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Abstract

We construct a second-order equation ẍ = h(t)/xp, with p > 1 and the sign-
changing, periodic weight function h having negative mean, which does not have peri-
odic solutions. This contrasts with earlier results which state that, in many cases, such
periodic problems are solvable.
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1 Introduction

In various kinds of boundary value problems associated to differential equations there is an
obvious necessary condition for the existence of a solution, and this necessary condition turns
out to be also sufficient. This the case of the well-known Landesman-Lazer conditions for
scalar equations of the second order. Another instance of this phenomenon comes from the
work of Lazer and Solimini [4], who studied the T -periodic problem associated to the equation

ẍ± 1

xp
= h(t) , x > 0 ,

where p ≥ 1 is a real number and h : R → R is continuous and T -periodic. Integration of
both sides of the equation shows that a necessary condition for the existence of a solution is
that ±

∫ T
0
h(t)dt > 0, and the main result of [4] states that this condition is also sufficient.

In this paper we are concerned with the T -periodic problem associated to equations of
the form

ẍ =
h(t)

xp
, x > 0 . (1)
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Here, p ≥ 1, and h : R→ R is a given (smooth) T -periodic function, which we assume to be
not constantly zero. By a solution of this problem we mean a T -periodic function x : R→ R
of class C2, with x(t) > 0 for all t ∈ R, and satisfying the equation. Multiplying both sides
of the equation by xp and integrating by parts in the left one arrives to a necessary condition
for the existence of a solution:∫ T

0

x(t)pẍ(t)dt = −p
∫ T

0

x(t)p−1ẋ(t)2 dt =

∫ T

0

h(t)dt ⇒
∫ T

0

h(t)dt < 0 .

In addition, a second necessary condition for the existence of a T -period solution is that
h must change sign, leading to the words ‘indefinite weight’ in the title of this paper. It
motivates the question: is it true that if the smooth and T -periodic function h : R → R
changes sign and has negative mean then (1) has a T -periodic solution? This question was
hinted in [3] and answered affirmatively in [8] under the additional assumptions that p ≥ 2
and the zeroes of h are simple. The main result of this paper shows that these additional
conditions cannot be simultaneously removed:

Theorem 1.1. There is a sign-changing, T -periodic function h : R → R of class C∞ with∫ T
0
h(t)dt < 0, such that the equation

ẍ =
h(t)

x5/3
, x > 0 , (2)

does not have T -periodic solutions.

The function h in our example will be even, i.e., it will satisfy h(−t) = h(t) for any
t ∈ R. Consequently, the Neumann boundary value problem associated to (2) on the time
interval [0, T/2] is not solvable either, as any solution would give rise to a solution of the
T -periodic problem. In Corollary 2 of [2], Boscaggin and Zanolin have studied the solvability
of some Neumann problems for singular equations with indefinite weight. When their result
is particularized to equations of the form (1) one obtains the following

Theorem 1.2 (Boscaggin and Zanolin, [2]). Let h : [0, T̂ ] → R be a Lebesgue integrable

function with
∫ T̂
0
h(t)dt < 0. Assume that

(i) There exists some τ ∈]0, T̂ [ with 0 6≡ h(t) ≥ 0 on [0, τ ] and 0 6≡ h(t) ≤ 0 on [τ, d].

(ii) There are numbers α ∈]0, p[ and c ∈]0,+∞[ such that (1/tα)
∫ t
0
h(s)ds→ c as t→ 0.

Then, (1) has an (increasing) solution x = x(t) with ẋ(0) = ẋ(T̂ ) = 0.

Letting p = 5/3 and T̂ = T/2, the function h which we construct in Theorem 1.1
satisfies all these assumptions with the exception of (ii); indeed, one easily checks that
(1/tp)

∫ t
0
h(s)ds → 0 as t → 0. Thus, our example also shows that assumption (ii) above

cannot be dropped from the Boscaggin-Zanolin result without any replacement. Indeed, this
idea has somehow guided us, and our proof of Theorem 1.1 can be roughly divided in two
steps. On one hand, we see that for the even function h which we construct, any periodic
solution of (2) must be even and hence a solution of the Neumann problem on [0, T/2]. On
the other hand, we check that this Neumann problem is not solvable.
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The Dirichlet problem associated to equations of the form (1) and related ones has been
treated by many authors which would be too long to list here; we refer instead to Section
2 of the review paper [1] and the references therein. Let us just mention that an important
landmark in this field came with the work of Taliaferro [7], who characterized solvability
when h is negative, and this paper motivated a big deal of subsequent research. By contrast,
the periodic problem has received much less attention, perhaps because it forces to work with
indefinite weight functions from the beginning. See [2, 3, 8] for some existence results in this
field.

This paper is organized as follows. Section 2 gives an intuitive approach to some of the
key steps of our construction. The rigorous treatment is more delicate and will be completed
only in Section 7, by the combining the auxiliary results collected in sections 3-6. Section
6 is independent from the others, and studies the regularity of the Poincaré map associated
to general second order equations as they are compressed to a zero-length time interval. On
the other hand, sections 3-5 are more specific and treat different aspects of equation (2) with
h(t) = εt2. Section 3 is self-contained, while sections 4,5 are based on the properties obtained
in the Appendix (Section 8) for (2) with h(t) = 3t2/4.

A couple of comments about the non-standard notation which we use throughout this
paper. We denote by π1z = z1 and π2z = z2 to the first and second components, respectively,
of the point z = (z1, z2) ∈ R2. Correspondingly, given a set A and a map F : A → R2 we
denote by π1F, π2F : A → R to its components. We also denote by R : R2 → R2 to the
reflection map Rz := (π1z,−π2z).

2 Towards the example: a heuristic overview

The picking of the coefficient p = 5/3 in (2) may seem strange at first glance, and indeed,
we believe that Theorem 1.1 keeps its validity for equations of the form (1) regardless of the
value of p ≥ 1. Our choice is motivated by the fact that the Emden-Fowler equation

ẍ = ε
t2

x5/3
, −1 ≤ t ≤ 1, x > 0 , (3)

can be solved explicitly. This fact will help us to deal with some difficulties which seem to
require a deeper treatment for other, non-solvable choices of the parameters. (Precisely, we
do not know how to extend Lemma 4.1 when the coefficient 5/3 in (3) is replaced by some
number p ≥ 1 and t2 by |t|q for some q > p. However, we believe that it should be true). Of
course, the function h(t) = ε t2 is not periodic, but our example will consist in taking h to
be instead a convenient approximation of

hε(t) := ε
+∞∑

m=−∞

(t− 2m)2χ2m(t)− 2
+∞∑

m=−∞

δ2m+1(t) , (4)

where each χ2m stands for the characteristic function of ]2m − 1, 2m + 1[ and δ2m+1 is the
Dirac measure at 2m+ 1, see Fig. 1 below. Observe that hε is 2-periodic and its mean value
is ε/3− 1, which is negative if 0 < ε < 3.
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hε

t→

−∞

(a)

t→

⇒

(b)

Figure 1: (a): The ‘graph’ of hε, and (b): a ‘true function’ approximation.

For this argument to work, an important step will consist in showing that (2) with h = hε
does not have 2-periodic solutions for ε > 0 small enough. Or, what is the same, that for
small ε > 0 there are not solutions of (3) satisfying

x(−1) = x(1) , ẋ(−1)− ẋ(1) = − 2

x(1)5/3
. (5)

This will be done in Proposition 4.2, and it is precisely in this step where we shall exploit
in a more critical way the explicit form of the solutions of (3). Let us now describe an
alternative, heuristic (and somewhat incomplete) argument which may nevertheless shed
some light on the situation. In the limit as ε → 0, the solutions of our differential equation
become straight lines as long as they are positive, and bounce back, in the way a beam of
light would do, if they hit the ‘mirror’ x = 0. See Fig. 2(a). Thus, in some sense, the limit
equation is {

ẍ(t) = 0 if x(t) > 0

ẋ(t+) = −ẋ(t−) if x(t) = 0
. (6)

0−1 1
t→

x
↑

(a)

0−1 1
t→

x
↑

(b)

Figure 2: (a) The solutions of the limit equation (6). (b) Continuating x∗ to solutions of
(3)-(5) for small ε > 0.
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There is exactly one solution satisfying the boundary conditions (5), namely

x∗(t) ≡ |t| .

