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Abstract

We present sufficient and necessary conditions for the permanence of discrete
systems in the plane based on index of fixed point on convex sets. In concrete
models, a simple picture is sufficient to deduce whether our system is permanent
or not.
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1 Introduction

The evolution of the size of two species sharing the same habitat can be modelled
by a system of difference equations of the type

{an = F1(Zn, Yn) (1.1)

Yn+1 = F2(-Tn7yn)

where x,,y, > 0 are the sizes in the period n. From a biological point of view it
is natural to ask whether both species will coexist or if one of them will eventually
disappear. The notion of permanence guarantees the coexistence of both species for
any initial conditions but it carries some additional information. The system (1.1)
is said to be permanent if it is possible to find two constants 0 < o < @ such that

given initial conditions xo > 0,yo > 0 there exists N = N(xq,yo) with

c<x,<0, o<y, <o if n>N.
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Notice that the numbers ¢ and @ are independent of the initial conditions.
The problem of permanence for discrete population models has been intensively
studied and several techniques have been applied. Among them are averaged Lya-
punov functions, Lyapunov exponents, Conley index, Morse decompositions... See
for instance [3], [4], [5], [6], [8], [12], [9], [10] and the references therein. In this
paper we are going to approach the problem of permanence using the fixed point
index on convex sets (see section 2 or [1]). This is a topological tool usually em-
ployed in Nonlinear Analysis to prove the existence of positive solutions of certain
equations and systems. One of the task of the paper will be to show how this index
is naturally linked to the problem of permanence. The main advantage of the use
of the index is that, being of topological nature, it can deal with non-hyperbolic
situations. A second feature of our method is its geometrical flavour. In concrete
examples permanence can be decided by looking at two curves which can be drawn
with a computer. This can replace the more standard computations of eigenvalues
needed in previous results.
Besides the fixed point index we shall employ a result by Kirchgraber and Palmer
in [7]. This is a result on the dynamics of a diffeomorphism around a partially
hyperbolic fixed point and its use will impose some restrictions on the range of
applicability of the method. In particular we must assume that the dynamics of
each species in the absence of the other is simple, namely convergence to an equi-
librium. For instance, if we let y = 0, we need to know that the solutions of the
single equation

Tn+1 :Fl(xn,O) (12)

converge to the unique positive solution of z = Fj(z,0). A question to decide in
future works will be whether these restrictions are essential or just due to the use
of the results in [7].

The structure of the paper is as follows. In the section 2 we introduce some pre-
liminary notions, including the fixed point index and state the main results of the
paper. In the next Section we present the proofs of these results. Finally, in the Sec-
tion 4, we will show the geometric character of the method with a concrete example.

2 Main result and the definition of fixed point in-
dex

The first quadrant of the plane will be denoted by R?‘_. We assume that this set is
closed and denote its interior by I m‘Ri. In coordinates,

R = {(z,y) e R?: 2> 0,y > 0}, IntR? = {(z,y) € RZ :2 >0,y > 0}.

Consider a map F : R2 — R2, (z,y) — (Fi(z,y), Fa(z,y)) of class C* and
satisfying
Fi(z,y) > 0,Fy(x,y) >0 if >0 and y >0,

F1(0,y) = F3(x,0) =0 for any z,y > 0.



From these conditions, we deduce that, for each initial condition (zg,yo) € Ri, the
system of difference equations

{SUnJrl = F1($n7yn) (1.3)

Yn+1 = F2($n7yn)

has a well defined forward solution {(z,,¥yn)}n>0 lying in Ri. Moreover the sets
IntR3, {z = 0} and {y = 0} are positively invariant. We will always assume that
the system (1.3) is dissipative i.e. there exists a constant M > 0 such that

limsup ||(zn, yn)|| < M

for any sequence in R? obtained from (1.3),(|| - || is a concrete norm in R?). This
assumption is usual in populations models since it reflects the limitations of the
environment. A second assumption will concern the behavior of the system near
the origin. It will be assumed that there exists V', neighborhood of the origin
in R3 such that for each (z,y) € IntR%, there exists Ny = Np(z,y) > 0 such
that (zn,,yn,) € V. When this happens we will say that the origin does not
attract interior points. In particular this condition excludes the possibility of
simultaneous extinction of both species. Finally we are going to impose conditions
on the dynamics in the absence of one of the species. For the difference equation

l’n+1 = Fl(xn70) (14)

we assume that there exists a fixed point x, satisfying 0 < |9, Fi(x4,0)| < 1 and
such that x,, — . for every positive solution {z,},>¢ of (1.4). In this case we
will say that x, is a hyperbolic attractor on the x-axis. For the equation on
the y-axis

