
The spectrum of reversible minimizers

Antonio J. Ureña

September 25, 2017

Abstract. Poincaré [13, §355]) and Carathéodory [4, §412-413] showed
that the Floquet multipliers of 1-dimensional periodic curves minimizing
the lagrangian action are real and positive. This result can be general-
ized to higher-dimensional systems which are reversible in time.

1 Introduction

The motivation of this paper goes back to Poincaré, 130 years ago. At the
end of section 355 of the third volume of his celebrated book Les Méthodes
Nouvelles de la Mécanique Céleste [13], while studying the dynamics of closed
trajectories of autonomous planar lagrangian systems, he writes:

Donc, pour qu’une courbe fermée corresponde à une action moindre que
toute courbe fermée infiniment voisine, il faut que cette courbe fermée corres-
ponde à une solution périodique instable de la première catégorie.1

In modern-day terms, we may paraphrase this assertion as follows: the
Floquet multipliers of action-minimizing closed curves in the plane are real
and positive. Thus, such action-minimizing curves cannot be elliptic, and they
must be either parabolic (the degenerate case, where λ = 1 is the only Floquet
multiplier), or hyperbolic (if there are two Floquet multipliers 0 < λ1 < 1 <
λ2).

In 1935 Carathéodory [4, §412] reinterpreted Poincaré’s theorem for time-
periodic 1-dimensional lagrangian systems. In this context, he showed that, as
in the autonomous planar case, the Floquet multipliers of periodic action min-
imizers are real and positive (and consequently, the same parabolic/hyperbolic
alternative appears). He also provided an example [4, §411] showing that this
result is not true in dimension 2. See also Moser [9, pp. 77-78].

In this paper we extend Carathéodory’s 1-dimensional theorem to higher
dimensions under time reversibility. More precisely, let the lagrangian function

1Hence, for a closed curve to correspond to a lower action than any infinitely neighboring
closed curve, it is necessary that this closed curve corresponds to an unstable periodic
solution of the first category. (Our translation)
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L : R× RN × RN → R, L = L(t, x, ẋ), be given by

L(t, x, ẋ) =
1

2
〈P (t)ẋ, ẋ〉+ 〈R(t)x, ẋ〉+

1

2
〈Q(t)x, x〉 , (1)

for some continuous functions P,R,Q : R/Z→MN(R) satisfying

P (t) = P (−t) = P (t)∗ > 0, Q(t) = Q(−t) = Q(t)∗, R(−t) = −R(t) . (2)

Notice that these conditions correspond to the time-reversibility assumption
L(−t, x,−ẋ) = L(t, x, ẋ). The Euler-Lagrange equations associated to L are
linear, and given by

d

dt

[
P (t)ẋ(t) +R(t)x(t)

]
= R(t)∗ẋ(t) +Q(t)x(t) , (3)

and it is well-known that its 1-periodic solutions coincide with the critical
points of the periodic action functional

A : C1(R/Z,RN)→ R , x 7→
∫ 1/2

−1/2
L(t, x(t), ẋ(t))dt .

The main result of these notes is the following

Theorem 1.1. Assume that A[x] ≥ 0 for any x ∈ C1(R/Z,RN). Then the
Floquet multipliers for the period 1 associated to the trivial solution x∗ ≡ 0 are
real and positive.

Let us briefly continue our historical review. The second half of the twen-
tieth century saw a renewed interest on the related question of the extension
of Sturm theory to systems of differential equations. This issue was analyzed,
e.g., by Hartman [7, Chapter XI, §10], Morse [8, Chapters 5 and 6] and Arnold
[1], and all this background will have an important influence on the present
paper.

Almost thirty years ago, Bolotin [2] and Treschev [15] (see also [3, p. 232])
used Hill’s formula for the infinite determinant of the Hessian of the action
functional to show that nondegenerate closed gedesics of minimal length in
even-dimensional orientable manifolds are exponentially unstable. This result
is complementary to ours: it removes the reversibility assumption but works
only for even dimensions. In addition, it does not eliminate the possibility of
some elliptic Floquet multipliers.