We shall see that this solution can be continued for small ε > 0, giving rise to a unique
‘solution’ of (3)-(5). However, it turns out that these ‘solutions’ actually vanish at t = 0,
so that they cannot be properly considered solutions, see Fig. 2(b). Consequently, for small
ε > 0, problem (3)-(5) is not solvable.

The argumentation above cannot be considered accurate, mainly because we did not
make clear the sense in which (3) converges to (6) as ε → 0. For this reason, an alternative
(and complete) discussion is presented next. To this aim, we shall need, in first place, some
properties of the solutions of (3), which are collected in the next three sections.

The analogous of Theorem 1.1 for equations of the form (1) with 0 < p < 1 is also true,
and is indeed easier to obtain. In this case one checks that, taking h := 1 − K

∑+∞
n=−∞ δn,

equation (1) does not have 1-periodic solutions if K > 0 is sufficiently large. Later on, one
can use this ‘degenerate’ case to construct examples where h is a true function instead of a
measure. We shall not go back to this problem in the present paper.

3 Bouncing back from the singularity

We shall begin our study of (3) by having a look at the solutions which, at time t = −1
depart from a given position (say, x = 1), and head towards the origin at a big (negative)
speed. Intuition says that such a solution will rebound at some time slightly bigger than
−1 on some positive position, subsequently continuing upwards, to arrive at a given higher
position (say, x = 2) before time t = 1. The point is that all this holds uniformly with respect
to the parameter ε. More precisely, the main result of this section is the following.

Proposition 3.1. There exists some M > 0 (not depending on ε or x) such that, whenever
x : [−1, 1] → R is a solution of (3) for some ε > 0 satisfying x(−1) = 1 and ẋ(−1) < −M ,
then x(1) > 2.

Proof. We use a contradiction argument and assume instead the existence of a sequence
{εn}n of positive numbers, and, for each n, a solution xn = xn(t) of (3) with ε = εn such that
xn(−1) = 1, ẋn(−1)→ −∞, and x(1) ≤ 2. After possibly passing to a subsequence we may
assume that, either (a): ẋn(t) < 0 for any t ∈ [−1,−1/2] and any n ∈ N, or (b): for each n
there exists some tn ∈ [−1,−1/2] with ẋ(tn) = 0. We study each case separately:

(a) Let the function G :]0, 1] → R be defined by G(x) := (3/2)
(
1/x2/3 − 1

)
. Differenti-

ation shows that the functions t 7→ ẋn(t)2/2 + εnG(xn(t)) are increasing on [−1,−3/4], and
hence

ẋn(−1)2/2 ≤ ẋn(−3/4)2/2 + εnG(xn(−3/4)) , n ∈ N , (7)

(observe that G(xn(1)) = G(1) = 0). On the other hand, each xn is convex, and we deduce
that

ẋn(t) ≤ ẋn(−3/4) if t ∈ [−1,−3/4] ,
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and integrating both sides of this inequality we find that

0 > ẋn(−3/4) ≥ 4
(
xn(−3/4)− xn(−1)

)
≥ −4 , (8)

for every n ∈ N. We combine this information with (7), to obtain

εn
xn(−3/4)2/3

> εn(2/3)G(xn(−3/4)) ≥ ẋn(−1)2/3− 16/3→ +∞ as t→ +∞ .

We observe now that

ẍn(t) =
εnt

2

xn(t)5/3
≥ εn/4

xn(−3/4)5/3
≥ εn/4

xn(−3/4)2/3
, t ∈ [−3/4,−1/2] ,

and consequently, ẍn(t) → +∞ as n → +∞, uniformly with respect to t ∈ [−3/4,−1/2].
Integration shows that ẋn(−1/2) − ẋn(−3/4) → +∞, or, what is the same, (by (8)), that
ẋn(−1/2)→ +∞. This contradicts our assumption that ẋn(t) < 0 for any t ∈ [−1,−1/2].

(b) We consider the function G defined as above. Differentiation shows that each function
t 7→ ẋn(t)2/2 + εnG(xn(t)) is increasing on [−1, tn], and therefore,

εnG(xn(tn)) ≥ ẋn(−1)2/2→ +∞ .

On the other hand, we observe that

ẍn(t) ≥ εn/16

x
5/3
n

for any t ∈ [tn, tn + 1/4] ⊂ [−1,−1/4] .

This allows us to apply Lemma 3.3 of [8] to the translated sequence

x∗n(t) := xn(tn + t), t ∈ [0, 1/4] ,

(take t0 = 0, t1 = 1/4, ρn = xn(tn), h̄n = εn/16, and g(x) := 1/x5/3). It follows that
xn(tn + 1/4)→ +∞, and, since each xn is increasing on [tn, 1], we deduce

xn(1) ≥ xn(tn)→ +∞ as n→ +∞ ,

contradicting the right boundary condition in (3).

The homogeneity of our equation and a rescaling argument immediately lead us to corol-
laries 3.2 and 3.3 below. Here, the constant M > 0 is given by Proposition 3.1.

Corollary 3.2. If x : [−1, 1]→ R is a solution of (3) for some ε > 0, and ẋ(−1) < −Mx(1),
then x(1) > 2x(−1).

Proof. The function y(t) := x(t)/x(1) solves again an equation of the form (3). The result
follows by applying Proposition 3.1.

Corollary 3.3. There is some ρ0 > 0 such that, whenever x : [−1, 1] → R is a solution of
(3) for some ε > 0 and x(−1) = x(1) < ρ0, then ẋ(−1) > −1 and ẋ(1) < 1.

Proof. Let ρ0 := 1/M , the constant M > 0 being as given by Proposition 3.1. It suffices to
apply Corollary 3.2 to the solutions x(t) and x̃(t) := x(−t).
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4 Singular equations with a small parameter

We turn now our attention to certain properties of equation (3) which hold only for small
ε > 0. An important tool will be the change of variables

x(t) = (4ε/3)3/8v(t) , (9)

which transforms (3) into

v̈ =

(
3

4

)
t2

v5/3
, −1 ≤ t ≤ 1 , v > 0 . (10)

This equation will be studied in the Appendix (Section 8). In particular, we shall see that its
solutions are explicit, and this fact will be exploited to obtain some of its delicate properties.
One of them will be Proposition 8.7; in combination with the change of variables (9) it
immediately yields the following symmetry-type result:

Lemma 4.1. If ε > 0 is small enough, any solution x : [−1, 1] → R of (3) satisfying
x(−1) = x(1) = 1 is even.

Remark. The even solutions of (10) (or (3)) are explicit (see Corollary 8.4), and combining
this fact with Lemma 4.1 one might prove a stronger result: if ε > 0 is small enough, then
(3) has a unique solution satisfying x(±1) = 1. However, this is not needed in this paper.

We are now ready to prove the main result of this section. It says that for ε > 0 small
enough, the 2-periodic problem associated to (2) with h = hε (as in (4)), is not solvable.

Proposition 4.2. If ε > 0 is small enough, then every solution x : [−1, 1] → R of (3) with
x(−1) = x(1) satisfies that ẋ(1)− ẋ(−1) < 2/x(1)5/3.

Proof. We choose some N > 0 as given by Corollary 8.14, some ε0 > 0 such that Lemma
4.1 holds for all 0 < ε < ε0, and some 0 < ρ0 < 1 as given by Corollary 3.3. Choose now
0 < ε < min{ρ8/30 ε0, 3/(4N)} and some solution x : [−1, 1] → R of (3) with x(−1) = x(1).
We distinguish two cases, depending on whether x(±1) is smaller or greater than ρ0:

(i): x(±1) < ρ0. Then, Corollary 3.3 implies that

ẋ(−1) > −1 > −1/x(1)5/3 , ẋ(1) < 1 < 1/x(1)5/3 ,

and the result follows.

