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1 Introduction

The purpose of this paper is to study some qualitative properties of the second order linear
operator

L[p, q]u ≡ u′′ + p(t)u′ + q(t)u

with periodic conditions, where p, q ∈ L
(
[0, ω];R

)
are given Lebesgue integrable functions.

More precisely, we are interested in sufficient conditions for the operator L[p, q] to be non-
degenerate, inversely positive or inversely negative. This question and related ones have focused
the attention of many researchers [1, 2, 5, 6, 8, 10, 13–15, 17] because it plays the crucial role in
the implementation of different methods of proof for the existence of a periodic solution of an
abstract nonlinear second order equation Lu = Nu, where N is the so-called Nemitskii operator.
We will come back to this connection later.

In order to get a precise description of our objective, it is convenient introduce the following
definitions. Here, AC1

(
[a, b];R

)
stands for the set of functions u : [a, b] → R which are abso-

lutely continuous together with their first derivative. For brevity, sometimes we will omit the
dependence of the operator L[p, q] on p, q and write simply L.

1Supported by the Academy of Sciences of the Czech Republic, Institutional Research Plan No. AV0Z10190503,
and by Junta de Andalućıa, Spain, Project FQM2216; corresponding author

2Supported by Ministerio de Educación y Ciencia, Spain, project MTM2008-02502, and by Junta de Andalućıa,
Spain, Project FQM2216.
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Definition 1.1. The operator L[p, q] belongs to the set V − if and only if every function u ∈
AC1

(
[0, ω];R

)
satisfying

L[p, q]u(t) ≥ 0 for a. e. t ∈ [0, ω], (1.1)
u(0) = u(ω), u′(0) ≥ u′(ω) (1.2)

verifies also
u(t) ≤ 0 for t ∈ [0, ω]. (1.3)

The operator L[p, q] belongs to the set V −S if and only if every function u ∈ AC1
(
[0, ω];R

)
satisfying (1.1)-(1.2) verifies also

u ≡ 0 or u(t) < 0 for t ∈ [0, ω]. (1.4)

Definition 1.2. The operator L[p, q] belongs to the set V + if and only if every function u ∈
AC1

(
[0, ω];R

)
satisfying (1.1)-(1.2) verifies also

u(t) ≥ 0 for t ∈ [0, ω]. (1.5)

The operator L[p, q] belongs to the set V +
S if and only if every function u ∈ AC1

(
[0, ω];R

)
satisfying (1.1)-(1.2) verifies also

u ≡ 0 or u(t) > 0 for t ∈ [0, ω]. (1.6)

Definition 1.3. The operator L[p, q] is said to be nonresonant if and only if the homogeneous
problem

Lu = 0, (1.7)
u(0) = u(ω), u′(0) = u′(ω) (1.8)

has only the trivial solution.

It is convenient to state some comments concerning these concepts. According to Lemma 3.1
(established in Section 3), V − ≡ V −S . In the related literature, it is often called a maximum
principle. On the other hand, in general we only have the inclusion V +

S ⊂ V +. Therefore, we
can distinguish between antimaximum and strong antimaximum principle. Finally, it is easy to
realize that an operator L belonging to V − or V + is automatically nonresonant.

The aim of this paper is to derive sufficient conditions on p, q such that L[p, q] holds a max-
imum or antimaximum principle. Such sufficient conditions generalize or complement previous
published results in a sense to be detailed in due time. The structure of the paper is as follows:
Section 2 contains our main results, which are proved in Section 3. Finally, Section 4 is devoted
to compare our results with those published in the related literature.

2 Main Results

Our first result is a characterization of the set V −.
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Theorem 2.1. L[p, q] ∈ V − holds if and only if there exists a function β ∈ AC1
(
[0, ω];R

)
satisfying

L[p, q]β(t) ≤ 0 for a. e. t ∈ [0, ω], (2.1)
β(t) > 0 for t ∈ [0, ω], (2.2)

β(0) = β(ω), β′(0) ≤ β′(ω), (2.3)

and
meas

{
t ∈ [0, ω] : L[p, q]β(t) < 0

}
+ β′(ω)− β′(0) > 0. (2.4)

Such a theoretical result can be applied in order to get a practical criterion shown in the
next corollary. At this moment, it is convenient to fix some notation: [x]+ = max

{
x, 0
}

,
[x]− = −min

{
x, 0
}

. Given p ∈ L
(
[0, ω];R

)
, we define p̂ as the periodic extension to [0, 2ω]

p̂(t) =

{
p(t) for a. e. t ∈ [0, ω],
p(t− ω) for a. e. t ∈ ]ω, 2ω].