More recently, Offin [10] has used techniques from symplectic topology to
show hyperbolicity for nondegenerate natural systems (i.e., P (t) ≡ IN , R(t) ≡
0N), under reversibility assumption. Thus, Theorem 1.1 can be seen as a gen-
eralization of Offin’s theorem; we shall give a simpler proof of the hyperbolicity
assertion in Section 2.
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We emphasize that Theorem 1.1 loses its validity if the reversibility assump-
tions (2) are skipped. See the (already referred) examples in [4, §411] and [9,
p. 78]. For instance, in this latter reference it is shown that the Floquet mul-
tipliers corresponding to the period 1 associated to the trivial extremal x∗ ≡ 0
of the lagrangian Lα : R2 × R2 → R defined by

Lα(x, ẋ) =
1

2
|ẋ− αJx|2 , x, ẋ ∈ R2 ,

are e±iα, each one with multiplicity 2 (here, 0 < α < π is a constant and

J =

(
0 −1
1 0

)
stands for the 90◦ rotation in the positive sense). On the other

hand, for the related lagrangian Lε : R2 × R2 → R defined by

Lε(x, ẋ) =
1

2
|ẋ|2 +

1

2
|x|2 + (1 + ε)〈x, Jẋ〉 , x, ẋ ∈ R2 ,

it can be checked that, if ε > 0 is small enough, the trivial extremal x∗ ≡ 0
is a nondegenerate minimum of the 1-periodic action functional, while the
associated Floquet multipliers are four different complex numbers on the unit
circle. See [19, Section 3, example 5.]

In addition to being real and positive, the spectrum associated to (3) (or
any Hamiltonian system) remains invariant by the inversion λ 7→ 1/λ. More
precisely, if λ is a Floquet multiplier, then 1/λ is again a Floquet multiplier
with the same algebraic multiplicity (see, e.g., [6, Corollary 6, p. 5]). Thus,
Theorem 1.1 can be rephrased by saying that the set of Floquet multipliers
associated to a periodic minimizer has the form{

0 < λ1 ≤ λ2 ≤ . . . ≤ λN ≤ 1 ≤ 1/λN ≤ 1/λN−1 ≤ . . . ≤ 1/λ1 < +∞
}
,

each multiplier being counted one or several times, according to its multiplicity.
Conversely, it is clear that any set of 2N positive numbers as above is the
spectrum of some Lagrangian system (3) under the conditions of Theorem 1.1,
as it suffices to take P (t) ≡ IN , R(t) ≡ 0N , and Q(t) as the constant diagonal
matrix having in its diagonal the squares of the logarithms of the λi. I owe
this observation to R. Ortega.

We point out that Theorem 1.1 gives also information for nonlinear prob-
lems. More precisely, let the lagrangian L : R×RN×RN → R, L = L (t, x, ẋ)
be continuous and twice-continuously differentiable with respect to (x, ẋ), but
not necessarily of the form (1). Let it further satisfy the Legendre convexity
condition: the N × N matrix Lẋẋ(t, x, ẋ) positive definite for any (t, x, ẋ).
Finally, let L be 1-periodic in the time variable and time-reversible, i.e.

L (t+ 1, x, ẋ) = L (t, x, ẋ) = L (−t, x,−ẋ), (t, x, ẋ) ∈ R× RN × RN .

The periodic action functional A : C1(R/Z,RN)→ R is defined by A [x] :=∫ 1/2

−1/2 L (t, x(t), ẋ(t))dt. As an immediate consequence of Theorem 1.1 one has

the following
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Corollary 1.2. Let x∗ : R/Z→ R be a local minimizer of the action functional
A . Assume further that x∗ is even, i.e. x∗(−t) = x∗(t) for any t. Then, the
associated eigenvalues are real and positive.