(ii): x(±1) ≥ ρ0. We observe that y(t) := x(t)/x(1) satisfies (3) with ε̃ = ε/x(1)8/3 in

the place of ε; moreover, y(±1) = 1. Since ε̃ ≤ ε/ρ
8/3
0 < ε0, Lemma 4.1 implies that y is even,

or, what is the same, that x is even. Then, v(t) := (3/(4ε))3/8x(t) is an even solution of (10),
and Corollary 8.14 implies that

v(1)5/3v̇(1) =
3

4ε
x(1)5/3ẋ(1) ≤ N ,

or, what is the same, x(1)5/3ẋ(1) ≤ 4Nε/3 < 1. Since x is even, we also have that
x(−1)5/3ẋ(−1) ≥ −4Nε/3 > −1 and the result follows.
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5 The Poincaré map for small ε > 0.

In this section we continue our study of equation (3), and in particular, we are interested
in the associated Poincaré maps Pε : (x(−1), ẋ(−1)) 7→ (x(1), ẋ(1)). We notice that not all
solutions are defined on the whole time interval [−1, 1], because some of them collide with
the singularity x = 0 at time t = 0. We denote by Γε to the set of initial conditions in
]0,+∞[×R where Pε is not defined, i.e.,

Γε :=

{(
x(−1)
ẋ(−1)

)
: x : [−1, 0[→]0,+∞[ solves (3) and lim

t→0
x(t) = 0

}
.

As observed in the previous section, the change of variables (9) transforms (3) into (10).

We use the results of Subsection 8.3, and let γε(a) =
(
4ε/3

)3/8
γ(a), so that

Γε =
{
γε(a) : a ≥ 0

}
=

(
4ε

3

)3/8

Γ for any ε > 0 .

Moreover,

Pε

((
4ε

3

)3/8

z

)
=

(
4ε

3

)3/8

P (z) , z ∈ (]0,+∞[×R)\Γε , (11)

(the set Γ and the map P are defined in (47) and (46) respectively). We extend these maps
to ]0,+∞[×R by setting

Pε(z) := Rz if z ∈ Γε , (12)

and it follows from Lemma 8.11 that each Pε is a homeomorphisms when seen as a map
from ]0,+∞[×R into itself, and a C∞-diffeomorphisms if seen from (]0,+∞[×R)\{Rz∗ε } into
(]0,+∞[×R2)\{z∗ε }. Here,

z∗ε = γε(0) =

(
4ε

3

)3/8

z∗ → 0 as ε→ 0 ,

and z∗ = (1, 3/2) (see (34)). We also consider the map Q∗ :]0,+∞[×R→]0,+∞[×R defined
by

Q∗(z) :=

(
π1z

π2z − 1/(π1z)5/3

)
,

and Proposition 4.2 can be reformulated as saying that Q2
∗ ◦Pε does not have fixed points on(

]0,+∞[×R
)
\Γε for small ε > 0. In order to check the situation on Γε we consider the curve

βε : [0,+∞[×R2 defined by

βε(a) :=
[
Q2
∗ ◦ Pε − Id

](
γε(a)

)
= 2

(
4ε

3

)3/8( 0
−π2γ(a)− 3

4 ε (π1γ(a))5/3

)
, (13)

(to check the second equality above recall that Pε = R on Γε). The main result of this section
is the following

8



Lemma 5.1. For ε > 0 small enough, Q2
∗ ◦ Pε has a unique fixed point zε ∈]0,+∞[×R.

Moreover, zε = γε(aε) ∈ Γε and zε →
(

1
−1

)
as ε→ 0.

Proof. In view of (13), one has to show that there is exactly one solution a = aε ≥ 0 of the
equation

βε(a) = 0 ⇔ (π1γ)(a)5/3(π2γ)(a) = − 3

4ε
.

This follows from the fact that, by (48), the function a 7→ (π1γ)(a)5/3(π2γ)(a) is decreasing
for big values of a. Moreover,

aε → +∞ as ε→ 0 . (14)

The assertion above can be made more precise. Indeed, it is shown in (48) that

(π1γ)(a)5/3(π2γ)(a)

(3
√
a)

8/3
→ −1 as a→ +∞ ,

and it follows that limε→0

(
4ε/3

)3/4
aε = 1/9. Thus, since zε = (4ε/3)3/8γ(aε), again by (48)

we conclude that limε→0 zε = (1,−1), as claimed.

In particular, for small ε > 0 one has that zε 6= z∗ε and Pε is differentiable at zε. The
lemma below explores some properties of the associated derivative.

Lemma 5.2. For ε > 0 small enough,

(i) 0 6= β′ε(aε) ∈ {0} × R ,

(ii) zε is nondegenerate as a fixed point of Q2
∗ ◦ Pε.

Proof. (i): We differentiate in (13) at a = aε, to find

β′ε(aε) =
[
(Q2
∗ ◦ Pε)′

(
zε
)
− Id

]
γ′(aε) = 2

(
0

−π2γ′(aε) + 5π1γ′(aε)

4 ε (π1γ(aε))8/3

)
.

Now, (14) and (48) imply that, if ε > 0 is small, π2γ
′(aε) < 0 < π1γ

′(aε), and hence,
π2β

′
ε(aε) > 0.

(ii): In view of (i), we only have to check that the gradient of the first component of
Q2
∗ ◦ Pε at zε is not (1, 0) for small ε > 0. In view of (11)-(12), this assertion becomes
∇(π1P )

(
γ(aε)

)
6= (1, 0) for small ε > 0, something which follows from (14) and Lemma 8.12.

The proof is now complete.
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6 Regularity of some Poincaré maps for small time

In this section we leave aside the world of equations with singularities and consider a problem
related with the so-called averaging method (see, e.g. [5]). Let I ⊂ R be an open interval
and let f : [0,∞[×[0, 1] × I → R, f = f(δ, s, x), be continuous in all three variables, and
continuously differentiable with respect to x. For any δ > 0 we consider the equation

δ ẍ = f(δ, t/δ, x), t ∈ [0, δ] . (Xδ)

Let us denote by Ω to the set of triples (δ, x0, ẋ0) such δ > 0, x0 ∈ I, and the solution
x = x(t) of (Xδ) with x(0) = x0 and ẋ(0) = ẋ0 is defined for t = δ. This set is the natural
domain of the Poincaré map (X , Ẋ ) : Ω→ R2, defined by

X
(
δ, x(0), ẋ(0)

)
:= x(δ), Ẋ

(
δ, x(0), ẋ(0)

)
:= ẋ(δ) ,

for any solution x : [0, δ]→ I of (Xδ).

The usual continuous and differentiable dependence theorems state that Ω is open subset
in R3, moreover, X , Ẋ are continuously differentiable with respect to their second and third
variables. We are concerned with the behaviour of these functions as δ → 0 and with this
aim we consider the ‘augmented set’

Ω̂ :=
(
{0} × I × R

)
∪ Ω ,

and we extend (X , Ẋ ) to Ω̂ by setting

X (0, x0, ẋ0) := x0 , Ẋ (0, x0, ẋ0) := ẋ0 +

∫ 1

0

f(0, s, x0)ds . (15)

The main result of this section is the following

Lemma 6.1. (a) Ω̂ is open relative to [0,+∞[×R2; (b) X , Ẋ : Ω̂→ R are continuous in all

three variables; (c) X , Ẋ : Ω̂→ R are continuously differentiable with respect to (x0, ẋ0).

