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1 Introduction

Let f: R?2 — R? be an area-preserving, real analytic diffeomorphism of the
plane, having a fixed point z, = f(x,). This point is Lyapunov stable if,
given any neighborhood U = U(x,), it is possible to find another, V = V(z.),
such that f™(V) C U for each n > 0. This definition corresponds to stability
for the future (n > 0), equivalent in this setting to perpetual stability (n €
Z). The study of the dynamics around those fixed points is a classical topic in
Hamiltonian dynamics, see [2, 12]. Traditionally the term area-preserving
has been reserved for maps satisfying det f'(x) = 1, where f/(z) is the
Jacobian matrix. Under this condition also orientation is preserved and it is
well known that many different dynamics around the stable fixed point can
appear. In this paper it will be shown that the situation is very different
when the area is preserved but the orientation is reversed. In that case the
only possible dynamics is that of a symmetry, say S(x1,z2) = (21, —z2).

Theorem 1 Let f be a real analytic diffeomorphism of R? satisfying
det f'(z) = =1, for each x € R?.

In addition assume that f has a stable fixed point. Then there exists a
homeomorphism 1 of R? such that f =1 oS oL,

Throughout the paper it is understood that a homeomorphism (or diffeo-
morphism) of a space X is, in particular, an onto map. After the proof
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of the theorem we will present examples showing that the result cannot be
extended to higher dimensions or to the non-analytic case.

The study of the dynamics of orientation-reversing maps has received
some attention in the last years. We refer to the papers by Bonino [3] and
Ruiz del Portal and Salazar [11]. The results in [11] describe the dynamics
of orientation-reversing maps around a stable fixed point that is isolated
in Fix(f?). Isolated stable fixed points cannot appear when the map is
orientation-reversing and area-preserving.

I thank F. R. Ruiz del Portal for reading a preliminary version of this
paper and informing me on reference [6].

2 A fixed point theorem on generalized disks

A compact subset of the plane, A C R?, will be called a generalized disk if
its interior is homeomorphic to the open disk,

int(A) = {z € R*: ||z]| < 1}.

Examples of generalized disks are the square A = [0,1] x [0, 1] or the region
encircled by the topologist’s sine curve,

A={(z,y) eR2: 2 €)0,1], -2 <y < siné} U ({0} x [=2,1]).

Proposition 2 Let A be a generalized disk and let h be an orientation-
reversing, area-preserving homeomorphism of A. Then h has a fized point
lying at the boundary OA.

The property of preservation of area means that p(h(B)) = u(B) for each
Borel set B contained in A. For the measure y we can consider Lebesgue
measure or, more generally, any regular measure such that u(A) < oo and
the measure of every open set is positive.

Alpern constructed in [1] examples of maps in the conditions of the
previous proposition and such that all fixed points lie on the boundary.
An example of Alpern’s construction can be obtained using the flow {¢;}
associated to the Hamiltonian system ¢ = H,,, p = —H, with

H(q,p) = (1 - ¢)*(1 — p)*(1 + p)°p.

All points on the boundary of A = [0, 1] x [—1, 1] are equilibria and so the set
A is invariant under ¢;. The phase portrait on the interior of A is composed
by two symmetric centers separated by a heteroclinic orbit p = 0 travelling



from (0,0) to (1,0). For a fixed T' > 0 the map h = S o ¢7 has no fixed
points in int(A).

Proposition 2 is a direct consequence of the main result in [6], at least
when A can be extended to a homeomorphism of the whole plane. I will
present a short proof of the proposition based on the theory of prime ends.
An exposition of this theory can be found in [10] and the classical paper [4]
explains how to use it in fixed point theory. For the notation we follow [9].
Let U be a proper subset of R? that is open and simply connected. The
set of prime ends P = P(U) is homeomorphic to S' and can be added to
U so that the disjoint union U* = U U P is homeomorphic to the unit disk
D = {z € R?: ||z|| < 1}. Given a homeomorphism h of U there appear an
induced homeomorphism h* of U* so that h and h* coincide on U. Generally
speaking, the existence of a prime end in P fixed under A* does not imply
the existence of a fixed point of A lying on dU, the boundary of U. This
is discussed in [4]. The situation is different when h is area-preserving. We
present a consequence of lemma 11 in [4].

Lemma 3 Assume that U is bounded and h is an area-preserving homeo-
morphism of U such that h* has a fized prime end p € P. Then every point
in II(p) is fized under h.