Let us define the operators σ, σ1 : L
(
[a, b];R

)
→ AC

(
[a, b];R

)
as

σ(p)(t) = exp
(∫ t

a
p(s)ds

)
for t ∈ [a, b],

σ1(p)(t) = σ(p)(b)
∫ t

a
σ(p)(s)ds+

∫ b

t
σ(p)(s)ds for t ∈ [a, b].

Corollary 2.1. Let q 6≡ 0 and

Π+ ≤
(

1− Φ
4

)
Π− (2.5)

where

Π− =
∫ ω

0
[q(s)]−σ(p)(s)σ1(−p)(s)ds, (2.6)

Π+ =
∫ ω

0
[q(s)]+σ(p)(s)σ1(−p)(s)ds, (2.7)

Φ = sup
{∫ t+ω

t
σ(−p̂)(s)ds

∫ t+ω

t
[q̂(s)]+σ(p̂)(s)ds : t ∈ [0, ω]

}
. (2.8)

Then L[p, q] ∈ V −.

Concerning the antimaximum principle, the following one is our main result.

Theorem 2.2. Let us assume q 6≡ 0 and the following conditions hold∫ ω

0
q(s)σ(p)(s)σ1(−p)(s)ds ≥ 0 (2.9)

and
Φ ≤ 4 (2.10)

where Φ is given by (2.8). Then L[p, q] ∈ V +
S .
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Theorem 2.3. Let us assume q 6≡ 0, (2.9) holds, and

Φ ≤ 16 (2.11)

where Φ is given by (2.8). Then L[p, q] is nonresonant.

In the case when ∫ ω

0
p(s)ds = 0 (2.12)

one can easily verified that the constants Π−, Π+ and Φ defined by (2.6)–(2.8) have the following
form:

Π− =
∫ ω

0
σ(−p)(s)ds

∫ ω

0
[q(s)]−σ(p)(s)ds,

Π+ = Φ =
∫ ω

0
σ(−p)(s)ds

∫ ω

0
[q(s)]+σ(p)(s)ds.

Therefore, the consequences established below immediately follow from Corollary 2.1 and The-
orems 2.2 and 2.3.

Corollary 2.2. Let q 6≡ 0, (2.12) holds, and let∫ ω

0
[q(s)]+σ(p)(s)ds <

4∫ ω
0 σ(−p)(s)ds

,∫ ω
0 [q(s)]+σ(p)(s)ds

1− 1
4

∫ ω
0 σ(−p)(s)ds

∫ ω
0 [q(s)]+σ(p)(s)ds

≤
∫ ω

0
[q(s)]−σ(p)(s)ds.

Then L[p, q] ∈ V −.

Corollary 2.3. Let q 6≡ 0, (2.12) holds, and let∫ ω

0
q(s)σ(p)(s)ds ≥ 0,

∫ ω

0
[q(s)]+σ(p)(s)ds ≤ 4∫ ω

0 σ(−p)(s)ds
.

Then L[p, q] ∈ V +
S .

Corollary 2.4. Let q 6≡ 0, (2.12) holds, and let∫ ω

0
q(s)σ(p)(s)ds ≥ 0,

∫ ω

0
[q(s)]+σ(p)(s)ds ≤ 16∫ ω

0 σ(−p)(s)ds
.

Then L[p, q] is nonresonant.

For the important special case when p ≡ 0, i.e. when Lu := u′′+ q(t)u is the Hill’s operator,
the following assertions can be immediately derived from the obtained results.

Corollary 2.5. Let q 6≡ 0, and let∫ ω

0
[q(s)]+ds <

4
ω
,

∫ ω
0 [q(s)]+ds

1− ω
4

∫ ω
0 [q(s)]+ds

≤
∫ ω

0
[q(s)]−ds.

Then L[0, q] ∈ V −.
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Corollary 2.6. Let q 6≡ 0, and let∫ ω

0
q(s)ds ≥ 0,

∫ ω

0
[q(s)]+ds ≤

4
ω
.

Then L[0, q] ∈ V +
S .

Corollary 2.7. Let q 6≡ 0, and let∫ ω

0
q(s)ds ≥ 0,

∫ ω

0
[q(s)]+ds ≤

16
ω
.

Then L[0, q] is nonresonant.

3 Auxiliary Propositions

Lemma 3.1. Let p, q ∈ L
(
[a, b];R

)
, t0 ∈ [a, b]. Let, moreover, u ∈ AC1

(
[a, b];R

)
satisfy

L[p, q]u(t) ≤ 0 for a. e. t ∈ [a, b], (3.1)
u(t) ≥ 0 for t ∈ [a, b], (3.2)
u(t0) = 0, u′(t0) = 0. (3.3)

Then
u(t) = 0 for t ∈ [a, b]. (3.4)

Proof. Put

w(t) = max
{
u(s) : (t− s)(s− t0) ≥ 0

}
for t ∈ [a, b],

A =
{
t ∈ [a, b] : w(t) = u(t)

}
.