Proof. We introduce the change of independent variable s = t/δ in (Xδ), to obtain

ÿ = δf(δ, s, y), s ∈ [0, 1] , (Yδ)

where y(s) = x(δs). It motivates us to consider the set Ω̂Y of triples (δ, y0, ẏ0) ∈ [0,+∞[×I×
R such that the solution y = y(s) of (Yδ) with y(0) = y0 and ẏ(0) = ẏ0 is defined for s = 1.
Observe that {0} × I × {0} ⊂ Ω̂Y . We also consider the Poincaré map (Y , Ẏ) : Ω̂Y → R2,
given by

Y
(
δ, y(0), ẏ(0)

)
:= y(1), Ẏ

(
δ, y(0), ẏ(0)

)
:= ẏ(1) ,

for any solution y : [0, 1]→ I of (Yδ). The usual continuous dependence theorems state that

Ω̂Y is open relative to [0,+∞[×R2, and it follows from our changes of variables that

Ω =
{(
δ, y0, ẏ0/δ

)
:
(
δ, y0, ẏ0

)
∈ ΩY

}
, (16)

where ΩY := Ω̂Y ∩ (]0,+∞[×R2). Furthermore,

X
(
δ, y0, ẏ0/δ

)
= Y(δ, y0, ẏ0), Ẋ

(
δ, y0, ẏ0/δ

)
= Ẏ(δ, y0, ẏ0)/δ , (17)

for every (δ, y0, ẏ0) ∈ ΩY .
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Proof of (a): Since Ω is open in ]0,+∞[×R2, we only need to check that the set {0}×I×R
is contained in the interior of Ω̂ relative to [0,+∞[×R2. With this goal, choose some point

x0 ∈ I and some constant M > 0. The point (0, x0, 0) belongs to Ω̂Y and hence, there is

some 0 < δ < 1 such that [0, δ[×]z0 − δ, z0 + δ[×]−Mδ,Mδ[⊂ Ω̂Y . It follows from (16) that
]0, δ[×]z0 − δ, z0 + δ[×]−M,M [⊂ Ω, implying the result.

Proof of (b)-(c): We rewrite (17) as

X
(
δ, x0, ẋ0

)
= Y(δ, x0, δẋ0), Ẋ

(
δ, x0, ẋ0

)
= Ẏ(δ, x0, δẋ0)/δ, (18)

In principle, this holds for (δ, x0, ẋ0) ∈ Ω. However, in view of (15), the left equality

of (18) holds actually for (δ, x0, ẋ0) ∈ Ω̂, and it follows that X (δ, x0, ẋ0) is C1-smooth with
respect to (x0, ẋ0) up to δ = 0. Concerning to Ẋ one has to check that

lim
δ→0

Ẏ(δ, x0, δẋ0)

δ
= ẋ0 +

∫ 1

0

f(0, s, x0) ds ,

in the C1(x0, ẋ0) sense and uniformly with respect to (x0, ẋ0) in compact subsets of I × R.

With this aim we choose some converging sequence (δn, x0,n, ẋ0,n) → (0, x0, ẋ0) in Ω̂. Let
yn : [0, 1] → R be the solution of (Yδn) satisfying yn(0) = x0,n and ẏn(0) = δnẋ0,n; by
continuous dependence, yn(s)→ x0 uniformly with respect to s ∈ [0, 1]. Consequently,

Ẏ(δn, x0,n, δnx0,n)

δn
=
ẏn(1)

δn
=
ẏn(0)

δn
+

∫ 1

0

f(δn, s, yn(s)) ds→ ẋ0+

∫ 1

0

f(0, s, x0)ds as n→∞ .

This establishes the continuity of Ẋ up to δ = 0. The remainig of the proof follows in an
analogous way from the differentiable dependence theorem and the continuous dependence
theorem (applied to the linearized equation).

We shall use Lemma 6.1 in two particular cases. The first one is concerned with equations
of the form

ẍ =
η(δ, t/δ)

xp
, t ∈ [0, δ] . (19)

Here, p > 0 is a constant, δ > 0 is a parameter, and η : [0,+∞[×[0, 1]→ R, (δ, s) 7→ η(δ, s), is
continuous. This equation becomes (Xδ) by setting I :=]0,+∞[ and f(δ, s, x) := δ η(δ, s)/xp.
Let Ω1 be the set of points (δ, x0, ẋ0) such that δ, x0 > 0 and the solution x = x(t) of (19)
with x(0) = x0 and ẋ(0) = ẋ0 is defined for t = δ, and let J : Ω1 → R2, (δ, x(0), ẋ(0)) 7→
(x(δ), ẋ(δ)), be the associated Poincaré map. Lemma 6.1 gives:

Corollary 6.2. Ω̂1 :=
(
{0}×]0,+∞[×R

)
∪ Ω1 is open relative to [0,+∞[×R2, and the

extension of J to Ω̂1 given by
J(0, x0, ẋ0) := (x0, ẋ0) , (20)

is continuous in all three variables and continuously differentiable with respect to (x0, ẋ0).

The second case of Lemma 6.1 that we are interested in involves equations of the form

ẍ =
ζ(t/δ)/δ

xp
, t ∈ [0, δ] ,
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where p > 0 is a constant, δ > 0 is a parameter, and ζ : [0, 1] → R, s 7→ ζ(s), is a given
continuous function. It becomes (Xδ) by setting I :=]0,+∞[ and f(δ, s, x) := ζ(s)/xp. Let
now Ω2 be the set of points (δ, x0, ẋ0) such that δ, x0 > 0 and the solution x = x(t) of (19)
with x(0) = x0 and ẋ(0) = ẋ0 is defined for t = δ, and let Q : Ω2 → R2, (δ, x(0), ẋ(0)) 7→
(x(δ), ẋ(δ)), be the associated Poincaré map. Lemma 6.1 gives:

Corollary 6.3. Ω̂2 :=
(
{0}×]0,+∞[×R

)
∪ Ω2 is open relative to [0,+∞[×R2, and the

extension of Q to Ω̂2 given by

Q(0, x0, ẋ0) :=

(
x0, ẋ0 +

1

xp0

∫ 1

0

ζ(s)ds

)
, (21)

is continuous in all three variables and continuously differentiable with respect to (x0, ẋ0).

7 The construction

In this section we finally complete the proof of Theorem 1.1. Pick some C∞ function η :
[0,+∞[×[0, 1]→ R, η = η(δ, s), with

η(δ, 0) = 1, ∂sη(δ, 0) = 2δ, ∂(2)s η(δ, 0) = 2δ2, ∂(r)s η(δ, 0) = 0 if r ≥ 3,

and
∂(r)s η(δ, 1) = 0 if r ≥ 0.

Choose also some C∞, even function ζ : [−1, 1]→ R with

ζ(r)(±1) = 0 for any r ≥ 0 ,

∫ 1

0

ζ(t)dt = −1 ,

and define, for any ε, δ > 0, an even function hε,δ : [−1− 2δ, 1 + 2δ]→ R as follows:

hε,δ(t) :=


ε t2 if |t| ≤ 1 ,

ε η
(
δ, (|t| − 1)/δ

)
if 1 < |t| ≤ 1 + δ ,

ζ
(
(|t| − 1− 2δ)/δ

)
/δ if 1 + δ < |t| ≤ 1 + 2δ .

Finally, we extend hε,δ by periodicity to the whole real line, see Fig. 3 below. This
function is C∞, even, and (2 + 4δ)-periodic. One can check that∫ 2+4δ

0

hε,δ(t)dt = −2 +
2ε

3
+ 2εδ

∫ 1

0

η(δ, s)ds . (22)

Hence, for ε, δ > 0 small, hε,δ has negative mean. However, we shall also see that, roughly
speaking, for small ε, δ > 0 the equation

ẍ =
hε,δ(t)

x5/3
, x > 0 , (23)

does not have (2 + 4δ)-periodic solutions. More precisely, we shall prove the following result,
which obviously implies Theorem 1.1:

12



1 1+2δ

1+δ

ζ(0)/δ

(a)

−1−2δ 1+2δ

ζ(0)/δ

(b)

Figure 3: (a): The function hε,δ on the interval [−1 − 2δ, 1 + 2δ], and (b): repeated by
periodicity.

Proposition 7.1. For ε > 0 small enough there is some δ0(ε) > 0 such that (23) does not
have (2 + 4δ)-periodic solutions if 0 < δ < δ0(ε).