Y1 = F2(0, ya) (1.5)

we can impose an analogous condition and say that y, > 0 is a hyperbolic attractor
on the y-axis. An alternative assumption for (1.5) will be the nonexistence of
positive fixed points. Notice that the dissipativity together with the invariance of
the y-axis imply that, in the second case, y,, — 0 for every solution {y,} of (1.5).
Borrowing the phase portraits from the theory of continuous dynamical systems we
sum up the two situations under consideration in the diagram.

o \\,\/
L | N |

Intuitively speaking, it seems natural to expect permanence in the first case when
the fixed points (z4,0) and (0, y.) are of saddle type. For the second case, we only




need a similar assumption on (z.,0). However these fixed points are not necessarily
hyperbolic. For this case, we apply the theory of the index in convex sets as devel-
oped in [1]. This theory is valid for arbitrary dimension but we only need it for R? .
Next we are going to give some necessary notions on this index. First let us recall
the definition of index in the whole plane R2.

Assume that G : U :(— R? is a continuous map defined on an open subset U of
R? and having an isolated fixed point p = G(p). The index can be defined as the
winding number of the loop

t€[0,1] = a(t) — G(a(t)) € R* — {0}
where a(t) = p + e(cos 27t, sin 27t) is a positive parametrization of a small circum-
ference centered at p. More precisely
6(1) — 6(0)
27
where 6 : [0,1] — R is a continuous function with
a(t) — G(a(t)) :
= (cosO(t),sinO(t)).
[a(t) = Ga(®))]|

To define the index in Ri we start with a continuous function F : U N Ri — Ri
having an isolated fixed point at p. When p is in the interior of ]Rf_ the definition
is the same as before but when p is on the boundary of Rﬁ_ we define

indexgz (G, p) =

indexgsz (F,p) := indexg: (F,p).

Here F : U — R2 is any extension of F taking values on R%. Once these notions
have been shown, we are ready to state our results.

Theorem 2.1 Assume that (1.3) is dissipative and the origin does not attract
interior points. In addition there exist x. > 0 and y. > 0 hyperbolic global
attractors for (1.4) and (1.5) respectively. Then (1.3) is permanent if only if
indexRi(F, (z4,0)) = indexry: (F,(0,y4)) = 0.

In many models one of the species cannot survive in the absence of the other. This is
the case of some prey-predator models. This motivates us to consider the following
theorem.

Theorem 2.2 Assume all the conditions of the previous theorem excepting that
there is no positive fixed point on the y-azis. Then (1.3) is permanent if only if
indexRi(F, (z4,0)) = 0.

3 Proof of the main Theorem

The proof of the theorem 2.1 is separated in two parts. In the first part, we will
study the local behavior of F' in the fixed points of the axes using the results in [7]
and in the second part we will study the global behaviour using that our system is
dissipative. The proof of the theorem 2.2 is totally analogous.



3.1 Local behavior

In this section we are going to work with (0, y.), the analogous results can be ob-
tained if we work with (x.,0). Using that F1(0,y) = 0 and Fi(x,y) > 0, Fa(z,y) >0
for all x,y > 0, we can define the following extension to the second quadrant

ﬁ(:lc ) = F(z,y) if >0 (1.6)
= soFos(x,y) if <0 .

where s is the symmetry respect to the y-axis. Before continuing, we are going to
note some interesting properties of this extension. If for some U C R2, F |y is a

homeomorphism then F |UUS(U) is also a homeomorphism where F' |y denotes the
restriction of F' to U and in this case, (Z?)_1 — F-1. Other interesting property is
soFos=F. The previous properties can be easily checked from (1.6). We will use
this extension in an auxiliar way. To compute the indexg2 (F, (0,y4)), we are going
to use the following map

F(x,y) = F(|xl, |y])-

Next we are going to present the essential concept to prove our theorem.