Then, obviously, w ∈ AC
(
[a, b];R

)
,

w(t) ≥ u(t) for t ∈ [a, b], (3.5)
w′(t) sgn(t− t0) ≥ 0 for a. e. t ∈ [a, b], (3.6)

w(t0) = 0, (3.7)

and

w′(t) =

{
u′(t) for a. e. t ∈ A,
0 for t ∈ [a, b] \A.

(3.8)

From (3.1) we obtain[
u′(t)σ(p)(t)

]′ + q(t)σ(p)(t)u(t) ≤ 0 for a. e. t ∈ [a, b]. (3.9)

The integration of (3.9) from t0 to t (from t to t0), in view of (3.2) and (3.3), yields

u′(t)σ(p)(t) sgn(t− t0) ≤ sgn(t− t0)
∫ t

t0

[q(s)]−σ(p)(s)u(s)ds for t ∈ [a, b]. (3.10)

5



Now the inequality (3.10), with respect to (3.5), (3.6), and (3.8), results in

w′(t) sgn(t− t0) ≤ w(t)σ(−p)(t) sgn(t− t0)
∫ t

t0

[q(s)]−σ(p)(s)ds for a. e. t ∈ [a, b]. (3.11)

However, according to Gronwall–Bellman Lemma and (3.7), from (3.11) it follows that

w(t) ≤ 0 for t ∈ [a, b]. (3.12)

Now (3.2), (3.5), and (3.12) yield (3.4).

Lemma 3.2. Let p, h ∈ L
(
[a, b];R

)
, and let u ∈ AC1

(
[a, b];R

)
be such that

u′′(t) + p(t)u′(t) = h(t) for a. e. t ∈ [a, b], (3.13)
u(a) = u(b). (3.14)

Then

u(t) = u(a)− 1∫ b
a σ(−p)(s)ds

[∫ b

t
σ(−p)(s)ds

∫ t

a
h(s)σ(p)(s)

∫ s

a
σ(−p)(ξ)dξds

+
∫ t

a
σ(−p)(s)ds

∫ b

t
h(s)σ(p)(s)

∫ b

s
σ(−p)(ξ)dξds

]
for t ∈ [a, b] (3.15)

and [
u′(b)− u′(a)

] ∫ b

a
σ(−p)(s)ds =

∫ b

a
h(s)σ(p)(s)σ1(−p)(s)ds. (3.16)

Proof. From (3.13) we get[
u′(t)σ(p)(t)

]′ = h(t)σ(p)(t) for a. e. t ∈ [a, b]. (3.17)

Multiplying both sides of (3.17) by
∫ t
a σ(−p)(s)ds, resp. by

∫ b
t σ(−p)(s)ds, and integrating it

from a to t, resp. from t to b, we obtain

u′(t)σ(p)(t)
∫ t

a
σ(−p)(s)ds− u(t) + u(a) =

∫ t

a
h(s)σ(p)(s)

∫ s

a
σ(−p)(ξ)dξds, (3.18)

resp.

−u′(t)σ(p)(t)
∫ b

t
σ(−p)(s)ds+ u(b)− u(t) =

∫ b

t
h(s)σ(p)(s)

∫ b

s
σ(−p)(ξ)dξds. (3.19)

Now, multiplying (3.18) by
∫ b
t σ(−p)(s)ds and (3.19) by

∫ t
a σ(−p)(s)ds, we get

u′(t)σ(p)(t)
∫ t

a
σ(−p)(s)ds

∫ b

t
σ(−p)(s)ds+

[
u(a)− u(t)

] ∫ b

t
σ(−p)(s)ds

=
∫ b

t
σ(−p)(s)ds

∫ t

a
h(s)σ(p)(s)

∫ s

a
σ(−p)(ξ)dξds, (3.20)
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− u′(t)σ(p)(t)
∫ t

a
σ(−p)(s)ds

∫ b

t
σ(−p)(s)ds+

[
u(b)− u(t)

] ∫ t

a
σ(−p)(s)ds

=
∫ t

a
σ(−p)(s)ds

∫ b

t
h(s)σ(p)(s)

∫ b

s
σ(−p)(ξ)dξds. (3.21)

Summing the corresponding sides of (3.20) and (3.21), on account of (3.14), we arrive at (3.15).
Further, from (3.15) we obtain

u′(t) =
σ(−p)(t)∫ b

a σ(−p)(s)ds

[∫ t

a
h(s)σ(p)(s)

∫ s

a
σ(−p)(ξ)dξds

−
∫ b

t
h(s)σ(p)(s)

∫ b

s
σ(−p)(ξ)dξds

]
for t ∈ [a, b]

whence we get (3.16).