It will be convenient to ‘freeze’ ε and study the associated Poincaré map as a function of
the parameter δ and the initial condition. Thus, from this moment on we fix the number ε > 0
small enough to fit the requirements of lemmas 5.1 and 5.2, and we consider the Poincaré
map

Pε
(
δ, x(−1), ẋ(−1)

)
:=
(
x(1 + 4δ), ẋ(1 + 4δ)

)
,

where x = x(t) is a solution of (23). In principle, this map is naturally defined on an open
subset of ]0,+∞[×

(
]0,+∞[×R

)
which does not intersect ]0,+∞[×Γ. However, we observe

that
Pε(δ, ·) = R ◦ J(δ, ·)−1 ◦Q(δ, ·)−1 ◦R ◦Q(δ, ·) ◦ J(δ, ·) ◦ Pε , (24)

where Pε, Q(δ, ·) and J(δ, ·) stand for the Poincaré maps (x(−1), ẋ(−1)) 7→ (x(1), ẋ(1)),
(x(1), ẋ(1)) 7→ (x(1+δ), ẋ(1+δ)) and (x(1+δ), ẋ(1+δ)) 7→ (x(1+2δ), ẋ(1+2δ)) respectively.
By extending Pε to ]0,+∞[×R (as in (12)) and J,Q to respective relatively open subsets of
[0 + ∞[×]0,+∞[×R (as in (20) and (21)), we obtain a continuous extension of Pε to a
relatively open set Ω ⊂ [0,+∞[×R containing {0}×]0,+∞[×R. By Corollaries 6.2 and 6.3,
this extension is continuously differentiable with respect to z and satisfies

Pε(0, ·) = R ◦Q−1∗ ◦R ◦Q∗ ◦ Pε = Q2
∗ ◦ Pε on ]0,+∞[×R . (25)

Thus, Lemma 5.1 states that Pε(0, ·) has an unique fixed point on ]0,+∞[×R, and this
fixed point is zε. Our next result studies how to obtain fixed points for small δ > 0.

Lemma 7.2. There exists an open set V ⊂]0,+∞[×R with zε ∈ V , and some δ0 > 0, such
that for any 0 < δ < δ0, Pε(δ, ·)

∣∣
V

has a unique fixed point z(δ). Moreover, z(δ) ∈ Γε for any
0 < δ < δ0.

Proof. The first part of the result follows immediately from (25) and part (ii) of Lemma 5.2
via the implicit function theorem. To check the ‘moreover’ part we observe that, by (24),

Pε
[
δ, γε(a)

]
= S(δ, ·)−1 ◦R ◦ S(δ, ·)γε(a) ,

where S(δ, ·) := Q(δ, ·) ◦ J(δ, ·) ◦ R. Thus, γε(a) is a fixed point of Pε(δ, ·) if and only if
s(δ, a) := π2S

(
δ, γε(a)

)
vanishes. This function s = s(δ, a) is continuously defined on an open
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subset of [0,+∞[×]0,+∞[ containing {0}×]0,+∞[, and it is continuously differentiable with
respect to its second variable a. Moreover, since

s(0, a) = π2βε(a) , a > 0 ,

one has that s(0, aε) = 0 (corresponding to the fixed point zε of Pε(0, ·)), and, by Lemma 5.2
(i), this zero is nondegenerate. The implicit function theorem applies again and shows the
existence of a continuous function

α : [0, δ0[→ R , α = α(δ) ,

with α(0) = aε and s(δ, α(δ)) = 0. With other words, γε(a) is a fixed point of Pε(δ, ·) for
0 ≤ δ ≤ δ0. Moreover, since γε(α(0)) ∈ V , after possibly replacing δ by a smaller quantity
we may assume that γε(α(δ)) ∈ V for any δ ∈ [0, δ0[. Hence, by uniqueness, z(δ) = γε(α(δ)),
proving the statement.

Proof of Proposition 7.1. We fix 0 < ε < 1 small enough to satisfy the assumptions of lemmas
5.1 and 5.2, and we claim that for δ > 0 small enough, equation (23) does not have (2 + 4δ)-
periodic solutions. We use a contradiction argument and assume instead the existence of a
sequence δn → 0 such that, for each n, there is a solution xn of (23) with δ = δn.

Step 1: We claim that there is some ρ1 > 0 such that max{xn(−1), xn(1)} ≥ ρ1 for
every n ∈ N. Indeed otherwise, after possibly passing to a subsequence, we may assume that
xn(±1) → 0. But each xn is convex on [−1, 1], and we deduce that xn(t) → 0 as n → +∞,
uniformly with respect to t ∈ [−1, 1]. In particular, xn(t) → 0 as n → +∞, uniformly

with respect to t ∈ [−1,−1/2]. But on this interval one has ẍn ≥ 1/(4x
5/3
n ), and hence,

ẍn(t)→ +∞, uniformly with respect to t ∈ [−1,−1/2], leading easily to a contradiction.

Step 2: We claim that max[1,1+4δn] xn − min[1,1+4δn] xn → 0. To see this we consider the
functions yn : [0, 1]→ R defined by

yn(t) := xn(1 + 4 δnt) , t ∈ [0, 1] .

Then,

ÿn(t) =
ϕn(t)

y
5/3
n

, (26)

where

ϕn(t) = 16 δ2n hn(1 + δnt)→ 0 as n→ +∞, uniformly with respect to t ∈ [0, 1] . (27)

On the other hand, each xn attains its maximum at some point in [1, 1 + 4δn] (actually, the
point must be in [1+δn, 1+3δn]), and we see that each yn attains its maximum at some point
in ]0, 1[. The value of this maximum is at least max{yn(0), yn(1)} = max{xn(1), xn(−1)},
and Step 1 implies that max[0,1] yn ≥ ρ1 for each n. The result follows now from (26), (27)
and the fact that max[1,1+4δn] xn −min[1,1+4δn] xn = max[0,1] yn −min[0,1] yn.
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It follows from Step 2 that xn(1)−xn(−1) = xn(1)−xn(1+4δn)→ 0 as n→ +∞. Hence,
we may replace the constant ρ1 in Step 1 by a possibly smaller one so that

xn(±1) ≥ ρ1 for every n. (28)

The next step gives upper bounds for the sequences xn(±1). Actually, we shall prove a
slightly stronger result.

Step 3: There is a constant ρ2 > 0 such that max[0,2+4δn] xn ≤ ρ2 for every n. To check

this fact we multiply both sides of (23) by x
5/3
n and integrate by parts in the left side, to

obtain ∫ 2+4δn

0

ẍnx
5/3
n dt = −5

3

∫ 2+4δn

0

xn(t)2/3ẋn(t)2dt =

∫ 2+4δn

0

hε,δn(t) dt .

The right hand side above is a bounded sequence of n (by (22)). On the other hand,∫ 2+4δn
0

xn(t)2/3ẋn(t)2 dt = (9/16)‖ẏn‖2L2(0,2+4δn)
, where yn(t) := xn(t)4/3. It follows that

‖ẏn‖L2(0,2+4δn) is bounded, and we deduce that max[0,2+4δn] yn −min[0,2+4δn] yn is bounded.
We use now a contradiction argument and assume instead that, after possibly passing to

a subsequence, max[0,2+4δn] xn → +∞. Then, also max[0,2+4δn] yn → +∞, and consequently
max[0,2+4δn] yn/min[0,2+4δn] yn → 1, or, what is the same,

max
[0,2+4δn]

xn/ min
[0,2+4δn]

xn → 1 .

On the other hand,

0 = xn(−1)5/3
∫ 2+4δn

0

ẍn(t) dt =

∫ 2+4δn

0

(
xn(−1)/xn(t)

)5/3
hε,δn(t) dt , n ∈ N ,

and taking limits we obtain (by (22)),

−2 +
2ε

3
= 0 ⇒ ε = 3 ,

a contradiction since, by assumption 0 < ε < 1.

