,m and Bn,m the respective quantities An

and Bn corresponding to the time period T
m .

Corollary 3.4.4. Assume that, for some n,m ∈ N, A2
n,m + B2

n,m 6= 0. Then, there exists an open set

O ⊂ L1(T) with O ∩
{
e = ẽ+ ē ∈ L1(T) : ē = ēc,T/m − 2πcm/T

}
6= ∅ such that, for any e ∈ O, problem

(3.1) has at least n geometrically different solutions.

Proof. From Proposition 3.4.2 we know the existence of ϕ ∈ C∞(R/ T
mZ) and a scheme of lower and upper

solutions as given there on the interval [0, T
m ]. These give rise to a corresponding scheme of ordered lower and

upper solutions associated to ϕ ∈ C∞(T) on the interval (R/TZ). The result follows now from Proposition
3.4.3.

Corollary 3.4.5. Let n ∈ N be given, and assume that, for infinitely many m ∈ N, νc,T/m is not a trigonomet-
ric polynomial of degree strictly lower than n. Then, for any ε > 0, there exists an open set O = On,ε ⊂ L1(T)
such that

O ∩ L̃1(T) 6= ∅ if c = 0

O ∩
{
e = ē+ ẽ ∈ L1(T) : −ε < ē < 0

}
6= ∅ 6= O ∩

{
e = ē+ ẽ ∈ L1(T) : 0 < ē < ε

}
if c 6= 0

and for any e ∈ O, problem (3.1) has at least 2n geometrically different solutions.

Proof. The case c = 0 follows directly from Corollary 3.4.4. Concerning the case c > 0, observe that it suffices
to prove O ∩

{
e = ē+ ẽ ∈ L1(T) : 0 < ē < ε

}
6= ∅ ∀ε > 0, since the remaining statements follow from the

change of variables û = −u, ĝ(x) := −g(−x). In this way, this becomes a consequence of Corollary 3.4.4 and
the fact that, as seen in Proposition 3.3.1, {ēc,T/m − 2π

T mc}m is a sequence of positive numbers converging
to 0 as m→ +∞.

Proof of Theorem 3.1.1 when g is the restriction to the real line of an entire function. In view of Corollary
3.4.5, we may assume there exist n0, m0 ∈ N such that νc,T/m is a trigonometric polynomial of degree
not bigger that n0 for all m ≥ m0. We choose νc,T/m so that ‖νc,T/m‖L∞[0, T

m ] = 1 and write νc,T/m(t) =∑n0
j=−n0

Ωm,je
2πm

T ijt, t ∈ [0, 2π
m ] ∀m ≥ m0, where the complex coefficients {Ωm,j}−n0≤j≤n0 verify Ωm,−j =

Ωm,j , j : −n0, . . . , n0. The sequences {Ωm,j}m≥m0 are bounded for any j : −n0, . . . , n0, and, after possibly
passing to a subsequence, we may assume {Ωm,j} → Ωj ∀j : −n0, . . . , n0. Passing to the limit in the
inequality

∑n0
j=−n0

|Ωm,j | ≥ 1 ∀m ≥ m0 we deduce that
∑n0

j=−n0
|Ωj | ≥ 1, and the trigonometric polynomial

νc(t) :=
∑n0

j=−n0
Ωje

jit is not the zero polynomial. We recall the differential equation verified by νc,T/m

ν′′c,T/m(t)− cν′c,T/m(t) + g′(uc,T/m(t))νc,T/m(t) = 0, 0 ≤ t ≤ T

m

or, what is the same,

ν′′c,T/m

( T

2πm
t
)
− cν′c,T/m

( T

2πm
t
)

+ g′
(
uc,T/m(

T

2πm
t)
)
νc,T/m

( T

2πm
t
)

= 0, 0 ≤ t ≤ 2π

Using the explicit form of νc,T/m as a trigonometric polynomial and passing to the limit as m→ +∞, we
deduce

ν′′c (t)− cν′c(t) + g′(t)νc(t) = 0, 0 ≤ t ≤ 2π

since, as shown in Proposition 3.3.1, uc,T/m

(
T

2πm (t)
)
→ t uniformly with respect to t ∈ R as m→ +∞. Here,

we have an entire function which vanishes on a whole segment. It is, consequently, zero everywhere:

ν′′c (z)− cν′c(z) + g′(z)νc(z) = 0 ∀z ∈ C (3.46)
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Observe now that both nonzero trigonometric polynomials νc and ν′′c − cν′c have the same degree (recall
the proof of Proposition 3.4.2 above). Therefore, by similar argument to those carried out in the proof of
Theorem 3.5.2, they have the same number of roots, counting multiplicity. However, as given in (3.46), any
root of νc is a root of ν′′c − cν′c, so that they are in fact equal. It means g′(z) = 1 ∀z ∈ C, which is a
contradiction. The theorem is now proved.

The proof of Theorem 3.1.1 will be completed in Section 3.6 using a different approach. Now,we have the
following consequence of Lemma 3.2.3.

Theorem 3.4.6. Assume g ∈ C2(R/2πZ), let An, Bn, n ≥ 1, be the sequences of Fourier coefficients of νc,T

as defined in Proposition 3.4.2, and fix k, k′ ∈ R. If, for some n0 ∈ N, A2
n0

+ B2
n0
6= 0, then there exists an

open set O ⊂ L1(R/TZ) with O ∩ {e = ē + ẽ ∈ L1(R/TZ) : ē = ēc,T − 2π
T c} 6= ∅, such that, for any e ∈ O,

problem (3.1) has exactly 2n0 geometrically different solutions.

3.5 The conservative pendulum problem

Theorem 3.4.6 can be criticized on the fact that it may not be easy to explicitly compute the Fourier series
of the function νc,T . In the conservative case, problem (3.30) is self-adjoint and things are simplified.

Corollary 3.5.1. Let g ∈ C2(R/2πZ), and let

An :=
2
T

∫ T

0

u′0,T (t) cos(n
2π
T
t)dt and Bn :=

2
T

∫ T

0

u′0,T (t) sin(n
2π
T
t)dt, n ≥ 1, (3.47)

be the sequences of Fourier coefficients of u′0,T . As before, fix k, k′ ∈ R. If, for some n ∈ N, A2
n + B2

n 6= 0,
then there exists an open set O ⊂ L1(R/TZ) with O∩ L̃1(R/TZ) 6= ∅, such that for any e ∈ O, problem (3.1)
has exactly 2n geometrically different solutions.

In [65], it was seen that, in the special case of the conservative, pendulum equation (problem (3.3),
g(u) = Λ sin(u)), u′0,T cannot be a trigonometric polynomial, and this was used to see that the number of
periodic solutions for the forced pendulum equation was not bounded as the forcing term varies in C∞(T). In
this chapter we have seen (Remark 3.3.2) that the analogous statement is not true for an arbitrary C∞(R/2πZ)
function g. However, an improved argument can be used to prove that u′0,T is not a trigonometric polynomial
when g belongs to an intermediate class of periodic nonlinearities, namely, those which are restriction to the
real line of an entire function.

Theorem 3.5.2. Assume that there exists an entire function whose restriction to the real line is g. Then,

the number of n ∈ N such that
∣∣∣∫ T

0
u′0,T (t)ein 2π

T tdt
∣∣∣2 6= 0 is infinite. Consequently, there exists a sequence

{nm}m∈N → +∞ of natural numbers and, for each m ∈ N, an open set Onm ⊂ L1(R/TZ) with Onm ∩
L̃1(R/TZ) 6= ∅, such that for any ē ∈ Onm , problem (3.1) has exactly 2nm geometrically different solutions.

Proof. To deny the statement of the Theorem above is to say that u′0,T is a trigonometric polynomial. In
complex notation, this can be written as u′0,T (t) =

∑p
j=−p Ωje

2π
T ijt for some complex coefficients {Ωj}p

j=−p,
which should, furthermore, satisfy the relationship Ω−j = Ωj . Of course, u′0,T ≡ cte is only possible if g ≡ 0,
and thus, we should have p ≥ 1, Ωp 6= 0. On the other hand, the inequality u′0,T (t) > 0 ∀t ∈ R implies
Ω0 > 0. Now, u0,T (t) = Ω0t+

∑p
j=1

T
2πj i

(
Ω−je

−2π
T ijt−Ωje

2π
T ijt

)
, u′′′0,T (t) = −

∑p
j=−p(

2πj
T )2Ωje

2π
T ijt, and the

equality u′′′0,T (t) = g′(u0,T (t))u′0,T (t) becomes

−
p∑

j=−p

(
2πj
T

)2Ωje
2π
T ijt = g′

(
Ω0t+

p∑
j=1

T

2πj
i
(
Ω−je

−2π
T ijt − Ωje

2π
T ijt

)) p∑
j=−p

Ωje
2π
T ijt ∀t ∈ R

Here, we have two entire functions which coincide on the real line. They are, consequently, equal on the
whole complex plane:

−
p∑

j=−p

(
2πj
T

)2Ωje
2π
T ijz = g′

(
Ω0z +

p∑
j=1

T

2πj
i
(
Ω−je

−2π
T ijz − Ωje

2π
T ijz

)) p∑
j=−p

Ωje
2π
T ijz ∀z ∈ C
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We multiply both sides of the equality above by ei 2π
T pz to get

−
2p∑

j=0

(
2π(j − p)

T

)2

Ωj−pe
2π
T ijz = g′

(
Ω0z +

p∑
j=1

T

2πj
i
(
Ω−je

−2π
T ijz − Ωje

2π
T ijz

)) 2p∑
j=0

Ωj−pe
2π
T ijt

∀z ∈ C (3.48)

What is of interest for us in the equality above is the following: there exists an entire function ϑ : C → C
such that

−
2p∑

j=0

(
2π(j − p)

T

)2

Ωj−pe
2π
T ijz = ϑ(z)

2p∑
j=0

Ωj−pe
2π
T ijt ∀z ∈ C

We consider the complex polynomials

q1(z) := −
∑2p

j=0

(
2π(j−p)

T

)2

Ωj−pz
j q2(z) :=

∑2p
j=0 Ωj−pz

j

Both of them have degree 2p, so that both of them have 2p roots, counting multiplicity. Furthermore, 0 is
not a root of either. However, the equality

q1(e
2πi
T z) = ϑ(z)q2(e

2πi
T z) ∀z ∈ C

says that every root of q2 is a root of q1 with at least, the same multiplicity. We deduce that there exists
ς ∈ C such that q1 = ςq2, that is

ϑ(z) = ς ∀z ∈ C

In particular, ϑ(t) = g′(u0(t)) = ς ∀t ∈ R. Thus, ς = 0 and g ≡ 0, a contradiction.