Recall that II(p), the set of principal points associated to p, is a non-empty
continuum contained in 9U.

Proof of proposition 2. The previous discussions on prime ends can be
applied to U = int(A) and h, understood as a homeomorphism of U C A.
The map h* defines a homeomorphism of the pair (U*,P). The space U*
can be thought as an orientable manifold with boundary. The maps h and
h* coincide on the open set U and so h* is an orientation-reversing home-
omorphism of U*. In consequence the restriction to the boundary, denoted
by h* : P — P, is also orientation-reversing. Orientation reversing homeo-
morphisms of S' = P have exactly two fixed points. This can be applied to
deduce that h* has two fixed prime ends. The proof of the proposition is
now a consequence of lemma 3. Notice that the boundary of U is contained
in the boundary of A.

3 Proof of the main result and examples

We will obtain the result by combining the above fixed point theorem with
several known results. They are presented in three lemmas.



Lemma 4 Assume that U is an open subset of R? and h : U C R? — R?
s a one-to-one and continuous map having a Lyapunov stable fixed point
xx = h(xy) inU. In addition assume that h is area-preserving. Then there
exists a sequence of generalized disks (A,,) contained in U and satisfying

To € 6(An), Apyr Cint(An), [An = {2}, h(An) = A,

The proof of this result can be found in [12]. See also [7] for some additional
details.

Lemma 5 Let g : R? — R? be a real analytic one-to-one map satisfying
detg'(z) =1 for each x € R?

and assume that g has a stable fized point x. = g(x.). The either g is the
identity or x, is isolated in the set of fixed points Fix(g).

This is the main result in [7]. See also [8] for an alternative proof.

Lemma 6 Assume that h is an orientation reversing homeomorphism of
R? satisfying h> = h o h = identity. Then there exists a homeomorphism 1
of R? such that h = o S o1

This is a particular case of a well-known result due to Kerékjarts. A proof
can be found in [5].

We are ready for the proof of Theorem 1. In view of Lemma 4 we can
find a sequence of generalized disks A, that are invariant under f. From
proposition 2 we deduce that f has a fixed point on the boundary of each
A,. These fixed points will accumulate on z, and we conclude that x, is
not isolated in Fix(f). The map g = f o f is in the conditions of lemma 5.
Since Fix(f) C Fix(g), x« is not isolated in Fix(g). This implies that g is
the identity. The proof is finished by an application of lemma 6.

Theorem 1 has not an analogue in higher dimension. To show this it is
sufficient to consider the linear map f : R3 — R? with matrix

cosf —sinf 0
A= sinf cosf O , 6 not commensurable with 27.
0 0 -1

It satisfies det A = —1 but the origin is stable and isolated in Fix(f).
To prove the need of the analyticity we define f = S o M where M is a
C diffeomorphism of R? satisfying the properties below,



1. det M'(z) = 1 if z € R?

2. there exists a sequence R, | 0 such that the disks ||z|| < R, are
invariant under M

3. M(0,Ry,) = (0, Ry) and M(0, —Ry) # (0, —Ry).

Then the origin is a stable fixed point for f because the disks ||z|| < R,
are also invariant under f. In contrast to the main result of the paper we
observe that det f/ = —1 and f is not conjugate to S. To prove the last
assertion notice that

f2(0,Ry) = S0 M(0,—Ry) # (0, Ry)

and so f2 is not the identity.
A method to construct M is as follows. Consider a C'*™ function ¢ : R —
R satisfying

1. ¢™(0)=0,n=0,1,2,...
2. ¢ and ¢’ are bounded
3. there exists a sequence r, | 0 with ¢(r,,) = 0 and ¢'(ry,) # 0.

Next consider the Hamiltonian system in the cylinder (0,r) € (R/27Z) x R,
i =—Hy, 0=H,, H(,r)=¢()(1—sind).

The circumference r = r,, is invariant under the flow, it contains the equi-
librium 8§ = Z, r = r, and a homoclinic orbit. The symplectic change of

2>
variables
r1 = V2rcosf, ro=+v2rsinb

transforms the above system in
ZL‘% + I% )(1 _ 9
2 Vi + 3

The function K is in C*°(R?) with K(0,0) = 0 and so the associated flow
{¢+} is globally defined. The boundedness of ¢ and ¢’ plays a role here.
The map M can be defined as ¢; for any ¢ > 0. Notice that R,, = \/2r,.

).

i1 = —Kyy, i2=Kg, K(z1,72) = ¢0(
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