Combining (28) and steps 2-3 we see that, after possibly passing to a subsequence,

xn(±1)→ p0 as n→ +∞ , (29)

for some number p0 > 0. In our next step we observe that also ẋn(−1) has a convergent
subsequence

Step 4: ẋn(−1) is a bounded subsequence. Indeed, each xn being convex on [−1, 1],

ẋn(t) ≥ ẋn(−1) , t ∈ [−1, 1] ,

and integrating, we obtain

xn(1)− xn(−1) ≥ 2ẋn(−1) , n ≥ 0 .
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Thus, (29) implies that ẋn(−1) is bounded from above. On the other hand, (29) also
implies that,

xn(1) < xn(−1) for n big enough ,

and hence, by Corollary 3.2,

ẋn(−1) ≥ −Mxn(−1) for n big enough ,

which, in view of (29), proves the result.

The end of the proof: Combining (29) and Step 4 we see that, after possibly passing to a
subsequence we may assume that

(xn(−1), ẋn(1))→ (p0, v0) ∈]0,+∞[×R .

On the other hand, (xn(−1), ẋn(1)) is a fixed point of Pε(δn, ·) for each n ∈ N, and passing
to the limit we see that (p0, v0) is a fixed point of Pε(0, ·) = Q2

∗ ◦Pε. Thus, Lemma 5.1 implies
that (p0, v0) = zε, and we conclude that (xn(−1), xn(1)) ∈ V for sufficiently big n. Here, V is
the open neighborhood of zε given by Lemma 7.2. By uniqueness, (xn(−1), xn(1)) = z(δn) ∈ Γ
for n big enough. In particular, xn(0) = 0 for n big enough, which is a contradiction and
completes the proof.

8 Appendix: On an Emden-Fowler equation with neg-

ative exponent

This Appendix is dedicated to the study of equation (10), which we rewrite here for the
reader’s convenience:

v̈ =

(
3

4

)
t2

v5/3
, −1 ≤ t ≤ 1 , v > 0 . (10)

We devote Subsection 8.1 to obtain an explicit description of the solutions of (10), and
take advantage of this knowledge in the subsequent subsections 8.2, 8.3 and 8.4. We point
out that the results of Subsection 8.1 are not completely new; indeed, Lemma 8.3 can be
found, in a somewhat less precise form and without a proof, in [6], paragraph 2.3.1-2, §9-2◦.

8.1 Solving explicitly an Emden-Fowler equation

Our starting point will be to consider, for any θ ∈ R/2πZ, the functions fθ, gθ : R → R
defined by

fθ(u) := sinhu+ sin(u+ θ) , gθ(u) := coshu+ cos(u+ θ) .

Observe that f ′θ(u) = gθ(u) > 0 for any (θ, u) ∈
[
(R/2πZ)× R

]
\{(π, 0)}. Consequently,

vθ(t) := gθ(f
−1
θ (t))3/2 , t ∈ R , (30)
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are positive and C∞-smooth on the real line, with the exception of vπ, which satisfies

vπ(0) = 0 < vπ(t) for t 6= 0 ,

and is C∞-smooth at all times t 6= 0. Fig. 4(a) below shows the graphs of some of the
functions vθ.

t→

v
↑

v0

vπ/2
v−π/2

vπ vπ

(a)

t→

v
↑

v2,π/2

v1,π/2

v∗

(b)

Figure 4: (a): The graphs of some functions vθ. (b): The graphs of v∗, v1,π/2 and v2,π/2.

We set, for a > 0, θ ∈ R/2πZ and t ∈ R,

va,θ(t) := a3/2vθ(t/a) , (31)

(see Fig. 4(b)). We begin our study by showing that these functions are solutions of (10).

Lemma 8.1. va,θ is a solution of (10) for any a > 0 and −π < θ < π. For θ = π, va,π solves
(10) on ]−∞, 0[ and ]0,+∞[.

Proof. One immediately checks that va,θ is a solution of (10) if and only if vθ = v1,θ is
another one. Hence, it suffices to prove the result in the case a = 1. Recalling that f ′θ = gθ
and differentiating in (30) we see that, for (θ, t) 6= (π, 0),

v̇θ(t) =

(
3

2

)
g′θ(f

−1
θ (t))√

gθ(f
−1
θ (t))

, v̈θ(t) =

(
3

4

)[
2 g′′θ (f−1θ (t))gθ(f

−1
θ (t))− g′θ(f−1θ (t))2

gθ(f
−1
θ (t))5/2

]
. (32)

One easily checks that 2g′′θ (u)gθ(u) − g′θ(u)2 = fθ(u)2, and the second equality above
becomes (10). The result follows.

Being solutions of (10), it is clear that all functions va,θ are convex. In the following
result we extend our knowledge of these functions by computing the sign of their derivatives
at t = 0.

Lemma 8.2. v̇a,θ(0)


< 0 if − π < θ < 0 ,

= 0 if θ = 0 ,

> 0 if 0 < θ < π .
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Proof. By the first part of (32), v̇θ(0) has the same sign as g′θ(f
−1
θ (0)) = fθ(f

−1
θ (0))−2 sin(θ+

f−1θ (0)) = −2 sin(θ + f−1θ (0)). The result follows from the fact that θ 7→ θ + f−1θ (0) is an
strictly increasing function of θ which coincides with the identity at θ = −π, 0, π.

We observe now that there are solutions v = v(t) of (10) which cannot be written as
v = va,θ for some a > 0 and θ ∈ R. For instance, one checks that

v∗(t) := |t|3/2 , (33)

(defined either on ]−∞, 0[ or on ]0,+∞[) is a solution of (10) satisfying

lim
t→0

v∗(t) = lim
t→0

v̇∗(t) = 0 ,

and it is easy to deduce that v∗ 6= va,θ for any a, θ. However, this is the only exceptional
case. Indeed, if one fixes some positive initial time t0 (say, for instance, t0 = 1), and we let

z∗ :=

(
v∗(1)
v̇∗(1)

)
=

(
1

3/2

)
, (34)

then the set of initial conditions corresponding to our family {va,θ} is the punctured half-
plane (]0,+∞[×R)\{z∗}. A (slightly stronger) version of this fact is stated in the lemma
below, which is the main result of this subsection.

Lemma 8.3. The map Φ :]0,+∞[×(R/2πR)→ (]0,+∞[×R)\{z∗} defined by

Φ(a, θ) := (va,θ(1), v̇a,θ(1)) , (35)

is a C∞ diffeomorphism See Fig. 5 below.

v →

v̇
↑ Φ(]0,+∞[×{π})

Φ(1,R/2πZ)

Figure 5: The point z∗ (in the center of the picture), the branch Φ(]0,+∞[×{π}) (corre-
sponding to the solutions which collide with the singularity x = 0 at time t = 0), and (from
inner to outer) the closed curves Φ(1/4,R/2πZ), Φ(1/2,R/2πZ) and Φ(1,R/2πZ).

Proof. Remembering the definition of the functions vθ in (30) and va,θ in (31) we see that

Φ(a, θ) =

(
a3/2vθ

(
1

a

)
, a1/2v̇θ

(
1

a

))
=

a3/2gθ(f−1θ (1/a))3/2,
3

2

√
a

g′θ(f
−1
θ (1/a))√

gθ(f
−1
θ (1/a))

 .

(36)
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This expression can be simplified by letting a = 1/fθ(u); we obtain

Φ

(
1

fθ(u)
, θ

)
=

((
gθ(u)

fθ(u)

)3/2

,
3

2

g′θ(u)√
fθ(u)gθ(u)

)
, u > f−1θ (0) . (37)

We shall use this equality in Subsections 8.3 and 8.4 below. On the other hand, straightfor-
ward computations show that

gθ(u) =
√

1− (fθ(u)− sin(θ + u))2 + cos(u+ θ) , g′θ(u) = fθ(u)− 2 sin(u+ θ) ,

and therefore, (36) becomes Φ(a, θ) = (Φ1(a, θ),Φ2(a, θ)), where

Φ1(a, θ) = a3/2
[√

1 +
[
1/a− sinω1/a(θ)

]2
+ cosω1/a(θ)

]3/2
,

Φ2(a, θ) :=
3

2

 1− 2a sinω1/a(θ)√√
a2 + [1− a sinω1/a(θ)]2 + a cosω1/a(θ)

 ,
ωε(θ) = θ + f−1θ (ε) .