Definition 3.1 A fized point (0,y.) is a weak repeller for the system (1.3) if there
exists U a neighborhood of (0,y,) in R2 so that for all (z,y) € U N IntR?, there is
NO = N0(277y) such that (meyNo) ¢ U.

It is clear that if (0,y.) is a weak repeller for (1.3) then the system is not perma-
nent. The key in our paper is to characterize when (0,y.) is a weak repeller via
indemRi (Fa (05 y*))

Theorem 3.1 Assume that (0,y.) is a hyperbolic attractor for the system (1.3) in
the y-axis and an isolated fixed point for F in Rf_, then (0,ys) is a weak repeller if
only if indetys (F,(0,y4)) = 0.

Before giving the proof of this result we need a preliminar result.

Lemma 3.1 Assume that (0,y.) is a hyperbolic global attractor in the y-axis.
1. If 0, F1(0,y.) > 1 then indewgs (F, (0,y.)) = 0.
2. If 0, F1(0,y,) <1 then inderry> (F,(0,y4)) = 1.

Proof. First we assume that 0, F3(0,y,) > 1. Then it is clear that there exist € > 0
and D a disk centered at (0,y.) such that 9, Fi(xz,y) > 1+ € for all (z,y) € D.
From these comments and using that F3(0,y) = 0, we deduce that

(1+ )z < Fi(z,9) (L.7)
for all z > 0 with (z,y) € D. Next, we define the following homotopy

H:[0,1] x D — R?



H(t7 (a?,y)) = tf(xvy) + (1 - t)F(x’y)

where
Fla.y) — L (1= 2 P2(0.1)
F(z,y) {((1+€)x7F2(03y))'

First, let us prove that H is an admissible homotopy, i.e. H(¢,(z,y)) # (z,y) for
all (z,y) € 0D. Indeed, consider (zg,yo) € 0D with xy # 0. From (1.7), we deduce
that

(1 —t0)(1 + €)[xo| + toF1(|zol, yo) = (1 + €)|zol

holds. For xg = 0, we deduce that H does not have fixed points in dD using that
(0,y.) is a hyperbolic attractor. Finally using the invariance by homotopy together
with product property of the index we conclude that

indexg: (F, (0,9.)) := indexgz (F, (0,y.)) = indexgz (F, (0,yx)) = 0.

To prove the second statement, consider ¢ and D analogous to the previous case
and consider the map

F(Z‘,y) = ((1 - €)$,F2(0, y))
Proof of the theorem 3.1. Firstly we are going to compute the Jacobian matrix
of F'in (0,y.)

axF1(07y*) O
JF(O’y*) = (9TF2(O,y*) 6yF2(0,y*)
n

From this expression we deduce that the eigenvalues of Jg(0,y.) are

{aJ?Fl(Oa y*)a 77}'

As (0,y.) is a hyperbolic global attractor in the y-axis we deduce that 0 < |n| < 1.
On the other hand, since F(IntR3) C IntR3 we obtain that 8,F1(0,y,) > 0. In
this moment we can deduce that if 9, F1(0,y.) < 1, (0,y.) is an attractor and if
0:F1(0,y.) > 1, (0,y,) is a weak repeller. From these comments together with the
previous lemma we obtain

0 if 8,F1(0,y,) > 1

ind F,(0,94)) =
m eCERi( (0,94)) {1 if 8,F1(0,4.) < 1.

