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Abstract

We apply KAM theory to the equation of the forced relativistic
pendulum to prove that all the solutions have bounded momentum.
Subsequently, we detect the existence of quasiperiodic solutions in a
generalized sense. This is achieved using a modified version of the
Aubry-Mather theory for compositions of twist maps.

1 Introduction

In this paper we are concerned with some aspects of the dynamics of the
differential equation

d

dt

( ẋ√
1− ẋ2

)
+ a sinx = f(t), (1)

where a > 0 is a parameter and f : R → R is a continuous and T -periodic
real function satisfying ∫ T

0

f(t)dt = 0. (2)

This equation, sometimes called the forced relativistic pendulum, has been
considered by several authors. In [19] Torres proved the existence of a T
periodic solution after imposing some restrictions on the period and the size
of f . Later, Brezis and Mawhin [4] proved the existence of a T -periodic
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solution for any f . The existence of a second T -periodic solution has been
proved in [3, 2]. See also [11, 5] for an alternative approach to the periodic
problem. The equation (1) can be seen as a relativistic counterpart of the
classical Newtonian pendulum

ẍ+ a sinx = f(t). (3)

This equation has been analysed from many points of view. In particular Levi
[9] and You [20] proved that all the solutions of (3) have bounded velocity
ẋ(t) whenever (2) holds. The relativistic framework implies that |ẋ(t)| < 1
and so the boundedness of the velocity is automatic. However we will prove
that the results by Levi and You have a relativistic parallel when the velocity
is replaced by the momentum

p(t) =
ẋ(t)√

1− ẋ(t)2
.

The main result of this paper says that if f(t) satisfies (2) then all solutions
of (1) satisfy

sup
t∈R
|p(t)| <∞.

Moreover we will prove that condition (2) is essential for this conclusion. In
addition we will prove the existence of generalized quasi-periodic solutions
with two frequencies

ω1 =
2π

T
, ω2 ∈ (−1, 1)

Note that we find solutions for each frequency ω2 and these solutions are
quasi-periodic when the phase space of the pendulum is a cylinder. These
solutions become subharmonic solutions when ω1 and ω2 are commensurable.

To prove these results we consider the Hamiltonian formulation of (1)
where the position q = x and the momentum p = ẋ√

1−ẋ2 are conjugate
variables. After some changes of coordinates we will write the associated
Poincaré map in a form such that Moser Twist Theorem is applicable and
so invariant curves exist. This property already implies the boundedness of
the momentum. To apply Moser’s theorem, estimates is some Ck norm are
needed. These estimates usually are tedious and cumbersome and one has
to find the right way case by case. This is why trying to repeat the direct
computation by Levi or the change of variable by You, one is lead to non
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trivial technical difficulties. Anyway, a more general technique, inspired by
[18] and based on the differentiability with respect to the parameter of the
solution of a differential equation, will simplify significantly the computa-
tions. Moreover, it could also provide a simpler proof of the results of Levi
and You for the Newtonian case. We also stress the fact that we can consider
the case in which the period of the forcing and the period of the potential
are not the same. Furthermore, the generality of this argument allows to
consider a general nonlinearity g(x) in (1).
To prove the existence of periodic and generalized quasi-periodic solutions,
one can use the theory of Aubry and Mather [12]. In principle, to apply this
theory we need to known that the Poincaré map of equation (1) has twist. In
the paper [11] it was shown that it does not hold unless a restriction on the
parameters is imposed, namely the condition a ≤ π2

T 2 is necessary. Since we
want to obtain results for arbitrary parameters we will apply a less standard
version of Aubry-Mather theory. In [13] it is shown that the main conclusion
of this theory still holds when the map is obtained as a finite composition
of twist maps. The Poincaré map Π of equation (1) can be seen as a finite
composition Π = f1 ◦ · · · ◦ fN where every fi is a ”small-time-map” that is
twist without any restriction. To consider finite composition of twist map is
a great novelty in [13] and many results on twist maps admit an extension
to this setting. In [13] the twist of each map fi goes to infinity as the action
goes to infinity. The relativistic effects prevents the velocity from being too
large and this makes impossible to satisfy this assumption of large twist. For
this reason we must modify Mather’s theorem in order to adjust it to our
situation. With this modified theorem we can produce periodic and quasi-
periodic solutions whose oscillating properties are determined by the rotation
number of the corresponding Mather set.