(38)

After Φ has been written explicitly, it can be shown to be a diffeomorphism by rewriting
it as a composition of diffeomorphisms. Indeed,

Φ = Φ(IV ) ◦ Φ(III) ◦ Φ(II) ◦ Φ(I) , (39)

where



Φ(I) :]0,+∞[×(R/2πZ)→]0,+∞[×(R/2πZ) , (a, θ) 7→
(
a, ω1/a(θ)

)
,

Φ(II) :]0,+∞[×(R/2πZ)→ R2\{(0, 0)} , (a, ω) 7→
(
a cosω, a sinω

)
,

Φ(III) : R2\{(0, 0)} → (]0,+∞[×R)\{(1, 1)} , (x, y) 7→
(√

x2 + y2 + (1− y)2 + x, 1− 2y
)
,

Φ(IV ) : (]0,+∞[×R)\{(1, 1)} → (]0,+∞[×R)\{z∗} , (x, y) 7→
(
x3/2, 3y

2
√
x

)
.

One observes without difficulty that all four maps above are diffeomorphisms; in the case
of Φ(I) one needs to differentiate in the expression of ωε in (38) to check that, for any fixed
ε > 0,

ω′ε(θ) =
cosh(f−1θ (ε))

gθ(f
−1
θ (ε))

> 0 , θ ∈ R . (40)

It completes the proof of the lemma.

The combination of lemmas 8.1, 8.2 and 8.3 leads us to the following result:
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Corollary 8.4. A solution v : [−1, 1] → R of (10) is even if and only if v = va,0 for some
a > 0.

In Corollary 8.5 below we point out a couple of facts about the diffeomorphism Φ and
the first component π1Φ

−1 of its inverse. The proof of (a) is immediate from (37), while
(b) arises from (39) and the fact that limz→z∗ Φ−1(IV )(z) = (1, 1), limz→(1,1) Φ−1(III)(z) = (0, 0),

limz→(0,0) π1Φ
−1
(II)(z) = 0, and lima→0 Φ−1(I)(a, ω) = 0 uniformly with respect to ω ∈ R/2πZ.

Corollary 8.5. The following hold:

(a) lima→0 Φ(a, θ) = z∗ uniformly with respect to θ ∈ R/2πZ .

(b) limz→z∗ π1Φ
−1(z) = 0.

At this moment we observe that if v = v(t) is a solution of (10) then v(−t) is also a
solution. When v(t) = va,θ one checks that

va,θ(−t) = va,−θ(t) , t ∈ R , a > 0, θ ∈ R/2πZ .

This leads us to consider the map Φ̂ :]0,+∞[×(R/2πR)→ R2 defined by

Φ̂(a, θ) := (va,θ(−1), v̇a,θ(−1)) ,

or, what is the same,
Φ̂ = R ◦ Φ ◦R , (41)

(we recall that Rz := (π1z,−π2z) stands for the orthogonal reflection with respect to the first
coordinate axis). We arrive to the corollary below, whose proof arises from the combination
of (41) and Lemma 8.1.

Corollary 8.6. Φ̂ :]0,+∞[×(R/2πR)→ (]0,+∞[×R)\{Rz∗} is a C∞ diffeomorphism.

8.2 The solutions of certain non-homogeneous Dirichlet problems
are even

The goal of this subsection is a symmetry result for some Dirichlet problems associated to
(10):

Proposition 8.7. If v0 > 0 is big enough, every solution v : [−1, 1] → R of (10) with
v(−1) = v(1) = v0 is even.

Proof. In view of the definition of Φ in (35) and Corollary 8.4, the statement above can be
rewritten in the following way:

π1Φ(a, θ) = va,θ(1) 6= va,θ(−1) = va,−θ(1) = π1Φ(a,−θ) for 0 < θ < π and a > 0 big .
(42)

We can rewrite this inequality still more explicitly by observing that, by (38),

π1Φ(a, θ)2/3 = aψ1/a(ω1/a(θ)) , (43)
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the functions ψε : R→ R being defined by

ψε(ω) :=
√

1 + (ε− sinω)2 + cosω . (44)

It allows us to reformulate (42) in the following way:

ψε(ωε(θ)) 6= ψε(ωε(−θ)) for 0 < θ < π and ε > 0 small . (45)

In order to show this inequality we shall need the use some elementary properties of these
functions. Two of them concern the functions ωε and are stated in Lemma 8.8 below:

Lemma 8.8. The following hold:

(i) 0 < ωε(θ)− ωε(−θ) < 2π , for all ε > 0 and 0 < θ < π ,

(ii) 0 < ωε(θ) + ωε(−θ) < π/2 , for 0 < ε small and any 0 < θ < π .

We turn now our attention to the 2π-periodic functions ψ±ε : R/2πZ → R. We observe
that

ψ0(ω) =
√

1 + (sinω)2 + cosω , ω ∈ R .

Elementary computations show that ψ0 is an even function, strictly increasing on [−π, 0] and
strictly decreasing on [0, π]. The lemma below studies how this geometry changes for small
ε > 0.

Lemma 8.9. Let ε > 0 be small; then

(a) ψ′ε(ω) > 0 if ω ∈ [−π,−π/4], and ψ′ε(ω) < 0 if ω ∈ [0, 3π/4].

(b) ψε(ω) ≤ ψε(−ω) for any ω ∈ [0, π].

We postpone the proof of lemmas 8.8 and 8.9 to the end of this section and continue now
with the proof of (45). We consider several cases, depending on the numbers ωε(±θ):

Case I: ωε(θ) > π. Then, by Lemma 8.8 (i)-(ii),

π < ωε(θ) < 2π + ωε(−θ) <
5π

2
− ωε(θ) <

3π

2
,

and, by Lemma 8.9(a),

ψε(ωε(θ)) < ψε(2π + ωε(−θ)) = ψε(ωε(−θ)) .

Case II: ωε(−θ) > 0. Then, again by Lemma 8.8 (i)-(ii),

0 < ωε(−θ) < ωε(θ) <
π

2
− ωε(−θ) <

π

2
,

and, by Lemma 8.9(a),
ψε(ωε(−θ)) > ψε(ωε(θ)) .
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Case III: 3π/4 ≤ ωε(θ) ≤ π. Then, by Lemma 8.8 (ii),

−π ≤ −ωε(θ) < ωε(−θ) ≤
π

2
− ωε(θ) ≤ −

π

4
,

so that, by Lemma 8.9 (a)-(b) ,

ψε(ωε(θ)) ≤ ψε(−ωε(θ)) < ψε(ωε(−θ)) .

Case IV: −π/4 ≤ ωε(−θ) ≤ 0. Then, by Lemma 8.8 (ii),

0 ≤ −ωε(−θ) < ωε(θ) < −ωε(−θ) +
π

2
≤ 3π

4
,

so that, by Lemma 8.9 (a)-(b) ,

ψε(ωε(θ)) < ψε(−ωε(−θ)) ≤ ψε(ωε(−θ)) .

Case V: ωε(−θ) < −π/4 and ωε(θ) < 3π/4. Then, by Lemma 8.8 (ii),

π

4
< −ωε(−θ) < ωε(θ) <

3π

4
,

and, by Lemma 8.9 (a)-(b)

ψε(ωε(−θ)) ≥ ψε(−ωε(−θ)) > ψε(ωε(θ)) .

The proof is now complete.

We close this section with some comments on the proofs of lemmas 8.8 and 8.9. These
results follow quite straightforwardly from the definition of the functions ψε and ωε in (44)
and (38), so that we will be quite brief.

Proof of Lemma 8.8. It follows from (40) that, for fixed ε > 0, both functions θ 7→ ωε(θ) and
θ 7→ −ωε(−θ) are strictly increasing. Consequently, also the function θ 7→ ωε(θ)− ωε(−θ) is
strictly increasing on [0, π], and hence,

0 = ωε(0)− ωε(0) < ωε(θ)− ωε(−θ) < ωε(π)− ωε(−π) = 2π , 0 < θ < π ,

showing (i). In order to check (ii) we observe that

ωε(θ) + ωε(−θ) = f−1θ (ε) + f−1−θ (ε) = f−1θ (ε)− f−1θ (−ε) .