The rest of the proof consists in the study of the case 9, F1(0,y.) = 1. Again using
the expression of the Jacobian matrix, we can deduce that there exists F~! in a
neighbourhood of (0, y.) and has the following expression (in this neighbourhood)

F () = (g(z.9), %y +Y(2,y))

where 0,9(0,3+) = 1, 9,9(0,y.) = 0, 9,Y(0,y.) = 0 and Y is bounded. From
these comments, we can deduce that in a neighbourhood of (0,.), F'~! verifies the



hypotheses H considered in [7], namely there exist positive constants kyq, kuy, kys,
kyy verifying

lg(z1,y1) — 9(z2,¥2)| < kaal|z1 — 22| + kaylyr — y2

Y (21,91) = Y (22, y2)| < kyalr1r — 22| + kyylyr — vo|

and for g = % — kyy, a = kg, there exists a constant p > 1 such that
a<p<p

koykye < (B —=p)(p — a).
To check this we consider the Lipschitz constant on D, N Ri, where D, is the disk
centered at (0,y,) of the radius r. It is clear that

kye — 1,kgy — 0,kyy — 0

as r — 0 while k;, remains bounded. We pick a fixed p > 1 lying between o and
B for small r. Then (8 — p)(p — ) is a fixed quantity and the product kgyky. tends

to zero. Next we are going to consider F/'*\l(x, y) = (9(z,y), %y + }A/(x, y)) where

() g(z,y) if ©>0
x? = .
gy —g(—z,y) if z<0

and Y (z,y) = Y(|z|,y). The map F~1 is not necessary C! but it still verifies the

hypotheses H and so applying Theorem 1.c page 44 in [7], we deduce that F1is
topologically conjugate to

Gz, y) = 3z, hlx)), %y>

where h :] — €,[— R is a Lipschitz continuous function with h(0) = y.and M =
{(z,h(z)) : €] — €,€[} is a local invariant manifold associated to F~1. We notice
that {(z,h(z)) : * > 0} is also invariant for F~!. Therefore F is topologically
conjugate to N

G(l‘, y) = (Fl (l‘, h(£))7 77y)
It is posible to see that the previous map is the inverse of G~! in a neighbourhood
of (0,y.) from

G(g(x, h(x)), %y) = (F1(§(x, h(x)), h(G(x, h(x)))),y) =

= (B (F~Y(z,h(2))),y) = (z,y)
)

where first we have used that M = {(z,h(z)) : © €] — €,€¢[} is a local invariant
manifold and in the second equality (F~1)~1 = F. On the other hand, the homeo-

morphism of conjugation which it is built in [7] verifies that P({z = 0}) C {z = 0}



(See page 43 in [7]) and thus using that so F os = F, we can take P verifying that
so P = Pos. Finally, since
— ﬁaz,y =F(z,y) ifz>0
Fos(z,y) if z<0,

we deduce that F is topologically conjugate to

> _ ) (Fi(z h(z)),ny) if >0
Gloy) = {(Fl(—x,h(—x)),ny) if z<0.

All these comments enables us to deduce that (0,y.) is a weak repeller for F' if
only if x < Fy(x,h(z)) for > 0. In this case, using the invariance of the index by
conjugation (See Remark 14 [1]) we deduce that

indergs (F, (0,y.)) := indexrz2(F, (0,y,)) = indexr2(G, (0,0)) =0

and the proof is complete.

In the proof of the theorem 2.1 we will need a consequence of the above proof. If
indemRi(F, (0,s)) = 0 then there exists § > 0 so that for all (z,y) € U N IntR%,
there exists No = No(z,y) so that (zn,,yn,) € U and zn, > ¢ where U is the
same neighbourhood provided by theorem 3.1. This can be easily seen using the
Hartman-Grossman theorem (see [11]) when 9, F1(0,y.) # 1 and using that F is
topologically conjugate to G when 0. F1(0,y.) = 1. We can obtain the analogous
conclusion for (z,,0).

Remark 3.1 Note that under the hypotheses of the theorem 3.1, the posibles values
of the inderrs (F,(0,y4)) are 0 or 1. Moreover we can replace inderys (F,(0,y4)) =

~ ~

0 (resp. indewRi(F, (0,9+)) = 1) with indexgz(F, (0,y.)) = =1 ( resp. indexg:(F
(0,5.)) =1).