2 Motions with bounded momentum

Consider the equation

d

dt

( ẋ√
1− ẋ2

)
− g(x) = f(t) (4)

and assume that the functions f and g satisfy the following conditions

(A1) g ∈ C7(R), g(x+ S) = g(x),
∫ S

0
g(x)dx = 0
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(A2) f ∈ C(R), f(t+ T ) = f(t),
∫ T

0
f(t)dt = 0.

where T and S are two positive numbers. Notice that when g(x) = −a sinx
and S = 2π we recover equation (1).
Equation (4) is in the Lagrangian framework. Actually it can be expressed
in the form

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0

where
L(x, ẋ, t) = −

√
1− ẋ2 +G(x) + f(t)x.

Here G represents a primitive of g. Notice that G is S-periodic and of class
C8.
To our purposes, it will be convenient to pass to the Hamiltonian formulation,{

q̇ = Hp = p√
1+p2

ṗ = −Hq = g(q) + f(t)
(5)

with H(t, q, p) =
√

1 + p2 − G(q) − f(t)q. We arrive to this system after
having performed the classical Legendre transformation{

q = x
p = ẋ√

1−ẋ2 .
(6)

From now on the symplectic coordinate p will be called the momentum.
The Hamiltonian vector field (Hp,−Hq) is bounded so all solutions of (5)
are globally defined and the same holds for the solutions of (4) undoing the
change of variables.
Notice that, due to the relativistic structure, the velocity of any solution is
bounded and satisfies

|ẋ(t)| < 1 for each t ∈ R.

We will prove that also the momentum is bounded. This is equivalent to the
more restrictive condition on the velocity,

sup
t∈R
|ẋ(t)| < 1.

Precisely
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Theorem 1. Assume that (A1) and (A2) hold. Then every solution (q(t), p(t))
of (5) satisfies

sup
t∈R
|p(t)| <∞.

Moreover, we will show that the null mean value of the function f is an
essential condition in the above theorem.

Proposition 1. Assume that (A1) holds and that f is a continuous and
T -periodic function satisfying

f̄ =
1

T

∫ T

0

f(t)dt 6= 0.

Then there exists R > 0 such that if (q(t), p(t)) is a solution of (5) with
|p(0)| ≥ R, the momentum satisfies

lim
t→∞
|p(t)| =∞.

Proof of these results will be presented in the following sections. More-
over, we will perform the proof for the case S = 1, being conjugated to the
general one through a change of scale.

3 The approximated Poincaré map

The solution of (5) satisfying the initial condition

q(0) = q0, p(0) = p0

will be denoted by (q(t; q0, p0), p(t; q0, p0)). The main tool of our work will be
the Poincaré map, the area preserving diffeomorphisms of the plane defined
by

Π : R2 → R2, Π(q0, p0) = (q(T ; q0, p0), p(T ; q0, p0)).

The periodicity of g (remember that we suppose S = 1) implies that Π
satisfies

Π(q0 + 1, p0) = Π(q0, p0) + (1, 0)

and so Π induces a diffeomorphism of the cylinder T× R, where T = R/Z.
On the other hand, the periodicity of f allows to describe the dynamics of
system (5) in terms of the map Π. In particular, the condition

sup
t∈R
|p(t; q0, p0)| <∞
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is equivalent to
sup
n∈Z
|pn| <∞

where (qn, pn) = Πn(q0, p0). Similarly,

lim
t→∞
|p(t; q0, p0)| =∞

is equivalent to
lim
n→∞

|pn| =∞.

Notice that the boundedness of the vector field (Hp,−Hq) plays a role in the
proof of this equivalence.
In view of this equivalences, to prove theorem 1 we shall look for non con-
tractible invariant curves for the map Π. Two disjoint invariant curves define
an annulus that is invariant under the diffeomorphism Π, so we can say that
they act as barriers. Our aim will be to apply Moser’s small twist theorem
to the Poincaré map Π. With the promise of being more precise later on, we
recall that Moser’s theorem gives the existence of invariant curves for a class
of maps of the cylinder whose lift has the form{

θ1 = θ + ω + δ[α(r) +R1(θ, r)]
r1 = r + δR2(θ, r)

(7)

supposing that the reminders R1 and R2 were small in some Ck norm. Here
δ plays the role of a small parameter.
The coordinates (q, p) are not the best ones to have the Poincaré map written
in form (7), so perform the following symplectic change of variables{

q = Q
p = P +G(q) + F (t)

where F (t) is a primitive of f . Note that that F (t) is T -periodic and C1.
We get the system Q̇ = P+G(Q)+F (t)√