For pendulum-type equations without friction, a conservation of energy argument provides a explicit
expression for u0,T . Indeed, derivating the sum of kinetic plus potential energy along the trajectory u0,T ,

E(t) =
1
2
u′0,T (t)2 +G(u0,T (t))

(here, G is any primitive of g), we find that the total energy does not change with time; there exists E0 ∈ R
(total energy), such that

E0 =
1
2
u′0,T (t)2 +G(u0,T (t)) ∀t ∈ R

As u′0,T (t) > 0 ∀t ∈ R, we find that E0 > maxR G, and, further,

u′0,T (t) =
√

2
(
E0 −G(u0,T (t))

)
∀t ∈ R.

Equivalently,
u′0,T (t)√

2
(
E0 −G(u0,T (t))

) = 1 ∀t ∈ R.

We consider the mapping

FE0 : R → R

x 7→ 1√
2

∫ x

0

1√
E0 −G(y)

dy

which is a increasing diffeomorphism in R. Now,

FE0(u0,T (t)) = t ∀t ∈ R
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as it follows by simply derivating both sides of the equality. Therefore,

u0,T (t) = F−1
E0

(t) ∀t ∈ R+ , (3.49)

in particular,

T = FE0(2π) =
1√
2

∫ 2π

0

1√
E0 −G(y)

dy . (3.50)

Previous result motivates the following question: Will it be possible, to find natural numbers n such that,
with the notation of (3.47), A2

n + B2
n = 0? That is, may both terms of the same degree n in the Fourier

series of u′0,T vanish simultaneously? If the answer were ‘no’, at least for some ‘nice’ class of functions g, it
would imply, as a consequence of Theorem 3.5.1, the existence, for each even number 2n, of forcing terms
e ∈ L1[0, 2π] such that (3.3) has exactly 2n solutions.

However, as seen in the introduction, this cannot be true in general, since, in case g is 2π/p-periodic for
some entire number p ≥ 2, the number of geometrically different solutions to (3.1), if finite, is always an entire
multiple of p. Indeed, what happens here is that the associated curve u′0,T is 2π

p -periodic and consequently,
all Fourier coefficients of degree not an integer multiple of p are zero.

On the other hand, numerical experiments carried out by the author seem to indicate that cosine Fourier
coefficients of all orders

An :=
∫ T

0

u′0,T (t) cos(n
2π
T
t)dt, n ≥ 0

are positive in the case of the pendulum equation [g(u) = Λ sin(u)]. However, we do not know a proof of this
fact, and the question remains open.

We observe here that all sine Fourier coefficients of u′0,T vanish as soon as g is an odd function. Indeed,
if this happens, the uniqueness of u0,T as a solution to (3.22) implies that

u0,T (−t) = −u0,T (t) ∀t ∈ R,

and, consequently,
u′0,T (−t) = u′0,T (t) ∀t ∈ R,

so that

Bn =
∫ T

0

u′0,T (t) sin(n
2π
T
t)dt = 0 ∀n ∈ N

However, cosine Fourier coefficients can be shown to be positive when the time is big enough under our
hypothesis [G3]. Indeed, it follows from (3.49) that

u′0,T (t) =
1

F ′
E0

(F−1
E0

(t))
∀t ∈ R,

which implies

An =
∫ T

0

u′0,T (t) cos(n
2π
T
t)dt =

∫ T

0

1
F ′
E0

(F−1
E0

(t))
cos(n

2π
T
t)dt =

∫ 2π

0

cos(n
2π
T
FE0(x))dx =

=
∫ 2π

0

cos

(
n

2π
T
√

2

∫ x

0

1√
E0 −G(y)

dy

)
dx (3.51)

Assume now that G attains its maximum only once on the interval [0, 2π[. Furthermore, assume the only
point where this maximum is achieved is, precisely, π. Fix n ∈ N and let us make the time T diverge in
expression (3.51). Simultaneously, E0, the energy of the trajectory, whose relation with T is given by (3.50),
decreases to maxR G. Thus,

n
2π
T
√

2

∫ x

0

1√
E0 −G(y)

dy −→ 2πnχ]π,2π](x), 0 ≤ x ≤ 2π
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uniformly on compact subsets of [0, π[∪]π, 2π]. Consequently,

An =
∫ 2π

0

cos

(
n

2π
T
√

2

∫ x

0

1√
E0 −G(y)

dy

)
dx→ 1 as T → +∞

We can use now Corollary 3.5.1 to prove Theorem 3.1.2.

Proof of Theorem 3.1.2. Of course, the maximum of G may not be attained precisely at π, but the number of
solutions to problem (3.1) is not changed if g is translated on the real line, that is, replaced by g(w+(·)), w ∈
R. The Theorem follows now from the discussion above.

Proof of Theorem 3.1.3. We may well concentrate in the case Λ > 0, since the number of solutions of problem
(3.3), is not changed as the periodic term g(u) is replaced by g(u+π). In this way, G(u) = −Λ cos(u) attains
its maximum at π. Now, for any 0 ≤ x < 2π

3 we have

0 ≤
∫ x

0

1√
E0 + Λ cos(y)

dy <

∫ 2π
3

0

1√
E0 + Λ cos(y)

dy <
1√
Λ

∫ 2π
3

0

1√
1 + cos(y)

dy =

=
2
√

2√
Λ

log

(√
3 + 1√

2

)
≤ T

3n
√

2

and, consequently,

cos

(
n

2π
T
√

2

∫ x

0

1√
E0 + Λ cos(y)

dy

)
> cos(π/3) =

1
2
∀x ∈ [0,

2π
3

[

Therefore,

An =
∫ 2π

0

cos

(
n

2π
T
√

2

∫ x

0

1√
E0 + Λ cos(y)

dy

)
dx =

= 2
∫ π

0

cos

(
n

2π
T
√

2

∫ x

0

1√
E0 + Λ cos(y)

dy

)
dx =

= 2
∫ 2π

3

0

cos

(
n

2π
T
√

2

∫ x

0

1√
E0 + Λ cos(y)

dy

)
dx+

+ 2
∫ π

2π/3

cos

(
n

2π
T
√

2

∫ x

0

1√
E0 + Λ cos(y)

dy

)
dx >

2π
3
− 2

π

3
= 0

Proof of Corollary 3.1.4. We simply observe that for any g ∈ C1(R/2πZ), expression (3.51), which relates
An, E0 and T , is analytic in these variables. Also, we know since (3.50) that E0 is an analytic function of
T . An analytic function cannot be zero in an open set unless it is constantly zero, and, thus, Theorem 3.1.2
implies in fact Corollary 3.1.4.

3.6 Many periodic solutions bifurcating from zero period

The key idea across previous sections was the following one: The autonomous, pendulum-type problem (3.25)
has, when ē = ēc,T , a closed orbit, and this orbit generates a continuum of solutions for (3.26). All our results
there were on the line of looking for sufficient conditions (nondegeneracy conditions) on the closed orbit uc,T

to ensure the existence of many branches of solutions bifurcating from this continuum.
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For the limit case of zero time period (T = 0), it could also be thought, of course, in a heuristic way,
that the autonomous, unforced pendulum-type equation u′′ + cu′ + g(u) = 0 has the following curve of
’solutions’: for any a ∈ R, we may consider the ’solution’ which remains still at a along this zero-length time
period. Under new nondegeneracy hypothesis on g we will be able to bifurcate from this continuum, for
small positive time T , many branches of periodic solutions, and these will generate branches of subharmonic,
periodic solutions, for big time intervals. The method of lower and upper solutions will be used to find many
solutions for non-periodic problems of the type (3.1).

After the change of variables in (3.15), problem (3.1) can be rewritten in the form

v′′ + cv′ + g(v + ϕ(t)) = ē, v ∈W2,1 (R/TZ) , (3.52)

where ϕ ∈ L1 (R/TZ) and ē ∈ R are data of the problem. Also in this chapter, we will work on this problem
in order to study (3.1).