Lemma 3.3. Let p, q ∈ L
(
[a, b];R

)
, and let u ∈ AC1

(
[a, b];R

)
satisfy

L[p, q]u(t) ≥ 0 for a. e. t ∈ [a, b], (3.22)
u(a) = 0, u(b) = 0. (3.23)

Moreover, let us assume that there exists a function v ∈ AC1
(
[a, b];R

)
such that

L[p, q]v(t) ≤ 0 for a. e. t ∈ [a, b], (3.24)
v(t) > 0 for t ∈ [a, b]. (3.25)

Then
u(t) ≤ 0 for t ∈ [a, b].

Proof. Suppose on the contrary that u has a positive value. Put

λ = max
{
u(t)
v(t)

: t ∈ [a, b]
}
,

w(t) = λv(t)− u(t) for t ∈ [a, b]. (3.26)

Then w ∈ AC1
(
[a, b];R

)
,

λ > 0, (3.27)
w(t) ≥ 0 for t ∈ [a, b], (3.28)

and, because of (3.23) and (3.27), there exists t0 ∈ ]a, b[ such that

w(t0) = 0, w′(t0) = 0. (3.29)

Moreover, in view of (3.22), (3.24), (3.26), and (3.27), we have

L[p, q]w(t) ≤ 0 for a. e. t ∈ [a, b]. (3.30)

Now, on account of (3.28)–(3.30), w satisfies assumptions of Lemma 3.1. Therefore, w(t) = 0
for t ∈ [a, b], i.e.,

λv(t) = u(t) for t ∈ [a, b].

In particular, we have
λv(a) = u(a). (3.31)

However, (3.31) together with (3.25) and (3.27) contradicts (3.23).
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Lemma 3.4. Let p, q ∈ L
(
[a, b];R

)
, and let u ∈ AC1

(
[a, b];R

)
satisfy (3.22), (3.23), and

u(t) > 0 for t ∈ ]a, b[ . (3.32)

Then

4 <
∫ b

a
σ(−p)(s)ds

∫ b

a
[q(s)]+σ(p)(s)ds. (3.33)

Proof. Put
h(t) = L[p, q]u(t) for a. e. t ∈ [a, b]. (3.34)

Then, in view of (3.22),
h(t) ≥ 0 for a. e. t ∈ [a, b]. (3.35)

According to Lemma 3.2, on account of (3.34), we have

u(t) = − 1∫ b
a σ(−p)(s)ds

[∫ b

t
σ(−p)(s)ds

∫ t

a
[−q(s)u(s) + h(s)]σ(p)(s)

∫ s

a
σ(−p)(ξ)dξds

+
∫ t

a
σ(−p)(s)ds

∫ b

t
[−q(s)u(s) + h(s)]σ(p)(s)

∫ b

s
σ(−p)(ξ)dξds

]
for t ∈ [a, b]. (3.36)

Put
M = max

{
u(t) : t ∈ [a, b]

}
(3.37)

and choose t0 ∈ ]a, b[ such that
u(t0) = M. (3.38)

In view of (3.32) we have
M > 0. (3.39)

From (3.36), on account of (3.32), (3.35), (3.37), and (3.38), it follows that

M ≤ M∫ b
a σ(−p)(s)ds

[∫ b

t0

σ(−p)(s)ds
∫ t0

a
[q(s)]+σ(p)(s)

∫ s

a
σ(−p)(ξ)dξds

+
∫ t0

a
σ(−p)(s)ds

∫ b

t0

[q(s)]+σ(p)(s)
∫ b

s
σ(−p)(ξ)dξds

]
. (3.40)

According to (3.39), the function [q]+ is not identically equal to zero, and therefore from (3.40)
we obtain ∫ b

a
σ(−p)(s)ds <

∫ t0

a
σ(−p)(s)ds

∫ b

t0

σ(−p)(s)ds
∫ b

a
[q(s)]+σ(p)(s)ds. (3.41)

Now, using the inequality AB ≤ 1
4(A+B)2, from (3.41) we get (3.33).