1+(P+G(Q)+F (t))2

Ṗ = g(Q)(1− P+G(Q)+F (t)√
1+(P+G(Q)+F (t))2

)
(8)

Now we can introduce the small parameter δ > 0 through the following
change of scale

Q = u, P =
1

δv
v ∈ [1/2, 7/2]. (9)
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It is important to note that the strip R×[1/2, 7/2] corresponds in the original
variables to the time dependent region

Aδ = {(q, p) ∈ R2 :
2

7δ
+G(q) + F (t) ≤ p ≤ 2

δ
+G(q) + F (t)}

and so from the boundedness of F and G

p→∞ as δ → 0 uniformly in v. (10)

System (8) transforms intou̇ = 1+δv[G(u)+F (t)]√
δ2v2+(1+δv[G(u)+F (t)])2

v̇ = −δv2g(u)[1− 1+δv[G(u)+F (t)]√
δ2v2+(1+δv[G(u)+F (t)])2

].
(11)

The change of variables (9) is not symplectic, but the Poincaré map of sys-
tems (11) is still conjugated to Π.
Note that if δ = 0 system (11) transforms into{

u̇ = 1
v̇ = 0

and taking any initial condition (u0, v0) ∈ R × (1/2, 7/2) we have that the
solution is well-defined for t ∈ [0, T ]. So, by continuous dependence, there
exists ∆ > 0 such that the if δ ∈ [0,∆] the solution is still well-defined for
t ∈ [0, T ]. The coordinates (u, v) are the good ones to have the Poincaré map
written in form (7). To have a rough idea of why this is true, one can see
trough a formal computation that system (11) has the following expansion
for small δ {

u̇ = 1− 1
2
δ2v2 +O(δ3)

v̇ = O(δ3).

Notice the fundamental fact that up to second order F and G do not play
any role. Now one can obtain the Poincaré map integrating and evaluating
at t = T .
We are going to make this argument rigorous and the key is the theory of
differentiability with respect to the parameters. So, inspired by [18], let us
recall some general facts. Consider a differential equation depending on a
parameter

dz

dt
= Ψ(t, z, δ) (12)
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where Ψ : [0, T ] × D × [0,∆] → Rn is of class C0,ν+2,ν+2, ν ≥ 1 and D is
an open connected subset of Rn and ∆ > 0. The general theory of differ-
ential equations says that the solution z(t, z0, δ) is of class C0,ν+2,ν+2 in its
three arguments. The following lemma will be crucial for our purpose, and
generalizes the result [18, Proposition 6.4].

Lemma 1. Let K be a compact set of D such that for every z0 ∈ K and
δ ∈ [0,∆] the solution is well defined in [0, T ]. Then, for every (t, z, δ) ∈
[0, T ]×K × [0,∆] the following expansion holds

z(t, z0, δ) = z(t, z0, 0) + δ
∂z

∂δ
(t, z0, 0) +

δ2

2

∂2z

∂δ2
(t, z0, 0) +

δ2

2
R(t, z0, δ)

where
||R(t, ·, δ)||Cν(K) → 0 as δ → 0

uniformly in t ∈ [0, T ].

Proof. For a function φ ∈ C0,ν+2,ν+2([0, T ]×K × [0,∆]), the Taylor formula
with remainder in integral form gives

φ(t, z0, δ) = φ(t, z0, 0) +
∂φ

∂δ
(t, z0, 0)δ +

δ2

2

∂2φ

∂δ2
(t, z0, 0) +R2(t, z0, δ)

where

R2(t, z0, δ) =
1

2

∫ δ

0

∂3φ

∂δ3
(t, z0, ξ)(δ − ξ)2dξ.

Integrating by parts one gets

R2(t, z0, δ) =
1

2
{2
∫ δ

0

∂2φ

∂δ2
(t, z0, ξ)(δ − ξ)dξ −

∂2φ

∂δ2
(t, z0, 0)δ2}

and through the change of variable ξ = δs we get

R2(t, z0, δ) = δ2

∫ 1

0

(1− s)[∂
2φ

∂δ2
(t, z0, δs)−

∂2φ

∂δ2
(t, z0, 0)]ds.

from which it is easy to conclude using the regularity of the solution.