3.2 Conclusion

In this section we will pass from the local to the global behaviour using that our
system is dissipative. To this aim it is essential the following result.

Lemma 3.2 (Lemma 2.1 in [5]) Let F : X — X be continuous map where
X is a metric space and assume that K is a compact set verifying that for all
x € X there exists N = N(x) such that xy € K. Then there exists ko such that

K= U;@:O FI(K) is compact and positively invariant.

From this lemma it is easy to check that our system is permanent. Indeed, since
F(IntR%) C IntR% and (z,,0), (0,y.) are hyperbolic attractors in each axis we
deduce that F~1({0}) = 0. Using that (1.3) is dissipative and the origin does not
attract interior points, we deduce that there exist R > r > 0 so that for all (x,y) €



RZ \{0} there exists Ny = No(z, y) such that (zn,,yn,) € K = (Br(0)\B,(0))NR3.
Then applying the lemma 3.2 with X = R?\{0}, we conclude that there exists
mo € N such that |J;*) F/(K) = K is compact and positively invariant (notice
that 0 ¢ K;). From this moment, we are going to concentrate on K to study the
dynamics. Next, we are going to "separate” from the x — axis in the following way.
Using that (x, 0) is a weak repeller, we deduce that there exists V' a neighbourhood
of (z4,0) and § > 0 so that for all (z,y) € V with y > 0, there is Ny = Ny (x,y) such
that (zn,,yn,) € V with yn, > d. Now, since K1 N {y = 0} is compact, we deduce
that there exists No such that for all (z,0) € K, there exists an index j < N so
that (x;,0) € V. From the continuity of F' we deduce that there exists 6; > 0 with
0 > 41 so that for all (z,y) € Ky with y < 41, there exists an index j < N3 such that
(xj,y;) € V. Therefore, taking K=K n {(z,y) : y > 6} and again applying the
lemma 3.2, we deduce that there exists so such that Ky = U;":O F(K,) is compact
and positively invariant.

The result is concluded repeating the same argument with the y-axis and K.

4 Applications

The use of the index allows to deal with degenerate cases which can not be treated
via hyperbolicity. However, even in the hyperbolic case, it has some interest since
it replaces an algebraic computations of eigenvalues by the study of the winding
number that can be done visually. To show this we start with a concrete example.
Consider the model

{$n+1 =z, exp(0.5 — z,, — 4y, (yn — 1)) (1.8)

Yn+1 = Ynexp(1.5 — 3z — yp)

The function F' satisfies all the assumptions in Theorem 2.1. To check the dis-
sipativity we notice that F(Ri) is bounded. It is also clear that the origin does
not attract interior points since the eigenvalues of the Jacobian matrix of F' at
(0,0) are {exp0.5,exp1.5}. A simple study on the axes enables us to deduce that
(0.5,0) and (0,1.5) are hyperbolic attractors in the z-axis and y-axis respectively,
(this study will be done in the next example). Therefore, we have just to com-
pute indergs (F,(0.5,0)) and indexRi(F, (0,1.5)). Apart from the fixed points
on the axes, (35—6, %) is the unique fixed point of our system in Int(]Rf_). After
this remark, we draw the curves §;(t) = «;(t) — F(y(t)) for a1(t) = (0.5 +
0.1cos(27t),0.1sin(27t)), as(t) = (0.2cos(27t), 1.5 + 0.2sin(27t)) and F(z,y) =
E(lzl, ly])-

From this pictures we can deduce that indexg2 (F,(0,1.5)) = indexgs (F,(0.5,0)) =
1. By the theorem 2.1 we conclude that the system is not permanent. We notice 1
is an eigenvalue of the Jacobian matrix of F' at (0.5,0).

A generalized Lotka Volterra model



Bi(t)

Next we consider the following model, namely

(1.9)

Tn+1 = T eXp(Tl — Tn — f(yn))
Yn+1 = Yn eXp(TQ - g(xn) - yn)

with 7; €]0,2[\{1}. The functions f,g are of C'([0,00[) with f(0) = g(0) = 0 and
for some constant M > 0, f(t),g(¢t) > 0 for all t > M. It is known that if 0 < 7 < 1
then (z,,,0) — (r1,0) for all zy €]0, +o0o] and the sequence {x,} is monotone. For
r1 €]1,2[, we obtain the same conclusion but in this case the sequence is oscillating
(see [2]). Let us apply the theorem 2.1 to characterize the permanence of the system
(1.9) under the hypotheses r; €]0,2[\{1}.