Concerning this corollary, we remark that: (a): local minimizers are to
be understood in the sense of the C1(R/Z,RN) topology; (b): if one assumes
that x∗ is a global minimizer, then it is automatically even, as a well-known
argument shows (see, e.g., [14, Proposition 2.2]).

To conclude this introduction, let us mention that the related problem of
the Lyapunov-instability of action minimizers in possibly degenerate nonlinear
problems has also been studied in many works, including Dancer and Ortega
[5], Ortega [11],[12], and the author [16], [17] (for the 1-dimensional case), and
[18] in the higher-dimensional situation.

2 Hyperbolicity of symmetric minimizers

We devote this section to show the hyperbolicity of nondegenerate symmetric
minimizers of the action functional A. Our results here generalize a previous
theorem by Offin [10, Proposition 2.2], who obtains a similar conclusion for
natural lagrangians L(t, x, ẋ) = |ẋ|2/2 − V (x). Precisely, we shall prove the
result below, which can be considered as a first step towards Theorem 1.1.
Here, S1 := {z ∈ C : |z| = 1} stands for the unit circle in the complex plane.

Proposition 2.1. Under the assumptions of Theorem 1.1, the Floquet multi-
pliers (corresponding to the period 1) associated to x∗ belong to (C\S1) ∪ {1}.

Even though Proposition 2.1 can be deduced immediately from Theorem
1.1 we prefer to give a direct proof here, firstly because of its simplicity, but also
because Corollary 2.3, which will be obtained in our way, will play an important
role later. We shall start our arguments with the following result, which uses a
well-known argument for reversible problems (see, e.g. [14, Proposition 2.2]).

Lemma 2.2. Under the assumptions of Theorem 1.1,

A1/2[x] :=

∫ 1/2

0

L(t, x(t), ẋ(t))dt ≥ 0 for any x ∈ C1([0, 1/2],RN) . (4)

Moreover, the equality holds if and only if x is a solution of (3) with ẋ(0) =
ẋ(1/2) = 0.

Proof. We start by observing that the action functional A can be continuously
extended to the Sobolev space H1(R/Z,RN). Since C1(R/Z,RN) is dense
there, we deduce that

A[x] ≥ 0 for any x ∈ H1(R/Z,RN) . (5)

4



On the other hand, by (2), for any x ∈ C1([0, 1/2],RN) one has

A1/2[x] =
1

2
A[x]] ≥ 0 , (6)

where x](−t) = x](t) denotes the even extension of x to [−1/2, 1/2]. No-
tice that x] may not be continuously differentiable; however, its 1−periodic
extension to the real line belongs to H1(R/Z,RN). Inequality (4) follows.

On the other hand, the equality in (5) holds if and only if x is a 1-periodic
solution of (3). It means that the equality in (6) holds if and only if x] is a
1-periodic solution of (3), proving the second part of the lemma.

We immediately obtain the following result:

Corollary 2.3. Under the assumptions of Theorem 1.1, for any natural num-
ber q ≥ 1 one has

Aq[x] :=

∫ q/2

−q/2
L(t, x(t), ẋ(t))dt ≥ 0 for any x ∈ C1([−q/2, q/2],RN) , (7)

with the equality holding if and only if x is a solution of (3) with ẋ(k/2) = 0 for
any integer k ∈ [−q, q]. In particular, A1[x] > 0 for any x ∈ C1([−1/2, 1/2],RN)
with

|x(1/2)− x(−1/2)|+ |ẋ(−1/2)|+ |ẋ(1/2)| 6= 0.

We recall that the system of equations (3) is said to be disconjugate if
every nontrivial solution vanishes at most once on R. The disconjugacy of
periodic minimizers was studied by Carathéodory [4, §412] in the 1-dimensional
setting and, in higher dimensions by Offin [10, Proposition 2.2] assuming that
P (t) ≡ IN and R(t) ≡ 0.