Let us consider the linear, differential operator

Lc : W2,1 (R/TZ) → L1 (R/TZ) , L(v) := v′′ + cv′ ∀v ∈W2,1 (R/TZ) ,

and the Nemytskii operator associated with g

N : L1 (R/TZ) → L1 (R/TZ) ,

[N (v)](x) := g(v(x)) ∀x ∈ R/TZ, ∀v ∈ L1 (R/TZ) ,

so that (3.52) is equivalent to the functional equation

Lc(v) +N (v + ϕ) = ē, v ∈W2,1 (R/TZ) . (3.53)

Lc is a Fredholm operator of zero index, its kernel been made up by the the set of constant functions
(which can be naturally identified with R) and its image by the integrable functions of zero mean. Such a
behaviour suggests the following splittings of its domain and codomain

W2,1 (R/TZ) = [kerL]⊕X = R⊕X L1 (R/TZ) = R⊕ [imL] = R⊕ Z

being X := {ũ ∈ W2,1 (R/TZ) : 1/T
∫ T

0
ũ(s)ds = 0}, Z := {h̃ ∈ L1 (R/TZ) : 1/T

∫ T

0
u(s)ds = 0}. We

use the first splitting to write each v ∈ W2,1 (R/TZ) in the form v = v̄ + ṽ, v̄ ∈ R, ṽ ∈ X, and we call
Q : L1 (R/TZ) → R the linear projection associated to the latter one,

(
given by Q[h] = 1

T

∫ T

0
h(s)ds

)
. With

this notation, problem (3.53) reads

Lc(ṽ) + (I −Q)
[
N (v̄ + ṽ + ϕ)

]
= 0, (3.54)

Q
[
N (v̄ + ṽ + ϕ)

]
= ē. (3.55)

This is the so-called Lyapunov-Schmidt decomposition of problem (3.53). We call Kc : Z → X the inverse
operator of the topological isomorphism Lc : X → Z so that (3.54) becomes

ṽ +Kc

[
(I −Q)

[
N (v̄ + ṽ + ϕ)

]]
= 0. (3.56)

On the other hand, taking into account the explicit expression for Q, (3.55) is nothing but

1
T

∫ T

0

g(v̄ + ṽ(t) + ϕ(t))dt = ē. (3.57)

We denote by S the set of solutions of (3.56), that is,

S :=
{

(v̄, ṽ) ∈ R×X : ṽ +Kc

[
(I −Q)

[
N (v̄ + ṽ + ϕ)

]]
= 0
}
. (3.58)

Well-known results based upon the continuity of the Leray-Schauder topological degree, (see, for instance,
[25]), show that for any v̄− < v̄+ ∈ R there exists a connected subset S[v̄−,v̄+] ⊂ S∩

(
[v−, v+]×X

)
intersecting

S ∩ ({v−} ×X) and S ∩ ({v+} ×X). We study the number of solutions of equation

1
T

∫ T

0

g(v̄ + ṽ(t) + ϕ(t))dt = ē, (v̄, ṽ) ∈ S, 0 ≤ v̄ < 2π. (3.59)
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Observe now that, if T is small, the norm of Kc when seen as an operator from

Y :=

{
h ∈ C (R/TZ) :

∫ T

0

h(t)dt = 0

}
⊂ C (R/TZ) (3.60)

to itself is small. On the other hand, ‖(I − Q)N (x)‖∞ ≤ 2 maxR |g| ∀x ∈ L1 (R/TZ) with independence of
T . We deduce from (3.58) that ‖ṽ‖∞ is small for every (v̄, ṽ) ∈ S, so that

1
T

∫ T

0

g(v̄ + ṽ(t) + ϕ(t))dt ≈ 1
T

∫ T

0

g(v̄ + ϕ(t))dt (3.61)

as soon as T is small. The discussion above motivates the following result, which slightly improves Proposition
2 in [42].

Proposition 3.6.1. Let n0 ∈ N, α > 2 be given. Then, there exists a periodic function ψn0 ∈ C∞(R/2πZ)
such that, for any g ∈ C(R/2πZ) with zero mean,

1
2π

∫ 2π

0

g (a+ ψn0(t) + t) dt =

√
An0(g)2 +Bn0(g)2

α
cos(n0a) ∀a ∈ R (3.62)

where An0(g) = 1
π

∫ 2π

0
g(x) cos(n0x)dx and Bn0(g) = 1

π

∫ 2π

0
g(x) sin(n0x)dx are the n0

th coefficients in the
Fourier series of g.

Proof. Define H : R → R by

H(x) = x+
2
α

sinx. (3.63)

Then, H ′(x) = 1+ 2
α cosx > 0 ∀x ∈ R, so that it is an increasing diffeomorphism in R. Define ψn0 : R → R

by the rule

ψn0(t) :=
1
n0
H−1 (n0t)− t+ d

where d ∈ R is a constant which will be fixed later. In this way,

ψn0(t+ 2π) =
1
n0
H−1(n0t+ n02π)− (t+ 2π) + d = ψn0(t) ∀t ∈ R.

Also, taken g ∈ C(R/2πZ) with zero mean and a ∈ R, we have

1
2π

∫ 2π

0

g (a+ ψn0(t) + t) dt =
1
2π

∫ 2π

0

g

(
a+ d+

1
n0
H−1 (n0t)

)
dt =

=
1
2π

∫ 2π

0

g (a+ d+ x)H ′(n0x)dx =
1
2π

∫ 2π

0

g (a+ d+ x)
(
1 +

2
α

cos(n0x)
)
dx =

=
1
απ

∫ 2π

0

g (a+ d+ x) cos(n0x)dx =
1
απ

∫ 2π

0

g (x) cos
(
n0(x− a− d)

)
dx =

=
1
α

[
An0(g) cos(n0a+ n0d) +Bn0(g) sin(n0a+ n0d)

]
. (3.64)

It is clear now that d ∈ R can be chosen so that (3.62) is satisfied.

Corollary 3.6.2. Let n0 ∈ N, α > 2 and g ∈ C(R/2πZ) with zero mean be given. Then, for any ε > 0,
there exists an open set G = Gε ⊂ L1 (R/TZ) such that, with the notation from Proposition 3.6.1:∣∣∣∣∣ 1

2π

∫ 2π

0

g (a+ h(t)) dt−
√
An0(g)2 +Bn0(g)2

α
cos(n0a)

∣∣∣∣∣ < ε ∀a ∈ R, ∀h ∈ G.
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Proof. By Proposition 3.6.1, it is possible to find h0 ∈ L1(R/2πZ) such that

1
2π

∫ 2π

0

g (a+ h0(t)) dt =

√
An0(g)2 +Bn0(g)2

α
cos(n0a) ∀a ∈ R. (3.65)

However, the operator

Ψ : L1

(
R

2πZ

)
→ C(R/2πZ)

h 7→
[
a 7→ 1

2π

∫ 2π

0

g(a+ h(t))dt
] (3.66)

is continuous. To see this, choose a sequence of L1(R/2πZ) functions {hn} → h and a sequence of real numbers
{an} ⊂ R/2πZ. Take subsequences {hnk

} and {ank
} such that {ank

}k → a ∈ R/2πZ and {hnk
}k → h a.e.

Apply the Lebesgue Theorem to conclude

lim
k→∞

1
2π

∫ 2π

0

g(ank
+ hnk

(t))dt =
1
2π

∫ 2π

0

g(a+ h(t))dt

so that

lim
k→∞

[
1
2π

∫ 2π

0

g(ank
+ hnk

(t))dt− 1
2π

∫ 2π

0

g(ank
+ h(t))dt

]
= 0,

in another words,
lim

k

[
[Ψhnk

](ank
)− [Ψh](ank

)
]

Being {an} an arbitrary sequence in R/2πZ, it follows that {Ψhnk
}k converges to Ψh uniformly. This

completes the argument.

At this stage, we are ready to use the abstract work carried out above in this section to obtain our next
result, on the existence of many ordered lower and upper solutions for some specific pendulum-type equations.
This should lead us to complete the proof of Theorem 3.1.1.