Lemma 3.5. Let us assume that q 6≡ 0 and (2.9) hold. Then there is no positive function
u ∈ AC1

(
[0, ω];R

)
satisfying

L[p, q]u(t) ≤ 0 for a. e. t ∈ [0, ω], (3.42)
u(0) = u(ω), u′(0) ≤ u′(ω). (3.43)
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Proof. Assume on the contrary that there is a positive function u ∈ AC1
(
[0, ω];R

)
satisfying

(3.42) and (3.43). Put

ρ(t) =
u′(t)
u(t)

for t ∈ [0, ω]. (3.44)

Then
ρ′(t) ≤ −q(t)− p(t)ρ(t)− ρ2(t) for a. e. t ∈ [0, ω]. (3.45)

From (3.45) we obtain[
ρ(t)σ(p)(t)

]′
σ1(−p)(t) ≤ −q(t)σ(p)(t)σ1(−p)(t)

− ρ2(t)σ(p)(t)σ1(−p)(t) for a. e. t ∈ [0, ω]. (3.46)

Further, the integration of (3.46) from 0 to ω, in view of (3.43) and (3.44), results in

0 ≤
[
ρ(ω)− ρ(0)

] ∫ ω

0
σ(−p)(s)ds ≤ −

∫ ω

0
q(s)σ(p)(s)σ1(−p)(s)ds

−
∫ ω

0
ρ2(s)σ(p)(s)σ1(−p)(s)ds. (3.47)

Now (2.9) and (3.47) imply
ρ(t) = 0 for t ∈ [0, ω].

Consequently, in view of (3.44) we have that u is a positive constant function. This fact together
with (3.42) implies

q(t) ≤ 0 for a. e. t ∈ [0, ω]. (3.48)

However, (2.9) and (3.48) yield q ≡ 0 which contradicts the assumption of the lemma.

Lemma 3.6. Let there exists a function v ∈ AC1
(
[0, ω];R

)
satisfying

L[p, q]v(t) ≤ 0 for a. e. t ∈ [0, ω], (3.49)
v(t) > 0 for t ∈ [0, ω], (3.50)

v(0) = v(ω), v′(0) ≤ v′(ω), (3.51)

and
meas

{
t ∈ [0, ω] : L[p, q]v(t) < 0

}
+ v′(ω)− v′(0) > 0. (3.52)

Then there is no non–negative non–trivial function u ∈ AC1
(
[0, ω];R

)
satisfying

L[p, q]u(t) ≥ 0 for a. e. t ∈ [0, ω], (3.53)
u(0) = u(ω), u′(0) ≥ u′(ω). (3.54)

Proof. Assume on the contrary that there exists a function u ∈ AC1
(
[0, ω];R

)
satisfying (3.53),

(3.54), u 6≡ 0, and
u(t) ≥ 0 for t ∈ [0, ω]. (3.55)

Put

λ = max
{
u(t)
v(t)

: t ∈ [0, ω]
}
, (3.56)

w(t) = λv(t)− u(t) for t ∈ [0, ω]. (3.57)
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Then, in view of (3.49)–(3.51), (3.53)–(3.57), we have w ∈ AC1
(
[0, ω];R

)
,

λ > 0, (3.58)
L[p, q]w(t) ≤ 0 for a. e. t ∈ [0, ω], (3.59)

w(t) ≥ 0 for t ∈ [0, ω], (3.60)
w(0) = w(ω), (3.61)

and there exists t0 ∈ [0, ω] such that
w(t0) = 0. (3.62)

If t0 ∈ ]0, ω[ then, in view of (3.60), we get

w′(t0) = 0. (3.63)

If t0 ∈ {0, ω} then, in view of (3.54), (3.57), (3.60)–(3.62), we have

λv′(0) ≥ u′(0) ≥ u′(ω) ≥ λv′(ω)

which together with (3.51) and (3.58) implies (3.63) again. Therefore, according to Lemma 3.1
and (3.59) we find

w(t) = 0 for t ∈ [0, ω]. (3.64)

However, from (3.64) on account of (3.49), (3.51), (3.53), (3.54), (3.57), and (3.58) it follows
that

L[p, q]v(t) = 0 for a. e. t ∈ [a, b],
v(0) = v(ω), v′(0) = v′(ω),

which contradicts (3.52).

4 Proofs of Main Results

Proof of Theorem 2.1. Let us assume that there exists β ∈ AC1
(
[0, ω];R

)
satisfying (2.1)–(2.4).