Corollary 2.4. Under the assumptions of Theorem 1.1, system (3) is discon-
jugate.

Proof. Assume, by a contradiction argument, that there exists a nonzero solu-
tion x : R→ RN of (3) with x(t−) = 0 = x(t+) for some t− < t+. Multiplying
both sides of (3) by x(t) and integrating by parts on the left we find that∫ t+

t−

L(t, x(t), ẋ(t))dt = 0 .

Choose some integer q ≥ 1 such that [t−, t+] ⊂] − q/2, q/2[, and define x̂ :

[−q/2, q/2] → RN by setting x̂(t) :=

{
x(t) if t ∈ [t−, t+]

0 otherwise
. Using the ar-

gument at the beginning of the proof of Lemma 2.2 we see that the action
functional AN can be continuously extended to the Sobolev space H1(] −
q/2, q/2[,RN) and is nonnegative. Thus, AN attains its minimum at x̂, imply-
ing that it must be a solution of (3). In particular, ẋ(t±) = 0 = x(t±), and, by
uniqueness, x ≡ 0. This contradiction concludes the proof.
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Proof of Proposition 2.1. Assume, by a contradiction argument, that eiθ were
a Floquet multiplier for some θ ∈]0, 2π[. This implies the existence of a
complex-valued solution x+ iy : R→ CN of (3) satisfying{

x(m+ 1/2) + iy(m+ 1/2) = eiθ(x(m− 1/2) + iy(m− 1/2)) ,

ẋ(m+ 1/2) + iẏ(m+ 1/2) = eiθ(ẋ(m− 1/2) + iẏ(m− 1/2)) ,

for any integer m. After possibly replacing x+ iy by −y + ix we may further
assume that x 6≡ 0. Then, some computations imply that |x(m+1/2)−x(m−
1/2)| + |ẋ(m − 1/2)| + |ẋ(m + 1/2)| 6= 0 for any m ∈ Z, and, by the final
assertion of Corollary 2.3 we see that

1

2

∫ m+1/2

m−1/2

(
〈P (t)ẋ(t), ẋ(t)〉+2〈R(t)x(t), ẋ(t)〉+〈Q(t)x(t), x(t)〉

)
dt > 0 , m ∈ Z .

We rewrite the integrand as 〈P (t)ẋ(t)+R(t)x(t), ẋ(t)〉+〈R(t)∗ẋ(t)+Q(t)x(t), x(t)〉,
and integrate by parts in the first term. Combining the facts that x is a solu-
tion of (3), that P (−1/2) = P (1/2) and Q(−1/2) = Q(1/2) (by periodicity),
and that R(±1/2) = 0N (by periodicity and reversibility), we obtain that the
sequence of real numbers

am := 〈P (1/2)ẋ(m+ 1/2), x(m+ 1/2)〉 ,

is strictly increasing.

Let now mk → +∞ be a sequence of integers with mkθ → 0 mod 2π; then,
eimkθ → 1 and we deduce that x(mk + 1/2) → x(1/2) and ẋ(mk + 1/2) →
ẋ(1/2). Consequently, amk

→ a0, contradicting the fact that the sequence
{am} is strictly increasing. This contradiction concludes the proof.

3 Matrix-valued solutions of the Euler-Lagrange

equations

We turn our attention to the matrix version of (3):

d

dt

[
P (t)Ṁ(t) +R(t)M(t)

]
= R(t)∗Ṁ(t) +Q(t)M(t) , (8)

Here, M : R → MN(R) is a matrix-valued curve. Notice that M is a
solution of (8) if and only if each of its columns is a solution of (3). In this
case, the matrix

(TM)(t) := (P (t)Ṁ(t) +R(t)M(t))∗M(t)−M(t)∗(P (t)Ṁ(t) +R(t)M(t))

does not depend on t, as one easily checks. Following [7, Chapter XI, §10] we
shall say that M = M(t) is self-conjugate provided that TM = 0N .
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Remark 3.1. In [8, §18], the same notion is referred to as conjugate fami-
lies in the sense of Von Escherich. On the other hand, using the Legendre
transformation y = P (t)ẋ+R(t)x, the lagrangian system (3) becomes a linear
Hamiltonian system (

ẋ
ẏ

)
= JA(t)

(
x
y

)
.