Proposition 3.6.3. Let n0 ∈ N and g ∈ C(R/2πZ) with zero mean be given. We assume that, with the
notation from Proposition 3.6.1, An0(g)

2 + Bn0(g)
2 6= 0. Then, for any T > 0, ε > 0, it is possible to find

ϕ ∈ C∞ (R/TZ) and 0 ≤ v0 < v1 < . . . < v2n0−1 < v2n0 = v0 ∈ C2 (R/TZ) such that:

(−1)q
[
v′′q + cv′q + g(vq + ϕ(t))

]
>

√
An0(g)2 +Bn0(g)2

4
∀q = 0, . . . , 2n0 − 1, (3.67)∣∣∣∣vq(t)−

π

n0
q

∣∣∣∣ < ε ∀t ∈ R/TZ, ∀q = 0, . . . , 2n0 − 1. (3.68)

Proof. It suffices to prove the result for T > 0 small, since, given any p ∈ N, whenever v0, . . . , v2n0−1 ∈
C2 (R/TZ) , ϕ ∈ C∞ (R/TZ) satisfy (3.67), ṽ0 . . . , ṽ2n0−1 ∈ C2(R/pTZ), ϕ̃ ∈ C∞(R/pTZ) defined by the
rule

ṽq(t) := vq(t), ϕ̃(t) = ϕ(t), t ∈ R

will do the job for the period pT . We may (and we will) also assume 0 < ε < π
n0

.
By Corollary 3.6.2, we are able to find some ϕ0 ∈ C∞(R/2πZ) and δ > 0 such that∣∣∣∣∣ 1
2π

∫ 2π

0

g (a+ ϕ0(t) + h(t)) dt−
√
An0(g)2 +Bn0(g)2

3
cos(n0a)

∣∣∣∣∣ <
√
An0(g)2 +Bn0(g)2

12

∀a ∈ R, ∀h ∈ L1(R/2πZ), ‖h‖1 < δ. (3.69)
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At this point, let us fix T > 0 so small that

‖Kc‖Y <
1

2 maxR |g|
min

{
δ

2π
, ε

}
where ‖Kc‖Y stands for the operator norm of Kc when seen as an operator from the space Y defined in (3.60)
to itself. In this way, we ensure that

‖ṽ‖∞ < min
{
δ

2π
, ε

}
for any (v̄, ṽ) in the set S :=

{
(v̄, ṽ) ∈ R × X : ṽ + Kc

[
(I −Q)

[
N (v̄ + ṽ + ϕ)

]]
= 0

} (
where ϕ(t) :=

ϕ0(2πt/T )
)
. In particular, ‖ṽ‖1 < δT

2π ∀(v̄, ṽ) ∈ S. Now, a simple change of scale in (3.69) gives∣∣∣∣∣ 1T
∫ T

0

g (a+ ϕ(t) + h(t)) dt−
√
An0(g)2 +Bn0(g)2

3
cos(n0a)

∣∣∣∣∣ <
√
An0(g)2 +Bn0(g)2

12

∀a ∈ R, ∀h ∈ L1(R/TZ), ‖h‖1 <
δT

2π
,

and we conclude∣∣∣∣∣ 1T
∫ T

0

g (v̄ + ṽ(t) + ϕ(t)) dt−
√
An0(g)2 +Bn0(g)2

3
cos(n0v̄)

∣∣∣∣∣ <
√
An0(g)2 +Bn0(g)2

12

∀(v̄, ṽ) ∈ S. (3.70)

Inequality (3.70) implies, for v̄ = v̄q = π
n0
q,

(
q = 0, . . . , 2n0 − 1

)
, that

(−1)q 1
T

∫ T

0

g

(
π

n0
q + ṽ(t) + ϕ(t)

)
dt >

√
An0(g)2 +Bn0(g)2

4
∀ṽ ∈ X with

(
π

n0
q, ṽ

)
∈ S.

We have shown:

Corollary 3.6.4. Let n0 ∈ N and g ∈ C(R/2πZ) with zero mean be given. We assume that, with the
notation from Proposition 3.6.1, An0(g)

2 +Bn0(g)
2 6= 0. Then, there exists an open set O ⊂ L1 (R/TZ) with

O ∩ {h ∈ L1 (R/TZ) : 1
T

∫ T

0
h(t)dt = k′+ck

T } 6= ∅, such that for any e ∈ O, problem (3.1) has at least 2n0

geometrically different solutions.

Proof. It is a consequence from Proposition 3.6.3 above and the three solutions theorem (see [4]). Simply
take 0 < ε < π

2n0
in this Proposition to obtain a ordered scheme of lower and upper solutions.

Proof of Theorem 3.1.1. In case g is a trigonometric polynomial, we already proved it in page 64. In case it
is not, apply Corollary 3.6.4 above.
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Chapter 4

A Hartman-Nagumo inequality for the
vector ordinary p-Laplacian and
applications to nonlinear boundary
value problems

4.1 Introduction

In 1960, Hartman [39] (see also [40]) showed that the second order system in RN

u′′ = f(t, u, u′) , (4.1)
u(0) = u0, u(1) = u1, (4.2)

with f : [0, 1]×RN ×RN → RN continuous, has at least one solution u such that ‖u(s)‖ ≤ R for all s ∈ [0, 1]
when there exists R > 0, a continuous function ϕ : [0,+∞[→ R+ such that∫ +∞

0

s

ϕ(s)
ds = +∞ (4.3)

and nonnegative numbers γ, C such that the following conditions hold :

(i) 〈x, f(t, x, y)〉+ ‖y‖2 ≥ 0 for all t ∈ [0, 1] and x, y ∈ RN such that ‖x‖ = R, 〈x, y〉 = 0.

(ii) ‖f(t, x, y)‖ ≤ ϕ(‖y‖) and ‖f(t, x, y)‖ ≤ 2γ(〈x, f(t, x, y)〉 + ‖y‖2) + C for all t ∈ [0, 1] and x, y ∈ RN

such that ‖x‖ ≤ R.

(iii) ‖u0‖, ‖u1‖ ≤ R.

In 1971, Knobloch [44] proved, under conditions (i) and (ii) on the (locally Lipschitzian in u, u′) nonlin-
earity f , the existence of a solution for the periodic problem arising from equation (4.1). The local Lipschitz
conditions was shown to be superfluous in [79]. A basic ingredient in those proofs is the so-called Hartman-
Nagumo inequality which tells that if x ∈ C2([0, 1],RN ) is such that

‖x(t)‖ ≤ R, ‖x′′(t)‖ ≤ ϕ(‖x′(t)‖), and ‖x′′(t)‖ ≤ γ
(
‖x(t)‖2

)′′
+ C, (t ∈ [0, 1]),

for some ϕ satisfying (4.3), some R > 0, γ ≥ 0, C ≥ 0, then there exists some K > 0, only depending on
ϕ, R, γ and C, such that

‖x′(t)‖ < K, (t ∈ [0, 1]).
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Recently, Mawhin [60, 59] extended the Hartman-Knobloch results to nonlinear perturbations of the
ordinary vector p-Laplacian of the form

(‖u′‖p−2u′)′ = f(t, u).

His approach was based upon the application of the Schauder fixed point theorem to a suitable modification
of the original problem whose solutions coincide with those of the original one.

Our aim here is to extend, at the same time, the Hartman-Knobloch results to nonlinear perturbations of
the ordinary p-Laplacian and Mawhin’s results to derivative-depending nonlinearities. In the case of Dirichlet
boundary conditions, we use the Schauder fixed point theorem to find solutions to a modified problem, while
in dealing with periodic ones, our main tool is the continuation theorem proved in [60]. Both procedures
strongly depend on the extension of the Hartman-Nagumo inequality developed in Section 2.

Even though Theorem 4.4.1 exactly yields, when p = 2, the Hartman-Knobloch theorem, this is probably
not the best possible extension. On the other hand, further extensions to more general operators of, say,
φ-Laplacian type u 7→ (φ(u′))′ (as considered in [60]) remain, as far as we know, unexplored.

For N ∈ N and 1 < p < +∞ fixed, we denote by ‖ · ‖ the Euclidean norm in RN and by | · | the absolute
value in R, while 〈·, ·〉 stands for the Euclidean inner product in RN . By p′ we mean the Hölder conjugate of
p (given by 1

p + 1
p′ = 1). For q ∈ {p, p′}, the symbol φq is used to represent the mapping

φq : RN → RN , x 7→

{
‖x‖q−2x if x 6= 0
0 if x = 0.

Then, it is clear that φp and φp′ are mutually inverse homeomorphisms from RN to itself, and mutually
inverse analytic diffeomorphisms from RN\{0} to itself. Furthermore, an elementary computation shows
that

φ′q(x)v = ‖x‖q−2

(
(q − 2)

〈
x

‖x‖
, v

〉
x

‖x‖
+ v

)
(4.4)

for all x ∈ RN \ {0}, all v ∈ RN , and q = p, p′.

4.2 A Hartman-Nagumo inequality for the p-Laplacian

In this section, we extend the Hartman-Nagumo-type inequality [39, 40] associated to the second order
differential operator x→ x′′ to the p-Laplacian case x→ (φp(x′))

′
. We need first a preliminary result giving

an estimate on the Lp−1 norm of x′ when x is bounded in the uniform norm and some differential inequalities
involving (φp(x′))

′ hold. Let us call, for brevity, p-admissible any C1 mapping x : [0, 1] → RN such that
φp(x′) : [0, 1] → RN is of class C1.

Lemma 4.2.1. Let B > 0 be given. Then, there exists a positive number M > 0 (depending only on B)
such that for each p-admissible mapping x verifying the following inequalities, with r : [0, 1] → R a C1 convex
function :

(i) ‖x(t)‖, |r(t)| ≤ B for all t ∈ [0, 1];

(ii) ‖(φp(x′))′‖ ≤ r′′ a.e. on [0, 1],

one has ∫ 1

0

‖x′(t)‖p−1dt < M.