We will show that L[p, q] ∈ V −. According to Definition 1.1 it is sufficient to show that every
function u ∈ AC1

(
[0, ω];R

)
satisfying (1.1) and (1.2) is non–positive. Assume on the contrary

that there exists u ∈ AC1
(
[0, ω];R

)
with positive values satisfying (1.1) and (1.2). According

to Lemmas 3.3 and 3.6 there exist t1 ∈ ]0, ω[ and t2 ∈ ]t1, ω[ such that

u(t) > 0 for t ∈ [0, t1[∪ ]t2, ω], (4.1)
u(t1) = 0, u(t2) = 0. (4.2)

Put

λ1 = max
{
u(t)
β(t)

: t ∈ [0, t1]
}
, (4.3)

λ2 = max
{
u(t)
β(t)

: t ∈ [t2, ω]
}
, (4.4)

w1(t) = λ1β(t)− u(t) for t ∈ [0, t1], (4.5)
w2(t) = λ2β(t)− u(t) for t ∈ [t2, ω]. (4.6)
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Note that

w1(t) ≥ 0 for t ∈ [0, t1], w2(t) ≥ 0 for t ∈ [t2, ω] (4.7)

and
w1(t1) > 0, w2(t2) > 0. (4.8)

We claim that λ1 = u(0)
β(0) . On the contrary, suppose that λ1 = u(t∗)

β(t∗)
with t∗ ∈]0, t1]. By (4.2),

t∗ < t1. Then, w1(t∗) = λ1β(t∗) − u(t∗) = 0 and w′1(t∗) = 0 as a consequence of (4.7). Then,
Lemma 3.1 can be applied to w1, obtaining that w1 is identically zero, which contradicts (4.8).
Thus, λ1 = u(0)

β(0) and therefore w1(0) = 0. By an analogous argument, w2(ω) = 0.
Again by Lemma 3.1, we necessarily have

w1(0) = 0, w2(ω) = 0, (4.9)
w′1(0) > 0, w′2(ω) < 0. (4.10)

Now (1.2), (2.2), (2.3), (4.5), (4.6), and (4.9) yield

λ1 = λ2. (4.11)

Consequently, (1.2), (4.3)–(4.6), (4.10), and (4.11) result in

β′(0) > β′(ω). (4.12)

However, (4.12) contradicts (2.3). Therefore, every function u ∈ AC1
(
[0, ω];R

)
satisfying (1.1)

and (1.2) is non–positive. Consequently, L[p, q] ∈ V −.
Reciprocally, let us take L[p, q] ∈ V −. Then the equation

L[p, q]u = −1 (4.13)

has a unique periodic solution u. According to Definition 1.1, u(t) ≥ 0 for t ∈ [0, ω]. We will
show that u is a positive function. Assume on the contrary that there exists t0 ∈ [0, ω] such that

u(t0) = 0.

Therefore, we have also
u′(t0) = 0.

Thus, in view of Lemma 3.1 we obtain

u(t) = 0 for t ∈ [0, ω]. (4.14)

However, (4.14) contradicts (4.13). Therefore,

u(t) > 0 for t ∈ [0, ω]. (4.15)

Put
β(t) = u(t) for t ∈ [0, ω]. (4.16)

Then β satisfies (2.1)–(2.4).
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Proof of Corollary 2.1. First note that according to the assumptions we have

[q]− 6≡ 0. (4.17)

Therefore, according to Theorem 2.1 we have

L
[
p, [q]−

]
∈ V −. (4.18)

Indeed, it is sufficient to put β(t) = 1 for t ∈ [0, ω]. Consequently, without loss of generality we
can assume

[q]+ 6≡ 0. (4.19)

Put

w(t) = − 1∫ ω
0 σ(−p)(s)ds

×
[∫ ω

t
σ(−p)(s)ds

∫ t

0

(
Π+[q(s)]− −Π−[q(s)]+

)
σ(p)(s)

∫ s

0
σ(−p)(ξ)dξds

+
∫ t

0
σ(−p)(s)ds

∫ ω

t

(
Π+[q(s)]− −Π−[q(s)]+

)
σ(p)(s)

∫ ω

s
σ(−p)(ξ)dξds

]
for t ∈ [0, ω].

Then, obviously, w ∈ AC1
(
[0, ω];R

)
, and

w′′(t) = Π+[q(t)]− −Π−[q(t)]+ − p(t)w′(t) for a. e. t ∈ [0, ω], (4.20)
w(0) = w(ω). (4.21)

Therefore, according to Lemma 3.2, in view of (2.6) and (2.7), we have

w′(0) = w′(ω). (4.22)

Let t1 ∈ [0, ω[ and t2 ∈ ]t1, t1 + ω[ be such that

ŵ(t1) = m, ŵ(t2) = M, (4.23)

where
m = min

{
w(t) : t ∈ [0, ω]

}
, M = max

{
w(t) : t ∈ [0, ω]

}
, (4.24)

and

ŵ(t) =

{
w(t) for t ∈ [0, ω],
w(t− ω) for t ∈ ]ω, 2ω].