Let RN ×RN be endowed with the canonical symplectic form. In this context,
one inmediately checks that M = M(t) is self-conjugate if and only if the

subspace of generated by the columns of M(t) :=

(
M(t)

P (t)Ṁ(t) +R(t)M(t)

)
is

isotropic.

Proposition 3.2. Under the conditions of Theorem 1.1, there exists a self-
conjugate solution M : [−1/2, 1/2]→MN(R) of (8) satisfying:

(i) M is even, i.e., M(−t) = M(t),

(ii) M(±1/2) = IN ,

(iii) detM(t) 6= 0 ∀t ∈ [−1/2, 1/2],

(iv) P (1/2)Ṁ(1/2) ≥ 0 (i.e., is positive semidefinite).

Proof. Let S : [−1/2, 1/2]→MN(R) be the solution of (8) satisfying

S(−1/2) = 0N , S ′(−1/2) = IN .

We notice that det(S(t)) 6= 0 for any t ∈]− 1/2, 1/2]. Indeed, if S(t0)ξ = 0 for
some −1/2 < t0 ≤ 1/2, then, x(t) := S(t)ξ would be a solution of (3) vanishing
at t = −1/2 and t = t0, and by Corollary 2.4, x ≡ 0, so that ξ = ẋ(−1/2) = 0.
This allows us to define

M(t) := (S(t) + S(−t))S(1/2)−1, t ∈ [−1/2, 1/2] .

This is a solution of (8) satisfying (i) and (ii). In order to see that it is
self-conjugate we notice that K := (TM)(t) does not depend on t, and yet,
(TM)(−t) = −(TM)(t). Thus, K = 0.

Concerning (iii) we first observe that M(0) = 2S(0)S(1/2)−1, so that
det(M(0)) 6= 0. Thus, by (i) it only remains to show that det(M(t)) 6= 0
for every t ∈]0, 1/2[. This follows from an argument similar to the one made
above for S: if M(t0)ξ = 0, then, x(t) := M(t)ξ would be a solution of (3)
vanishing at ±t0, and by Corollary 2.4, x ≡ 0, implying that ξ = x(±1/2) = 0.

In order to show (iv) we consider, for any ξ ∈ RN , the function xξ ∈
C1([−1/2, 1/2],RN) defined by xξ(t) := M(t)ξ. Since xξ(−1/2) = ξ = xξ(1/2),
xξ can be considered as an element of the Sobolev space H1(R/Z,RN). The
action functional A can be continuously extended to this bigger space, and, the
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subspace C1(R/Z,RN) being dense, A is positive semidefinite onH1(R/Z,RN).
It follows that

0 ≤ A[xξ] = 〈Uξ, ξ〉 ∀ξ ∈ RN ,

where U := (1/2)
∫ 1/2

−1/2

(
Ṁ∗PṀ + Ṁ∗RM + M∗R∗Ṁ + M∗QM

)
dt. Notice

that the term inside the integral can be decomposed as Ṁ∗(PṀ + RM) +
M∗(R∗Ṁ + QM). Integrating by parts in the first summand, using (8), and
remembering that, by (2), P (−1/2) = P (1/2) and R(±1/2) = 0N one finds
that U = P (1/2)Ṁ(1/2). This establishes (iv) and concludes the proof.

Some comments are in order:

Remark 3.3. In connection with (iv), we observe that the matrix P (1/2)Ṁ(1/2)
is symmetric. This follows from the fact thatM is self-conjugate (andM(1/2) =
IN , R(1/2) = 0).