Proof. Condition (ii) can be rewritten as

‖φp(x′(s))− φp(x′(t))‖ ≤ r′(s)− r′(t), (0 ≤ t ≤ s ≤ 1), (4.5)

which implies that
‖φp(x′(s))‖ ≤ ‖φp(x′(t))‖+ r′(s)− r′(t), (0 ≤ t ≤ s ≤ 1), (4.6)
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‖φp(x′(s))‖ ≤ ‖φp(x′(t))‖+ r′(t)− r′(s), (0 ≤ s ≤ t ≤ 1). (4.7)

Integrating inequality (4.6) with respect to s, we find∫ 1

t

‖x′(s)‖p−1ds ≤ (1− t)‖x′(t)‖p−1 + r(1)− r(t)− (1− t)r′(t)

≤ (1− t)‖x′(t)‖p−1 + 2B − (1− t)r′(t), (0 ≤ t ≤ 1), (4.8)

while integrating inequality (4.7) with respect to s we get∫ t

0

‖x′(s)‖p−1ds ≤ t‖x′(t)‖p−1 − r(t) + r(0) + tr′(t)

≤ t‖x′(t)‖p−1 + 2B + tr′(t), (0 ≤ t ≤ 1). (4.9)

Adding expressions (4.8) and (4.9), we find∫ 1

0

‖x′(s)‖p−1ds ≤ ‖x′(t)‖p−1 + (2t− 1)r′(t) + 4B, (0 ≤ t ≤ 1), (4.10)

and we deduce that ∫ 1

0

‖x′(s)‖p−1ds ≤ ‖x′(t)‖p−1 + |r′(t)|+ 4B, (0 ≤ t ≤ 1). (4.11)

Now, the convexity of r means that r′ is increasing. Together with the bound |r(t)| ≤ B for all t ∈ [0, 1],
it implies that

|r′(t)| ≤ 6B for all t ∈
[
1
3
,
2
3

]
, (4.12)

which, together with (4.11), gives us the inequality∫ 1

0

‖x′(s)‖p−1ds ≤ ‖x′(t)‖p−1 + 10B for all t ∈
[
1
3
,
2
3

]
. (4.13)

Following a similar process as before but integrating inequalities (4.6) and (4.7) with respect to t instead
of s, we get

‖x′(s)‖p−1 ≤
∫ 1

0

‖x′(t)‖p−1dt+ |r′(s)|+ 4B, (0 ≤ s ≤ 1),

which, after changing the names of the variables s and t, is equivalent to

‖x′(t)‖p−1 ≤
∫ 1

0

‖x′(s)‖p−1ds+ |r′(t)|+ 4B, (0 ≤ t ≤ 1), (4.14)

and, again, using (4.12), gives

‖x′(t)‖p−1 ≤
∫ 1

0

‖x′(s)‖p−1ds+ 10B for all t ∈
[
1
3
,
2
3

]
. (4.15)

The information given by (4.13) and (4.15) can be written jointly as∣∣∣∣‖x′(t)‖p−1 −
∫ 1

0

‖x′(s)‖p−1ds

∣∣∣∣ ≤ 10B for all t ∈
[
1
3
,
2
3

]
, (4.16)

which clearly implies that∣∣‖x′(t)‖p−1 − ‖x′(s)‖p−1
∣∣ ≤ 20B for all t, s ∈

[
1
3
,
2
3

]
. (4.17)

Suppose now that the conclusion of Lemma 2.1 is not true. This would imply the existence of sequences
{xn} in C1([0, 1],RN ) and {rn} in C1([0, 1],R) such that xn is p-admissible and rn is convex for all n ∈ N,
and, furthermore,
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(̂i)n ‖xn(t)‖, |rn(t)| ≤ B for all t ∈ [0, 1],

(îi)n ‖(φp(x′n))′(t)‖ ≤ r′′n(t) a.e. on [0, 1],

(îii)
∫ 1

0
‖x′n(t)‖p−1dt→ +∞.

From (îii) and (4.16) we deduce that
∥∥x′n( 1

2 )
∥∥p−1 → +∞ as n→ +∞, or what is the same, that

∥∥x′n( 1
2 )
∥∥→

+∞ as n → +∞. In particular, we can suppose, after taking apart a finite set of terms if necessary, that
x′n( 1

2 ) 6= 0 for all n ∈ N. From (4.17) we can conclude now that the sequence of continuous functions{
‖x′n(·)‖p−1

‖x′n( 1
2 )‖p−1

}
converges to 1 uniformly on [13 ,

2
3 ] as n → ∞, or, what is the same, that the sequence of

continuous functions
{
t 7→ ‖x′n(t)‖

‖x′n( 1
2 )‖

}
converges to 1 uniformly on [ 13 ,

2
3 ] as n→∞.

Going back to (4.5) we can use (4.12) to obtain the inequalities∥∥∥∥φp(x′n(t))− φp

(
x′n

(
1
2

))∥∥∥∥ ≤ ∣∣∣∣r′n(t)− r′n

(
1
2

)∣∣∣∣ ≤ 12B (4.18)

for all t ∈
[
1
3 ,

2
3

]
, and all n ∈ N, and, if n is large enough so that x′n(t) 6= 0 for all t ∈

[
1
3 ,

2
3

]
, dividing

inequality (4.18) by
∥∥x′n( 1

2 )
∥∥p−1 we obtain∥∥∥∥ ‖x′n(t)‖p−1

‖x′n( 1
2 )‖p−1

x′n(t)
‖x′n(t)‖

−
x′n( 1

2 )
‖x′n( 1

2 )‖

∥∥∥∥ ≤ 12B
‖x′n( 1

2 )‖p−1
(4.19)

for all t ∈
[
1
3 ,

2
3

]
, and we deduce that

x′n(t)
‖x′n(t)‖

−
x′n
(

1
2

)
‖x′n

(
1
2

)
‖
→0 as n→∞ (4.20)

uniformly on
[
1
3 ,

2
3

]
. We can find, therefore, an integer n0 ∈ N such that for any n ≥ n0,〈

x′n(t)
‖xn(t)‖

,
x′n( 1

2 )
‖x′n( 1

2 )‖

〉
≥ 1

2

for all t ∈
[
1
3 ,

2
3

]
, what is the same as 〈

x′n(t),
x′n( 1

2 )
‖x′n( 1

2 )‖

〉
≥ ‖x′n(t)‖

2
(4.21)

for all t ∈
[
1
3 ,

2
3

]
and all n ≥ n0. To end the proof, fix any n1 ≥ n0 such that

‖x′n1
(t)‖ > 12B (4.22)

for all t ∈
[
1
3 ,

2
3

]
, and verify that, because of (4.21),〈

x′n1
(t),

x′n1
( 1
2 )

‖xn1(
1
2 )‖

〉
> 6B (4.23)

for all t ∈
[
1
3 ,

2
3

]
,. This inequality, integrated between 1

3 and 2
3 gives us〈

xn1(
2
3
)− xn1(

1
3
),

xn1(
1
2 )

‖xn1(
1
2 )‖

〉
> 2B. (4.24)

Hence, using the Cauchy-Schwartz inequality, we obtain the contradiction〈
xn1(

2
3
)− xn1(

1
3
),

xn1(
1
2 )

‖xn1(
1
2 )‖

〉
≤
∥∥∥∥xn1

(
2
3

)
− xn1

(
1
3

)∥∥∥∥ ≤ 2B. (4.25)
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The following lemma provides an estimate for the uniform norm of x′.

Lemma 4.2.2. Let B > 0 be given and choose the corresponding M > 0 according to Lemma 4.2.1. Let
ϕ : [M,+∞[→ R+ be continuous and such that∫ +∞

M

s

ϕ(s)
ds > M.

Then, there exists a positive number K > 0 (depending only on B, M and ϕ) such that for each p-admissible
mapping x satisfying, for some C1 convex function r : [0, 1] → R, the following conditions :

1. ‖x(t)‖, |r(t)| ≤ B for all t ∈ [0, 1];

2. ‖(φp(x′))′‖ ≤ r′′ a.e. on [0, 1];

3. ‖(φp(x′))′(t)‖ ≤ ϕ(‖x′(t)‖p−1) for any t ∈ [0, 1] with ‖x′(t)‖p−1 ≥M ,

one has
‖x′(t)‖ < K for all t ∈ [0, 1].

Proof. Choose K > p−1
√
M such that ∫ Kp−1

M

s

ϕ(s)
ds = M.

We show that the thesis holds for this K. To this aim, fix any x, r verifying the hypothesis of the Lemma,
and suppose that there exists some t0 ∈ [0, 1] such that ‖x′(t0)‖ ≥ K, and hence ‖x′(t0)‖p−1 ≥ Kp−1 > M .
However, by definition of the constant M, we have

∫ 1

0
‖x′(t)‖p−1dt < M , so that there must exist some

t1 ∈ [0, 1] (we pick the closest one to t0), such that ‖x′(t1)‖p−1 = M .
Define

Φ : [M,+∞[→ [0,+∞[, t 7→
∫ t

M

s

ϕ(s)
ds, (4.26)

and notice that Φ is continuous, Φ(M) = 0, Φ is strictly increasing and Φ(Kp−1) = M . Now,

M = Φ(Kp−1) ≤ Φ(‖x′(t0)‖p−1) = |Φ(‖x′(t0)‖p−1)|

=

∣∣∣∣∣
∫ ‖x′(t0)‖p−1

M

s

ϕ(s)
ds

∣∣∣∣∣ =
∣∣∣∣∣
∫ ‖x′(t1)‖p−1

‖x′(t0)‖p−1

s

ϕ(s)
ds

∣∣∣∣∣ =
∣∣∣∣∣
∫ ‖φp(x′(t1))‖

‖φp(x′(t0))‖

s

ϕ(s)
ds

∣∣∣∣∣ . (4.27)

Using the change of variables s = ‖φp(x′(t))‖, t ∈ [min{t0, t1},max{t0, t1}], (which is absolutely continuous
because φp(x′) is C1 and ‖ · ‖ is Lipschitz), we obtain, from hypothesis 3,

M ≤

∣∣∣∣∣
∫ ‖φp(x′(t1))‖

‖φp(x′(t0))‖

s

ϕ(s)
ds

∣∣∣∣∣ =
∣∣∣∣∫ t1

t0

‖φp(x′(t))‖
ϕ(‖φp(x′(t))‖)

〈φp(x′(t)), (φp(x′))′(t)〉
‖φp(x′(t))‖

dt

∣∣∣∣
≤
∣∣∣∣∫ t1

t0

‖φp(x′(t))‖ ·
‖(φp(x′))′(t)‖
ϕ(‖φp(x′(t))‖)

dt

∣∣∣∣ ≤ ∣∣∣∣∫ t1

t0

‖φp(x′(t))‖dt
∣∣∣∣ = ∣∣∣∣∫ t1

t0

‖x′(t)‖p−1dt

∣∣∣∣
so that

M ≤
∫ max{t0,t1}

min{t0,t1}
‖x′(t)‖p−1dt ≤

∫ 1

0

‖x′(t)‖p−1dt < M, (4.28)

a contradiction.