(4.25)

According to Lemma 3.2, (4.23), and (4.25), we have

M = m− 1∫ t1+ω
t1

σ(−p̂)(s)ds

×
[∫ t1+ω

t2

σ(−p̂)(s)ds
∫ t2

t1

(
Π+[q̂(s)]− −Π−[q̂(s)]+

)
σ(p̂)(s)

∫ s

t1

σ(−p̂)(ξ)dξds

+
∫ t2

t1

σ(−p̂)(s)ds
∫ t1+ω

t2

(
Π+[q̂(s)]− −Π−[q̂(s)]+

)
σ(p̂)(s)

∫ t1+ω

s
σ(−p̂)(ξ)dξds

]
. (4.26)
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In view of (2.8), (4.17), (4.19), and the inequality AB ≤ 1
4(A+B)2, from (4.26) it follows that

M < m+
ΦΠ−

4
. (4.27)

Now put
β(t) = Π+ + w(t)−m for t ∈ [0, ω]. (4.28)

Then, in view of (4.19)–(4.24) we have (2.2), (2.3), and

β′′(t) = Π+[q(t)]− −Π−[q(t)]+ − p(t)β′(t) for a. e. t ∈ [0, ω]. (4.29)

On the other hand, on account of (2.5), (4.24), and (4.27), from (4.28) it follows that

Π+ ≤ β(t) < Π− for t ∈ [0, ω]. (4.30)

Thus, using (4.30) in (4.29) we find that (2.1) holds and, with respect to (4.19), also (2.4) is
satisfied. Now the conclusion of the corollary follows from Theorem 2.1.

Proof of Theorem 2.2. According to Definition 1.2 it is sufficient to show that every function
u ∈ AC1

(
[0, ω];R

)
satisfying (1.1) and (1.2) is positive. Take, therefore, u ∈ AC1

(
[0, ω];R

)
satisfying (1.1), (1.2), and suppose on the contrary that u assumes nonpositive values. According
to Lemma 3.5, the function u has a zero; according to Lemma 3.1, u takes also positive values.
Thus there exist t1, t2 ∈ [0, ω] such that t1 < t2,

u(t1) = 0, u(t2) = 0, (4.31)

and either
u(t) > 0 for t ∈ ]t1, t2[ , (4.32)

or
u(t) > 0 for t ∈ [0, t1[∪ ]t2, ω]. (4.33)

If (4.32) holds true, then according to Lemma 3.4 we have

4 <

∫ t2

t1

σ(−p)(s)ds
∫ t2

t1

[q(s)]+σ(p)(s)ds ≤
∫ ω

0
σ(−p)(s)ds

∫ ω

0
[q(s)]+σ(p)(s)ds. (4.34)

However, (4.34) contradicts (2.10).
Let, therefore, (4.33) be fulfilled. Define

h(t) = L[p, q]u(t) for a. e. t ∈ [0, ω]. (4.35)

By Picard-Lindelöff Theorem, there exists a unique function v ∈ AC1
(
[0, ω];R

)
of the initial

value problem

L[p, q]v(t) = h(t) for a. e. t ∈ [0, ω], (4.36)
v(0) = u(ω), v′(0) = u′(ω). (4.37)

Put
w(t) = u(t)− v(t) for t ∈ [0, ω].
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Then, in view of (1.2), (4.35)–(4.37), we have

L[p, q]w(t) = 0 for a. e. t ∈ [0, ω],
w(0) = 0, w′(0) = u′(0)− u′(ω).

Consequently, according to (1.2), Lemma 3.4, and the assumption (2.10), we get w(t) ≥ 0 for
t ∈ [0, ω], i.e., u(t) ≥ v(t) for t ∈ [0, ω]. Thus, in view of (4.31), (4.33), (4.37), there exists
t3 ∈ ]0, t1] such that

v(t3) = 0, v(t) > 0 for t ∈ [0, t3[ . (4.38)

Define z : [t2, t3 + ω]→ R as follows:

z(t) =

{
u(t) for t ∈ [t2, ω],
v(t− ω) for t ∈ ]ω, t3 + ω].

(4.39)

Then, on account of (1.1), (4.31), (4.33), (4.35)–(4.39) we have z ∈ AC1
(
[t2, t3 + ω];R

)
and

L[p̂, q̂]z(t) ≥ 0 for a. e. t ∈ [t2, t3 + ω],
z(t) > 0 for t ∈ ]t2, t3 + ω[ ,
z(t2) = 0, z(t3 + ω) = 0.

Therefore, according to Lemma 3.4, the inequality

4 <
∫ t3+ω

t2

σ(−p̂)(s)ds
∫ t3+ω

t2

[q̂(s)]+σ(p̂)(s)ds (4.40)

holds true. However, in view of the fact t3 ≤ t1 < t2 we have t3 +ω < t2 +ω, and so from (4.40)
we obtain

4 <
∫ t2+ω

t2

σ(−p̂)(s)ds
∫ t2+ω

t2

[q̂(s)]+σ(p̂)(s)ds,

which contradicts (2.10).