Remark 3.4. The converse of Proposition 3.2 is also true; if there exists a self-
conjugate solution M : [−1/2, 1/2] → MN(R) of (8) satisfying (i)-(iv), then
the action functional A is positive semidefinite on C1(R/Z,RN). We shall not
use this fact, which can be deduced from [7, Theorem 10.3, p.390].

Remark 3.5. With the terminology of Remark 3.1, condition (iii) above states
that the columns of M(t) span a lagrangian subspace of RN × RN , and this
lagrangian subspace is transversal to the ‘vertical subspace’ {0RN} × RN for
every t ∈ [−1/2, 1/2].

4 Changing variables

From this moment on, we fix M : [−1/2, 1/2]→MN(R) as given by Proposi-
tion 3.2.

Lemma 4.1. The change of variables x = M(t)v transforms the Euler-Lagrange
equations (3) into

d

dt

[
(M(t)∗P (t)M(t))v̇

]
= 0 , −1/2 ≤ t ≤ 1/2 . (9)

Proof. After introducing this change of variables in the Euler-Lagrange equa-
tions (3), one gets

d

dt

[
P (Ṁy +Mv̇) +RMy

]
= R∗(Ṁy +Mv̇) +QMy ,

or, what is the same,

d

dt

[
(PṀ +RM)v

]
+
d

dt
(PMv̇) = (R∗Ṁ +QM)v +R∗Mv̇ ,

8



and, by (8),

(PṀ +RM)v̇ +
d

dt
(PMv̇) = R∗Mv̇ .

Multiplying both sides of the equality by M (which has nonzero determinant,
by (iii)), and using that M is self-conjugate, one obtains

(PṀ +RM)∗Mv̇ +M∗ d

dt
(PMv̇) = M∗R∗Mv̇ ,

which, after the subtraction of M∗R∗Mv̇ from both sides of the equation be-
comes (9). This completes the proof.

Let now x : R → RN be a solution of (3). For any m ∈ Z we define
vm : [−1/2, 1/2]→ RN by

x(m+ t) = M(t)vm(t) , −1/2 ≤ t ≤ 1/2 .

Lemma 4.2. The following hold, for every integer m ∈ Z:

(a) vm+1(−1/2) = vm(1/2) = x(m+ 1/2) .

(b) v̇m+1(−1/2) = v̇m(1/2) + 2Ṁ(1/2)x(m+ 1/2) .

Proof. Assertion (a) follows from the fact that M(±1/2) = IN . Item (b)
follows after comparing the value of ẋ(m+ 1/2) obtained by differentiating on
the equalities x(m+t) = M(t)vm(t) and x(m+1+t) = M(t)vm+1(t) and using
that Ṁ(−1/2) = −Ṁ(1/2) (because M is even).

At this moment, we consider the linear map P : RN × RN → RN × RN

defined by

P(vm(1/2), wm(1/2)) := (vm+1(1/2), wm+1(1/2)) ,

where
wm(t) := P (t)v̇m(t), −1/2 ≤ t ≤ 1/2 , m ∈ Z .

(Observe that every point of RN×RN can be uniquely written as (vm(1/2), wm(1/2))
for a solution x = x(t) of (3)). Since vm(1/2) = x(m + 1/2) and v̇m(1/2) =
−Ṁ(1/2)x(m+ 1/2) + ẋ(m+ 1/2), we see that P is (linearly) conjugate with
the Poincaré map

(x(m+ 1/2), ẋ(m+ 1/2)) 7→ (x(m+ 1 + 1/2), ẋ(m+ 1 + 1/2))

associated to (3); therefore, they have the same eigenvalues. In other words,
the Floquet multipliers of (3) are the eigenvalues of P.