Again using that the map is bounded we deduce that the system is dissipative. On
the other hand, using that {exp(ri),exp(r2)} are the eigenvalues of the Jacobian
matrix of F' at (0,0), we deduce that the zero does not attract interior points.
Then by the Theorem 2.1 our system is permanent if only if indexg: (F,(r1,0)) =
indergs (F,(0,72)) = 0. Next we are going to study when both indices are zero.
Indeed, let us concentrated on the indergs (F,(r1,0)), the analogous conclusion can
be obtained in the other case. Using an analogous of the lemma 3.1 for the z-axis,
we deduce that for o — g(r1) > 0,

indexg (F, (r1,0)) =0

and for ro — g(r1) <0,
inderys (F,(r2,0)) = 1.

From this moment we concentrate on the indezgs (F,(r1,0)) when

T2 = g(r1). (1.10)

In the rest of the argument we are going to assume that 1 — f/(0)g’(r1) # 0. This
condition implies that (r1,0) is an isolated fixed point for (1.9) since if (z.,y.) is
an fixed point with y, > 0, then

{m =z + f(y.)
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Now we consider the curve

B(t) = a(t) = F(a(t))

where F(x,y) = F(|z|,|y|) and a(t) = (r1 + pcos2nt, psin2nt) for a sufficiently
small p > 0 and ¢ € [0,1]. Observe that 3(t) € {y < 0} for ¢ €]3,1[. Since ry
attracts the z-axis, 8(0) = 8(1) = (£&1,0), 8(3) = (— 52, 0) with & > 0. Next we
concentrate on studying the behavior of 3(t) for t €]0, 3[. In this moment we are

going to distinguish two cases:
o 1—f"(0)g'(r1) >0,
o 1—f'(0)g'(r1) <0.

In the first case we can deduce that G(y) = y+ g(r1 — f(y)) is strictly increasing in
a neighbourhood of y = 0. This condition implies that for ¢ €]0, 5[, the curve B(t)
only cuts the y-axis in the positive part. Indeed, if for some ¢, €]0, 1],

1 —ai(ts) — flaz(ts)) =0

then ro — g(ai (1)) — aa(ts) = r2 — (aa(ts) + g(r1 — fa2(t)))) = r2 — Glaa(ty)) <
ro — G(0) = ro — g(r1) = 0, here we have used that as(t,) > 0 and (1.10). In the
second situation we have that for ¢ €]0, 1[ the curve 5(t) only cuts the y-axis in the
negative part. From this information we can deduce that inderg> (F,(r1,0)) =1in
the first case and indexgs (F,(r1,0)) = 0 in the second one. These conclusions are

clear from the following lemma.

Lemma 4.1 Let 3 :[0,1] — R2\{0} be a continuous map with 3(0) = B(1) and
verifying, .

1. ﬁ(O) = (£1,0) with & >0
B(t) only cuts the y-axis in the positive part for t € [0, [
B(3) = (=£&2,0) with & >0
B(t) € {y <0} fort 6]2,1[.

0(1)—6(0)

Then 2 1) 0(0) = 1 where 0(t) is any continuous argument of B(t). Moreover if we
replace posztwe part by negative part in the condition 2), we obtain w =0.
Proof. Take 6 : [0,1] — R a continuous argument for 3(¢). Using the condition
1), it is not restrictive to assume that 9( ) = 0. After that, from the condition 2)
we deduce that 0(t) €]=F, 2F[ for ¢ €]0, 1[. In this situation the condition 3) implies
that 0(t) €]m, 2. Hence 0(t) €], 2n[ if ¢t €], 1[ what enables us to conclude that
0(1) = 2.

Finally we deduce the values of the index using the definition via the winding
number.
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