The following elementary result of real analysis is used in the proof of the next theorem.

Lemma 4.2.3. Let α, h : [0, 1] → R be continuous functions, α non decreasing. Suppose that h′ exists and
is nonnegative in the open set {t ∈]0, 1[: h(t) 6= α(t)}. Then h is non decreasing on [0, 1].
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Proof. Suppose, by contradiction, that there exist s < t in [0, 1] such that h(s) > h(t). There must be some
x ∈ ]s, t[ such that h(x) = α(x) (otherwise, the Lagrange mean value theorem would give us the inequality
h(s) ≤ h(t)). Define

a := min{x ∈ [s, t] : h(x) = α(x)}, b := max{x ∈ [s, t] : h(x) = α(x)}.

Again, by the Lagrange mean value Theorem, we have the inequalities

h(s) ≤ h(a) = α(a) ≤ α(b) = h(b) ≤ h(t),

a contradiction.

We can now prove the proposed extension of the Hartman-Nagumo inequality.

Theorem 4.2.4. Let R > 0, γ ≥ 0, C ≥ 0 be given and choose M > 0 as associated by Lemma 4.2.1 to
B := max

{
R, γR2 + C

2

}
. Let ϕ : [M,+∞[→ R+ be continuous and such that∫ +∞

M

s

ϕ(s)
ds > M.

Then, there exists a positive number K > 0 (depending only on R, p, γ, C, M and ϕ) such that, for any
p-admissible mapping x satisfying the following conditions :

(i) ‖x(t)‖ ≤ R, (0 ≤ t ≤ 1);

(ii) ‖(φp(x′))′(t)‖ ≤ γ
(
‖x(t)‖2

)′′ + C for all t ∈ [0, 1] such that x′(t) 6= 0;

(iii) ‖(φp(x′))′(t)‖ ≤ ϕ(‖x′(t)‖p−1) for all t ∈ [0, 1] such that ‖x′(t)‖p−1 ≥M,

one has
‖x′(t)‖ < K (t ∈ [0, 1]).

Proof. From the chain rule we know that x′ = φp′(φp(x′)) is a C1 mapping on the set {t ∈ [0, 1] : x′(t) 6= 0}.
Let us define

r : [0, 1] → R, t 7→ γm(t) + C
t2

2
, (4.29)

where m(t) = ‖x(t)‖2. It is clear that r is a C1 function. Moreover,

r′(t) = 2γ〈x(t), x′(t)〉+ Ct (t ∈ [0, 1]). (4.30)

It means that x′ does not vanish on the set {t ∈ [0, 1] : r′(t) 6= Ct}, and then, on this set, r is C2 and
r′′(t) = γm′′(t) + C ≥ ‖(φp(x′))′(t)‖ ≥ 0.

By Lemma 4.2.3 we deduce that r′ is increasing, what is equivalent to say that r is convex. Also, it is
clear that

‖x(t)‖, |r(t)| ≤ B (t ∈ [0, 1]), (̃i)

and, to be able to apply Lemma 4.2.2 we only have to check that inequality

‖(φp(x′))′(t)‖ ≤ r′′(t) (ĩi)

holds for almost every t in [0, 1].
Notice, firstly, that our hypothesis (ii) says that (ĩi) is true for all t in [0, 1] such that x′(t) 6= 0. Secondly,

in the interior of the set {t ∈ [0, 1] : x′(t) = 0} we have

‖(φp(x′))′(t)‖ = 0 ≤ r′′(t) = C.

78



It remains to see what happens on A := ∂({t ∈ [0, 1] : x′(t) = 0}). We will prove that at every point
t ∈ A∩ ]0, 1[ such that (r′)′(t) = r′′(t) exists we have the inequality

‖(φp(x′))′(t)‖ ≤ r′′(t). (4.31)

Pick some point t0 ∈ A∩ ]0, 1[ such that r′′(t) exists. If t0 is an isolated point of A, there exists some ε > 0
such that ]t0, t0 + ε[⊂ ]0, 1[ \A. Then, r′ and φp(x′) are both of class C1 on ]t0, t0 + ε[ and we have the
inequality

‖(φp(x′))′(t)‖ ≤ r′′(t) (t ∈ ]t0, t0 + ε[). (4.32)

It follows that ‖φp(x′(t))− φp(x′(s))‖ ≤ r′(t)− r′(s) for all s, t with t0 < s < t < t0 + ε, and letting s→ t0,
that

‖φp(x′(t))− φp(x′(t0))‖ ≤ r′(t)− r′(t0) (t ∈ ]t0, t0 + ε[), (4.33)

from which we deduce that ‖φp(x′))′(t0)‖ ≤ r′′(t0). If, otherwise, t0 is an accumulation point of A, there
exists a sequence {an} of points from A \ {t0} converging to t0. But x′(an) = 0 for all n ∈ N, which implies
that φp(x′(an)) = 0 and r′(an) = Can for all n ∈ N. We conclude then that (φp(x′))′(t0) = 0 ≤ C = r′′(t0).

Theorem (4.2.4) is now a simple consequence of Lemma 4.2.2.

4.3 Nonlinear perturbations of the p-Laplacian

Let f : [0, 1]× RN × RN → RN be continuous, and consider the following differential equation

(φp(x′))′ = f(t, x, x′), (0 ≤ t ≤ 1). (4.34)

Our goal in the remaining part of this chapter is to develop some existence results for the solutions of this
equation verifying either the periodic boundary conditions :

x(0) = x(1), x′(0) = x′(1), (P)

or the Dirichlet boundary conditions
x(0) = x0, x(1) = x1, (D)

where x0 and x1 are some given points of RN .
Next, we state and prove two lemmas that will be needed later:

Lemma 4.3.1. Let x be a p-admissible mapping. For each t0 ∈ ]0, 1[ such that ‖x(t0)‖ = maxt∈[0,1] ‖x(t)‖,
one has

〈x(t0), x′(t0)〉 = 0 and 〈x(t0), (φp(x′))′(t0)〉+ ‖x′(t0)‖p ≤ 0.

Furthermore, the same conclusion remains true when t0 = 0 or 1 if x is assumed to verify the periodic
boundary conditions (P).

Proof. Suppose first that t0 ∈ ]0, 1[. The equality

‖x(t0)‖2 = max
t∈[0,1]

‖x(t)‖2 (4.35)

implies that

2〈x(t0), x′(t0)〉 =
d

dt |t=t0
‖x(t)‖2 = 0. (4.36)

Next, suppose by contradiction that

〈x(t0), (φp(x′))′(t0)〉+ ‖x′(t0)‖p > 0, (4.37)

what is the same as
d

dt |t=t0
〈x(t), φp(x′(t))〉 > 0. (4.38)
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As
〈x(0), φp(x′(0))〉 = ‖x′(0)‖p−2〈x(0), x′(0)〉 = 0,

we deduce the existence of some ε > 0 such that ]t0 − ε, t0 + ε[⊂ [0, 1] and

〈x(t), φp(x′(t))〉 < 0, t ∈ ]t0 − ε, t0[ (4.39)
〈x(t), φp(x′(t))〉 > 0, t ∈ ]t0, t0 + ε[. (4.40)

Equivalently,

d

dt
‖x(t)‖2 = 2〈x(t), x′(t)〉 < 0, t ∈ ]t0 − ε, t0[ , (4.41)

d

dt
‖x(t)‖2 = 2〈x(t), x′(t)〉 > 0, t ∈ ]t0, t0 + ε[ , (4.42)

which implies that ‖x(t)‖ attains a strict local minimum at t = t0. Of course, this is not compatible with
our hypothesis and this first case is proved.

If now x verifies the periodic boundary conditions (P) and

‖x(0)‖ = ‖x(1)‖ = max
t∈[0,1]

‖x(t)‖,

define y : [0, 1] → RN by y(t) := x(t+ 1/2) if 0 ≤ t ≤ 1
2 , y(t) := x(t− 1/2) if 1

2 ≤ t ≤ 1 and apply the above
result to y (at t0 = 1

2 ) to obtain the desired result.