Lemma 4.3. The matrix of P is structured in four N ×N blocks, as follows:

P =

(
IN + S1S2 S1

S2 IN

)
,

where S1, S2 ∈MN(R) are symmetric, with S1 positive definite and S2 positive
semidefinite.
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Proof. Set

S1 :=

∫ 1/2

−1/2
(M(t)∗P (t)M(t))−1dt , S2 := 2P (1/2)Ṁ(1/2) .

Then, it is clear that S1 is symmetric and positive definite, while the fact
that S2 is symmetric and positive semidefinite has already been noticed in
Proposition 3.2-(iv) and Remark 3.3.

Moreover, it follows from Lemma 4.1 that for each integer m there exists
some ξm ∈ RN such that

v̇m(t) = (M∗PM)(t)−1ξm , t ∈ [−1/2, 1/2] . (10)

Thus, wm(−1/2) = ξm = wm(1/2), and one has:

wm+1(1/2) = wm+1(−1/2) = wm(1/2) + P (1/2)(v̇m+1(−1/2)− v̇m(1/2)) ,

and, in view of Lemma 4.2 we see that

wm+1(1/2) = wm(1/2) + S2vm(1/2) . (11)

Moreover, again by (10),

vm+1(1/2) = vm+1(−1/2) +

∫ 1/2

−1/2
v̇m+1(t)dt = vm(1/2) + S1wm+1(1/2) ,

which in combination with (11) gives

vm+1(1/2) = (IN + S1S2)vm(1/2) + S1wm(1/2) ,

and completes the proof.

5 The Floquet multipliers are real and posi-

tive

In this section we shall complete the proof of Theorem 1.1. As observed in the
comments preceding Lemma 4.3, the Floquet multipliers of (3) coincide with
the eigenvalues of P. We shall begin with the following:

Lemma 5.1. P has no real negative eigenvalues.

Proof. Assume, by a contradiction argument, that −λ < 0 were an eigenvalue;
then, there would be vectors v, w ∈ RN , not simultaneoulsly zero, such that{

(IN + S1S2)v + S1w = −λv ,
S2v + w = −λw .
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From the second equation we see that w = −S2v/(1 + λ). It easily follows
that v 6= 0 6= w, and the first equation gives

v = − λ

(1 + λ)2
S1S2v ,

so that

S−11 v = − λ

(1 + λ)2
S2v ⇒ 0 < 〈S−11 v, v〉 = − λ

(1 + λ)2
〈S2v, v〉 ≤ 0 ,

a contradiction.

We set Q̂ := {p/q : p ∈ 1 + 2Z, q ∈ N}, which is a dense subset of R. The
combination of Corollary 2.3 and Lemma 5.1 will lead us to the following

Lemma 5.2. P does not have eigenvalues λ ∈ C\{0} with arg(λ) ∈ π Q̂.

Proof. We use a contradiction argument and assume instead that P had some
eigenvalue λ = reipπ/q with r > 0, q ∈ N and p ∈ 1 + 2Z. Then, Pq would
have the eigenvalue λq = −rq < 0. However, Pq is conjugate to the Poincaré
map associated (3) and the time period q. Since the action functional Aq is
positive semidefinite (by Corollary 2.3) we can apply Lemma 5.1 above and
find a contradiction.

Proof of Theorem 1.1. For any 0 ≤ s ≤ 1 we define

Ls : (R/Z)× RN × RN → R , (t, x, ẋ) 7→ (1− s)L(t, x, ẋ) + s(|x|2 + |ẋ|2) .

The corresponding action functionals are positive semidefinite on C1(R/Z,RN)
for every s ∈ [0, 1]. The associated Floquet multipliers (associated to the pe-
riod 1) vary continuously with s and hence, by Lemma 5.2, they must move
along rays Rθ = {z ∈ C\{0} : arg(z) = θ}. For s = 1, these Floquet mul-
tipliers are e and 1/e (each repeated N times); thus, they lie on the positive
part of the real axis and we deduce that the same must happen for s = 0. The
proof is complete.

Acknowledgments: I thank R. Ortega for several useful comments and re-
marks.
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