Now, the inequality ωε(θ)+ωε(−θ) > 0 follows from the fact that each function f−1θ is strictly
increasing. On the other hand, the inequality ωε(θ) + ωε(−θ) < π/2 for small ε > 0 follows
from the uniform continuity of the function{

(ε, θ) 7→ ωε(θ) + ωε(−θ) = f−1θ (ε)− f−1θ (−ε) if ε > 0 ,

(0, θ) 7→ 0 ,

on [0, 1]× (R/2πZ).
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Proof of Lemma 8.9. Part (b) is immediate from the definition of ψε in (44). Concerning the
statement (a) we compute:

ψ′ε(ω) = −
ε cosω + (sinω

(√
1 + (ε− sinω)2 − cosω

)√
1 + (ε− sinω)2

.

If ε > 0 and 0 ≤ ω ≤ π/2, both terms in the numerator are nonnegative. Furthermore,
they do not vanish simultaneously. Consequently,

ψ′ε(ω) < 0 if ω ∈ [0, π/2] and ε > 0 .

Moreover, ψ′0(ω) < 0 for π/2 ≤ ω ≤ 3π/2, and using a uniform continuity argument we
see that also ψ′ε(ω) < 0 for ω in this interval if ε > 0 is small. This proves the part of the
statement concerning 0 ≤ ω ≤ 3π/4. The proof of the statement when −π ≤ ω ≤ −π/4 is
analogous.

8.3 Regularizing the singularity

Consider the Poincaré map P associated to (10) on the time interval [−1, 1]. With other
words, we are interested in the map

P : (v(−1), v̇(−1)) 7→ (v(1), v̇(1)) for any solution v : [−1, 1]→ R of (10) . (46)

A key observation in this paper is that the domain of P is a proper subset of the half space
]0,+∞[×R, not because there are solutions of (10) exploding in finite time (such a thing
cannot happen), but because some initial conditions lead to solutions arriving at the singu-
larity v = 0 at time t = 0. This is for instance the case of the point Rz∗ = (1,−3/2), which
gives rise to the solution v∗, already considered in (33). We denote by Γ to the subset of
]0,+∞[×R where the Poincaré map P is not defined, i.e.

Γ :=

{(
v(−1)
v̇(−1)

)
: v : [−1, 0[→]0,+∞[ solves (10) and lim

t→0−
v(t) = 0

}
. (47)

The lemma below uses the explicit form of the solutions of (10) described in the previous
subsection to obtain some insight on the set Γ.

Lemma 8.10. There exists a C([0,+∞[,R2) ∩ C∞(]0,+∞[,R2) curve γ = γ(a) with

γ(0) = Rz∗ , lim
a→+∞

1

3
√
a
γ(a) = lim

a→+∞

2
√
a

3
γ′(a) =

(
1
−1

)
, (48)

and such that Γ = {γ(a) : a ≥ 0} .

Proof. It follows from Corollary 8.6 that Γ = {z∗} ∪ {Φ̂(a, π) : a > 0}; this leads us to define

γ(a) :=

{
Rz∗ if a = 0 ,

Φ̂(a, π) = RΦ(a, π) if a > 0 .

23



It is clear that γ is C∞ on ]0,+∞[, while the continuity of γ at a = 0 follows from
Corollary 8.5 (a). Moreover, by (37) and (41),

γ

(
1

fπ(u)

)
=

((
gπ(u)

fπ(u)

)3/2

,−3

2

g′π(u)√
fπ(u)gπ(u)

)
, u > 0 .

We recall that fπ(u) = sinhu − sinu and gπ(u) = coshu − cosu. The second and third
statements in (48) can now be easily obtained from elementary computations.

Consequently, the Poincaré map P is naturally defined on (]0,+∞[×R)\Γ, and equation
(10) being reversible in time, its image is (]0,+∞[×R)\R(Γ); moreover, P establishes a
diffeomorphism between these sets. We extend it to a map P :]0,+∞[×R →]0,+∞[×R by
setting

P (z) := Rz for any z ∈ Γ .

To conclude this subsection we show that (10) can be regularized, in the sense that this
extension is smooth, with the possible exception of the point Rz∗, where one has continuity.

Lemma 8.11. The map P :]0,+∞[×R →]0,+∞[×R is a homeomorphism. Moreover, it
induces a C∞ diffeomorphism from (]0,+∞[×R)\{Rz∗} into (]0,+∞[×R)\{z∗}.

Proof. We observe that

P = Φ ◦ Φ̂−1 = Φ ◦R ◦ Φ−1 ◦R on ]0,+∞[×R , (49)

by checking that it holds both on (]0,+∞[×R)\Γ and Γ. The result follows now from
Lemma 8.3 (in what refers to the diffeomorphism) and Corollary 8.5 (for the homeomorphism
statement).

Lemma 8.12. ∇(π1P )(γ(a)) 6=
(

1
0

)
for a > 0 big enough.

Proof. It follows from (49) that (π1P )RΦ = (π1Φ)R, and we deduce that

Φ′(a, π)∗ ◦R ◦ ∇(π1P )(RΦ(a, π)) = R∇(π1Φ)(a, π) , a > 0 ,

or, what is the same,

Φ′(a, π)∗ ◦R ◦ ∇(π1P )(γ(a)) = R∇(π1Φ)(a, π) , a > 0 ,

and the statement of the Lemma may equivalently be rewritten as

Φ′(a, π)∗
(

1
0

)
6= R∇(π1Φ)(a, π) for a > 0 big enough ,

or, with other words,
∂θ(π1Φ)(a, π) 6= 0 for a > 0 big enough.

This inequality can be checked by going back to (43) and combining the chain rule with
(40); we have to check that

ψ′ε(ωε(π)) 6= 0 for ε > 0 small.

However, for small ε > 0 we see that ωε(π) = π + f−1π (ε) ∈]π, 3π/2[. The result follows from
Lemma 8.9 (a).
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8.4 The collection of even solutions

The family of solutions of (10) colliding with the singularity v = 0 at t = 0 has played an
especial role in the previous subsection. A second set of solutions of (10) with a particular
importance in this paper is the collection of even solutions on [−1, 1]. The corresponding set
of initial conditions is:

Σ :=

{(
v(−1)
v̇(−1)

)
: v : [−1, 1]→]0,+∞[ solves (10) and v̇(0) = 0

}
.

In view of Corollary 8.4,

Σ =

{(
va,0(−1)
v̇a,0(−1)

)
: a > 0

}
=
{
σ(a) : a > 0

}
,

the parametrized curve σ : [0,+∞[→ R2 being defined by

σ(a) :=

{
Φ̂(a, 0) = RΦ(a, 0) if a > 0 ,

Rz∗ if a = 0 .

By (37) and (41),

σ

(
1

f0(u)

)
=

((
g0(u)

f0(u)

)3/2

,−3

2

g′0(u)√
f0(u)g0(u)

)
, u > 0 .

We recall that f0(u) = sinhu + sinu and g0(u) = coshu + cosu. It follows from here (or
from Corollary 8.5 (a)) that σ is continuous at a = 0. Elementary computations lead us to
Lemma 8.13 below, which is reminiscent of Lemma 8.10 in the previous subsection.

Lemma 8.13. There exists a C([0,+∞[,R2) ∩ C∞(]0,+∞[,R2) curve σ = σ(a) with

σ(0) = Rz∗ , lim
a→+∞

π1σ(a)√
a3

= lim
a→+∞

2π1σ
′(a)

3
√
a

= 2
√

2 , lim
a→+∞

√
a5 π2σ(a) = − 1

16
√

2
,

and such that Σ = {σ(a) : a > 0} .

A consequence of this result is that lima→+∞(π1σ(a))5/3π2σ(a) = −1. It leads us to the
following

Corollary 8.14. There is some N > 0 such that v(1)5/3v̇(1) ≤ N for any even solution
v : [−1, 1]→ R of (10).
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