Lemma 4.3.2. Let fi : [0, 1] × RN × RN → RN , (i = 1, 2, 3, ...), be a sequence of continuous mappings,
uniformly converging on compact sets to f : [0, 1] × RN × RN → RN . Suppose that there exist positive
numbers R, K > 0 such that, for every i ∈ N, there exist a solution xi of the differential equation

(φp(x′))′ = ni(t, x, x′)

with
‖xi(t)‖ ≤ R, ‖x′i(t)‖ ≤ K (t ∈ [0, 1]).

Then there exists a subsequence of {xi} converging in the space C1[0, π] to some p-admissible mapping x̄ :
[0, 1] → RN , which is a solution of (4.34).

Proof. The two sequences of continuous mappings {xi} and {φp(x′i)} are uniformly bounded together with
its derivatives, so that, by the Ascoĺı-Arzelà Lemma, we can find a subsequence {zi} of {xi} uniformly
converging on [0, 1] and such that the sequence {φp(z′i)} is also uniformly converging on [0, 1]. As φp is an
homeomorphism from RN to itself, we deduce that both {zi} and {z′i} are uniformly converging on [0, 1].
Finally, from the equalities

(φp(x′i))
′ = fi(t, xi, x

′
i) (i = 1, 2, 3, ..., )

we deduce that also the sequence {(φp(z′i))
′} converges uniformly on [0, 1]. The result now follows.

The following set of hypothesis on the nonlinearity f will be widely used in the remaining of this chapter:

[H4] There exist R > 0, γ ≥ 0, C ≥ 0, M > 0 associated by Lemma 4.2.1 to B := max{R, γR2 + C
2 } and

ϕ : [M,+∞[→ R+ continuous with ∫ +∞

M

s

ϕ(s)
ds > M

such that

(a) For any t ∈ [0, 1], x, y ∈ RN such that ‖x‖ = R, 〈x, y〉 = 0, we have

〈x, f(t, x, y)〉+ ‖y‖p ≥ 0.
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(b) For any t ∈ [0, 1], x, y ∈ RN such that ‖x‖ ≤ R and ‖y‖p−1 ≥M,

‖f(t, x, y)‖ ≤ ϕ(‖y‖p−1).

(c) For any t ∈ [0, 1], x ∈ RN with ‖x‖ ≤ R and y ∈ RN ,

‖y‖p‖f(t, x, y)‖

≤ 2γ
(
(p′ − 2)〈y, f(t, x, y)〉〈x, y〉+ ‖y‖2〈x, f(t, x, y)〉+ ‖y‖p+2

)
+ C‖y‖p.

As we will see next, these assumptions on f will be sufficient to ensure the existence of a solution for both
the periodic and the Dirichlet problems associated to equation (4.34). However, in our approach to these
problems, we will have to assume firstly a slightly stronger set of hypothesis, consisting in replacing (a) by

(ã) For any t ∈ [0, 1]; x, y ∈ RN such that ‖x‖ = R, 〈x, y〉 = 0, we have

〈x, f(t, x, y)〉+ ‖y‖p > 0.

The new set of hypothesis will be denoted by [H̃4].
Notice, furthermore, that if there exist numbers R > 0, γ ≥ 0, C ≥ 0 and a continuous function

ϕ : [0,+∞[→ R+ verifying the classical Nagumo condition∫ +∞

0

s

ϕ(s)
ds = +∞,

such that (a), (b), and (c) are still satisfied, then, the whole set of hypothesis [H4] is ensured.

4.4 The periodic problem

We prove in this section the existence of a solution for the periodic problem associated to equation (4.34).

Theorem 4.4.1. Let f : [0, 1]×RN×RN → RN be a continuous mapping satisfying [H4]. Then, the periodic
boundary value problem (P) for equation (4.34) has at least one solution x : [0, 1] → RN such that ‖x(t)‖ ≤ R
for all t ∈ [0, 1].

Proof. The theorem will be proved in two steps. In the first one, we assume that the set of hypothesis [H̃4]
holds. To prove the theorem in this more restrictive case, choose K > 0 as given by Theorem 4.2.4 for
R, γ, C, M and ϕ, and define

Ω := {x ∈ C1
T ([0, 1]) : ‖x(t)‖ < R, ‖x′(t)‖ < K for all t ∈ [0, 1]}. (4.43)

Our aim is to apply the continuation theorem 5.1 from [60] in our case. The first thing we have to prove is
that for each λ ∈ ]0, 1[, the problem

(Pλ) ≡

{
(φp(x′))′ = λf(t, x, x′)
x(0) = x(1), x′(0) = x′(1)

(4.44)

has no solutions on ∂Ω. Indeed, notice that

Ω̄ = {x ∈ C1
T [0, 1] : ‖x(t)‖ ≤ R, ‖x′(t)‖ ≤ K for all t ∈ [0, 1]}. (4.45)

Now, fix any λ ∈ ]0, 1[ and let x̄ ∈ Ω̄ be a solution of (Pλ). Our hypothesis (b) tells us that

‖(φp(x′))′(t)‖ = λ‖f(t, x(t), x′(t))‖
≤ ‖f(t, x(t), x′(t))‖ ≤ ϕ(‖x′(t)‖p−1) = ϕ(‖φp(x′(t))‖) (4.46)
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for every t ∈ [0, 1] such that ‖x′(t)‖p−1 ≥ M. That is the third hypothesis needed in Theorem 4.2.4. The
first one is obviously satisfied. Let us check the second one. We can use (4.4) to find that

z, v ∈ RN , z 6= 0 ⇒ φ′p′(φp(z))v = ‖z‖−p
(
(p′ − 2)〈z, v〉z + ‖z‖2v

)
. (4.47)

In our context, it means that, for each t ∈ [0, 1] such that x′(t) 6= 0, x′′(t) exists, and furthermore,

x′′(t) = (φp′(φp(x′)))′(t) = φ′p′(φp(x′(t)))(φp(x′))′(t) = φ′p′(φp(x′(t)))(λf(t, x(t), x′(t)))

= λ‖x′(t)‖−p
(
(p′ − 2)〈x′(t), f(t, x(t), x′(t)〉x′(t) + ‖x(t)‖2f(t, x(t), x′(t))

)
, (4.48)

and then,

2(〈x(t), x′′(t)〉+ ‖x′(t)‖2) ≥ 2(〈x(t), x′′(t)〉+ λ‖x′(t)‖2)
= 2‖x′(t)‖−p

(
(p′ − 2)〈x′(t), f(t, x(t), x′(t))〉〈x(t), x′(t)〉

+ ‖x′(t)‖p+2 + ‖x′(t)‖2〈x(t), x(t, x(t), x′(t))〉
)

(4.49)

for all t ∈ [0, 1] with x′(t) 6= 0. It turns out that, if we define r : [0, 1] → R by r(t) = ‖x(t)‖2, for each t ∈ [0, 1]
such that x′(t) 6= 0, we can write, using hypothesis (c),

‖(φp(x′))′(t)‖ = λ‖f(t, x(t), x′(t))‖
≤ 2λγ‖x′(t)‖−p

(
(p′ − 2)〈x′(t), f(t, x(t), x′(t))〉〈x(t), x′(t)〉

+ ‖x′(t)‖2〈x(t), f(t, x(t), x′(t))〉+ ‖x′(t)‖p+2
)

+ λC

≤ γr′′(t) + λC ≤ γr′′(t) + C. (4.50)

Now, Theorem 4.2.4 tells us that
‖x′(t)‖ < K (t ∈ [0, 1]), (4.51)

and therefore, in order to see that x ∈ Ω, it only remains to prove the inequality

‖x(t)‖ < R (t ∈ [0, 1]). (4.52)

Suppose, otherwise, that there exists some point t0 ∈ [0, 1] such that ‖x(t0)‖ = R. Then, ‖x(t0)‖ =
maxt∈[0,1] ‖x(t)‖, and from Lemma 4.3.1 we should have

〈x(t0), (φp(x′))′(t0)〉+ ‖x′(t0)‖p = 〈x(t0), f(t0, x(t0), x′(t0))〉+ ‖x′(t0)‖p ≤ 0,

contradicting our hypothesis (ã).
Finally, it remains to check that the equation

F(a) :=
∫ 1

0

f(t, a, 0)dt = 0 (4.53)

has no solutions on (∂Ω) ∩ RN = {a ∈ RN : ‖a‖ = R}, and that the Brouwer degree

degB(F ,Ω ∩ RN , 0) = degB(F , BR(0), 0)

is not zero. But from hypothesis (ã) (taking y = 0) we deduce

〈a, f(t, a, 0)〉 > 0 for all a ∈ RN , ‖a‖ = R, and all t ∈ [0, 1], (4.54)

and, integrating from 0 to 1 we get

〈a,
∫ 1

0

f(t, a, 0)dt〉 = 〈a,F(a)〉 > 0 for all a ∈ BR(0), (4.55)
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which, effectively, implies that degB(F ,BR(0), 0) = 1. This concludes our first step. The theorem is proved
assuming (ã) instead of (a). And the whole theorem follows now from a simple approximation theorem that
we sketch below.