Proof of Theorem 2.3. Assume on the contrary that there exists a nontrivial solution u to (1.7)-
(1.8). According to Lemma 3.5, u has a zero, and according to Lemma 3.1, u assumes both
positive and negative values. Therefore, there exist t0 ∈ [0, ω[ , t2 ∈ ]t0, t0 + ω], and t1 ∈ ]t0, t2[
such that

û(t0) = 0, û(t1) = 0, û(t2) = 0,
û(t) > 0 for t ∈ ]t0, t1[ , û(t) < 0 for t ∈ ]t1, t2[ ,

where û is given by

û(t) =

{
u(t) for t ∈ [0, ω],
u(t− ω) for t ∈ ]ω, 2ω].

Consequently, according to Lemma 3.4 we have

4 <
∫ t1

t0

σ(−p̂)(s)ds
∫ t1

t0

[q̂(s)]+σ(p̂)(s)ds, (4.41)

4 <
∫ t2

t1

σ(−p̂)(s)ds
∫ t2

t1

[q̂(s)]+σ(p̂)(s)ds. (4.42)
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Now, multiplying the corresponding sides of (4.41) and (4.42), and using the inequality AB ≤
1
4(A+B)2, we arrive to

16 <
∫ t2

t0

σ(−p̂)(s)ds
∫ t2

t0

[q̂(s)]+σ(p̂)(s)ds

≤
∫ t0+ω

t0

σ(−p̂)(s)ds
∫ t0+ω

t0

[q̂(s)]+σ(p̂)(s)ds. (4.43)

However, (4.43) contradicts (2.11).

5 Further comments and comparison with related results.

As commented in the Introduction, an operator L belonging to V − or V + is automatically
nonresonant. Therefore, according to the classical Fredholm alternative, the complete problem

Lu = h(t) (5.1)
u(0)− u(ω) = c0, u′(0)− u′(ω) = c1 (5.2)

with h ∈ L
(
[0, ω];R

)
, c0, c1 ∈ R, has a unique solution u. In terms of the associated Green’s

function G(t, s), L ∈ V − means that G(t, s) < 0, L ∈ V + means that G(t, s) ≥ 0 and L ∈ V +
S

means that G(t, s) > 0 for all t, s. In this way, our results can be compared with those available
in the related literature concerning the sign of the Green’s function of the second order linear
operator with periodic boundary conditions.

In our opinion, the main strength of our results is that the coefficients are allowed to change
sign. The case of constant coefficients can be fully solved [10]. The case of one-signed and
bounded q was considered in [1]. Essentially, Corollaries 2.6 and 2.7 are known since the times
of Lyapunov. Corollary 2.7 can be found in [8] and more recently in [15, Th.4], whereas Corollary
2.6 is a result widely used in the method of upper and lower solutions. An extended version
with a Lα-condition was proved in [14] for the case of non-negative q and later extended to
the case of indefinite sign in [2]. In this last paper, the authors gives a result for the general
operator L[p, q] with both p, q changing sign, assuming that

∫ T
0 p(s)ds = 0 (see [2, Th. 5.1]). It

can be checked that our Corollary 2.4 is just this result for α = 1. The case
∫ T
0 p(s)ds 6= 0 was

considered in [13, 17], but in these papers both p, q are assumed positive. As to the knowledge
of the authors, a first result for the general operator L[p, q] with both p, q changing sign can be
found in [6]. The papers [4, 6, 7] give also effective criteria for nonresonance of a general linear
n-th order operator. Corollary 2.1 and Theorems 2.2 and 2.3 provide essentially new information
which complement or generalize the previously mentioned results.

We finish the paper with some comments concerning the applications to nonlinear problems.
With a nonresonance criterion for the operator L, one can deduce existence and uniqueness
results for the nonlinear equation

Lu = g(t, u) (5.3)

by using the arguments of [5, 15, 16]. On the other hand, L ∈ V − provides a method of well-
ordered upper and lower solutions for eq. (5.3), whereas L ∈ V +

S gives a method of upper and
lower solutions on the reversed order (see [1, 10, 13, 14] and their references). Besides, an anti-
maximum principle enables the applications of classical fixed point theorems like Schauder’s or
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Krasnoselskii’s to regular or singular problems like in [3, 9, 12, 13] and many others. The inclu-
sion of delays [17] does not suppose major changes. We consider that the previously mentioned
techniques are sufficiently developed in the literature.
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