Fix some ε∗ > 0 small enough so that, after defining

B := max
{
R, γR2 +

C

2

}
, R∗ := R, C∗ := C +

Rε∗
2
,

B∗ := max
{
R, γR2 +

C∗
2

}
, M∗ := max

{(
B∗
B

) 1
p−1

,
B∗
B

}
M,

(where, as the reader can easily check, M∗ has been carefully chosen so that it satisfies the conditions of
Lemma 4.2.1 for the parameter B∗

)
, we still have the inequality∫ +∞

M∗

s

ϕ∗(s)
ds > M∗ (4.56)

Next, choose a sequence {εi}i∈N → 0 with 0 < εi < ε∗ (i ∈ N), and define

fi : [0, 1]× RN × RN → RN , (t, x, y) 7→ f(t, x, y) + εix (i ∈ N). (4.57)

Now, it is clear that, for each i ∈ N,

(ai)∗ For any t ∈ [0, 1], x, y ∈ RN such that ‖x‖ = R, 〈x, y〉 = 0, we have
〈x, fi(t, x, y)〉+ ‖y‖p > 0.

(bi)∗ For any t ∈ [0, 1], x, y ∈ RN such that ‖x‖ ≤ R∗ and ‖y‖p−1 ≥M∗,
‖fi(t, x, y)‖ ≤ ϕ(‖y‖p−1).

(ci)∗ For any t ∈ [0, 1], x ∈ RN such that ‖x‖ ≤ R∗ and y ∈ RN ,

‖y‖p‖fi(t, x, y)‖ ≤ ‖y‖p‖f(t, x, y)‖+ ‖y‖pε∗R ≤ 2γ
(
(p′ − 2)〈y, f(t, x, y)〉〈x, y〉

+ ‖y‖2〈x, f(t, x, y)〉+ ‖y‖p+2
)

+ C∗‖y‖p = 2γ
(
(p′ − 2)〈y, fi(t, x, y)〉〈x, y〉

+ ‖y‖2〈x, fi(t, x, y)〉+ ‖y‖p+2
)

+ C∗‖y‖p − 2γ
(
(p′ − 2)εi〈x, y〉2 + εi‖x‖2‖y‖2

)
≤ 2γ

(
(p′ − 2)〈y, f(t, x, y)〉〈x, y〉+ ‖y‖2〈x, fi(t, x, y)〉+ ‖y‖p+2

)
+ C∗‖y‖p. (4.58)

(because p′ − 2 > −1).

We deduce, by the first step proved above, the existence for each i ∈ N of a solution xi : [0, 1] → RN of the
periodic boundary value problem

(Pi) ≡

{
(φp(x′))′ = f(t, x, x′) + εix

x(0) = x(1), x′(0) = x′(1),
(4.59)

verifying ‖xi(t)‖ < R, ‖x′i(t)‖ < K∗ for all t ∈ [0, 1]. (K∗ being given by Theorem 4.2.4 for R, p, γ, C∗ and
M∗).

The existence of a solution to our problem is now a consequence of Lemma 4.3.2.

4.5 The Dirichlet problem

Consider now the boundary value problem arising from equation (4.34) together with the Dirichlet boundary
conditions (D). For the reader’s convenience, we reproduce here a result of [54].
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Lemma 4.5.1. Let x0, x1 ∈ RN be fixed. Then, for each h ∈ C[0, 1] there exists a unique solution xh ∈
C1[0, 1] to the problem

(Dh) ≡

{
(φp(x′))′ = h

x(0) = x0, x(1) = x1

(4.60)

Furthermore, if we define K : C[0, 1] → C1[0, 1] by h 7→ xh, the mapping K is completely continuous.

Proof. Integrating the differential equation in (4.60) from 0 to t we find that a continuous mapping x : [0, 1] →
RN is a solution to this equation if and only if there exist some a ∈ RN (necessarily unique) such that

φp(x′(t)) = a+H(h)(t) (t ∈ [0, 1]), (4.61)

where H(h)(t) :=
∫ t

0
h(s)ds. This formula can be rewritten as

x′(t) = φ−1
p (a+H(h)(t)) (t ∈ [0, 1]). (4.62)

Now, the boundary conditions imply that

x(t) = x0 +
∫ t

0

φ−1
p (a+H(h)(s))ds (t ∈ [0, 1]), (4.63)

and that ∫ T

0

φ−1
p (a+H(h)(s))ds = x1 − x0 (4.64)

We therefore conclude that there exists a bijective correspondence between the set of solutions to (4.60) and
the set of points a ∈ RN verifying (4.64), given by x 7→ φp(x′(0)).

Following a completely analogous reasoning to that carried out in Proposition 2.2 from [53], we find that

(i) For each h ∈ C[0, 1] there exists an unique solution a(h) of (4.64).

(ii) The function a : C[0, 1] → RN defined in (i) is continuous and maps bounded sets into bounded sets.

We deduce that for every h ∈ C[0, 1], there exists a unique solution K(h) of (Dh), given by the formula

K(h)(t) = x0 +
∫ t

0

φ−1
p (a(h) +H(h)(s))ds (t ∈ [0, 1]). (4.65)

The continuity of the mapping a allows us to deduce the continuity of K. The boundedness of a on
bounded sets of C[0, 1] has as a consequence the compactness of K on bounded sets of C[0, 1].

This lemma is now used to prove the following existence theorem for the Dirichlet problem associated to
(4.34).

Theorem 4.5.2. Let f : [0, 1]×RN ×RN → RN be a continuous mapping verifying [H4]. Let x0, x1 ∈ RN

with ‖x0‖, ‖x1‖ ≤ R. Then, the boundary value problem (4.34)−(D), has at least one solution x : [0, 1] → RN

such that ‖x(t)‖ ≤ R for all t ∈ [0, 1].

Proof. Define F : C1[0, 1] → C[0, 1] by

F(x)(t) := f(t, x(t), x′(t)), (t ∈ [0, 1]), (4.66)

so that our problem can be rewritten as

x = KF(x), (x ∈ C1[0, 1]). (4.67)

Notice that KF : C1[0, 1] → C1[0, 1] is a completely continuous mapping, so that if f were bounded, F and
KF would be bounded and the Schauder fixed point theorem would give us the existence of a solution of
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our problem. Thus, our problem now is reduced to finding some f∗ : [0, 1] × RN × RN → RN continuous,
bounded and such that every solution to the equation

(φp(x′))′ = f∗(t, x, x′) (4.68)

verifying the boundary conditions (D) is also a solution to (4.34).
The following construction is essentially taken from [40]. As in the periodic case, start assuming that f

actually verifies the more restrictive set of hypothesis [H̃4]. Let K > 0 be as given by Theorem 4.2.4 for
R, γ, C,M and ϕ. Choose some continuous function

ρ : [0,∞[→ R+ (4.69)

such that
ρ(t) = 1, (0 ≤ t ≤ K), (4.70)

and
sup{ρ(‖y‖)‖f(t, x, y)‖ : t ∈ [0, 1], ‖x‖ ≤ R, y ∈ RN} < +∞. (4.71)

For instance, ρ could be chosen as

ρ(t) :=


1 if 0 ≤ t ≤ K

1
1+max{‖f(t,x,y)‖:t∈[0,1], ‖x‖≤R, ‖y‖≤t} if t ≥ K + 1

(1 +K − t)ρ(K) + (t−K)ρ(1 +K) if K ≤ t ≤ K + 1
. (4.72)

Define

f∗(t, x, y) :=

{
ρ(‖y‖)f(t, x, y) if ‖x‖ ≤ R

ρ(‖y‖)f(t, R x
‖x‖ , y) if ‖x‖ ≥ R.

(4.73)

It is easy to check that f∗ is still a continuous bounded function satisfying not only the same set [H̃4] of
hypothesis (for the same parameters R, γ, C, M), but, moreover,

(a∗) For any t ∈ [0, 1], x, y ∈ RN such that ‖x‖ ≥ R, 〈x, y〉 = 0, we have

〈x, f(t, x, y)〉+ ‖y‖p > 0.

Also, it is clear that f∗(t, x, y) = f(t, x, y) if ‖x‖ ≤ R and ‖y‖ ≤ K.
So, let x̄ : [0, 1] → RN be a solution to (4.68) verifying the boundary conditions (D), where ‖x0‖, ‖x1‖ ≤

R. Let us show that ‖x̄(t)‖ ≤ R, ‖x̄′(t)‖ ≤ K for all t ∈ [0, 1]. First suppose that there exist some
point t0 ∈ [0, 1] such that ‖x̄(t0)‖ > R. This point t0 can be taken so as ‖x̄(t0)‖ = maxt∈[0,1] ‖x̄(t)‖. As
‖x̄(0)‖ = ‖x0‖ ≤ R, ‖x̄(1)‖ = ‖x1‖ ≤ R, we see that t0 ∈ ]0, 1[. Now, using Lemma 4.3.1, we deduce that
〈x̄(t0), x̄′(t0)〉 = 0 and

〈x̄(t0), (φp(x̄′))′(t0)〉+ ‖x′(t0)‖p = 〈x̄(t0), n∗(t0, x̄(t0), x̄′(t0))〉+ ‖x̄′(t0)‖ ≤ 0,

which contradicts (a∗). It means that ‖x̄(t)‖ ≤ R for all t ∈ [0, 1]. And, in the same way as happened in the
proof of Theorem 4.4.1, our hypothesis (b) and (c) on f (applied to f∗) make x̄ verify the second and third
hypothesis of Theorem 4.2.4. Applying it we obtain that ‖x̄′(t)‖ ≤ K for all t ∈ [0, 1], so that x̄ is in fact
solution to the system (4.34-(D)).
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