Note that, by means of this lemma we have a semi-explicit formula for
the solution of (12). This is very useful to compute its Poincaré map. So, let
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us apply the previous lemma to system (11). First of all, calling Z = (u, v),
system (11) can be written in the form

Ż = Ψ(t;Z, δ).

The initial condition will be denoted by Z(0) = z0 = (u0, v0) and the cor-
responding solution by z(t; z0, δ) = (u(t;u0, v0, δ), v(t;u0, v0, δ)). We will
suppose, by periodicity, that z0 ∈ [0, 1]× [1, 3]. From (3) we have that

z(t;u0, v0, 0) = (u0 + t, v0). (13)

To compute the first derivative with respect to the parameter let us call
X(t; z0, δ) = ∂z

∂δ
(t; z0, δ). We need X(t; z0, 0) that solves the Cauchy problem{

Ẋ = A(t)X + a(t)
X(0) = 0.

where

A(t) =
∂Ψ

∂Z
(t; z(t; z0, 0), 0), a(t) =

∂Ψ

∂δ
(t; z(t; z0, 0), 0).

A simple computation gives

∂Ψ

∂Z
(t;Z, 0) = 0

∂Ψ

∂δ
(t;Z, 0) = 0 (14)

so that
X(t;u0, v0, 0) = 0. (15)

Now let us compute the second derivative. Let us call Y (t; z0, δ) = ∂2z
∂δ2

(t; z0, δ)
with components (ξ(t; z0, δ), η(t; z0, δ)). We need Y (t; z0, 0) that solves the
Cauchy problem {

Ẏ = A(t)Y + b(t)
Y (0) = 0

where

b(t) =
∂2Ψ

∂δ2
(t; z(t; z0, 0), 0) + 2

∂2Ψ

∂Z∂δ
(t; z(t; z0, 0), 0)X(t; z0, 0)

+
∂2Ψ

∂Z2
(t; z(t; z0, 0), 0)[X(t; z0, 0), X(t; z0, 0)]
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and ∂2Ψ
∂Z2 (t; z(t; z0, 0), 0) is interpreted as a bilinear form from R2 × R2 into

R2. A simple computation gives

∂2Ψ

∂δ2
(t; z(t; z0, 0), 0) = (−v2

0, 0).

From (14) and (15) we get the system{
ξ̇ = −v2

0, ξ(0) = 0
η̇ = 0, η(0) = 0

leading to
Y (t;u0, v0, 0) = (−v2

0t, 0). (16)

Next we apply lemma 1 using (13), (15) and (16). We have that

Z(t;u0, v0, δ) = (u0 + t, v0) +
δ2

2
(−v2

0t, 0) +
δ2

2
R(t;u0, v0, δ),

where the remainder R satisfies the estimate

||R(t, ·, δ)||C5([0,1]×[1,3]) → 0 as δ → 0

uniformly in t ∈ [0, T ]. Finally, evaluating at t = T we get the following
expression for the Poincaré map{

u1 = u0 + T − δ2

2
Tv2

0 + δ2

2
R1(u0, v0, δ)

v1 = v0 + δ2

2
R2(u0, v0, δ)

(17)

and

||R1(·, ·, δ)||C5(R/Z×[1,3]) + ||R2(·, ·, δ)||C5(R/Z×[1,3]) → 0 as δ → 0. (18)

4 Invariant curves vs. Lyapunov functions

We saw that theorem 1 will be proved as soon as we could place any initial
condition (q0, p0) between two invariant curves. In view of (10) it is sufficient
to prove the existence of invariant curves for the map (17) as δ → 0. More
precisely, we are going to prove the existence of a sequence of invariant curves
Γn approaching uniformly the top of the cylinder. Analogously one can prove
the existence of a sequence of invariant curves approaching the bottom of the
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cylinder. Finally we will prove proposition 1 to show that the null mean value
of the forcing f is essential to have invariant curves.
Concerning the boundedness, as anticipated, we have found the variables
(u, v) in order to have the Poincaré map written in form (17) and apply
Moser’s small twist theorem whose original version is in [14]. There are
many versions of this theorem and we shall employ one coming from the
works of Herman [6, 7] and explicitly stated in [17]. To recall it, let T = R/Z
and consider the infinite cylinder C = T×R and its strip A = T× [a, b] with
b− a ≥ 3

2
. The theorem deals with maps g : A → C with lift{

θ1 = θ + ω + δ[α(r) +R1(θ, r)]
r1 = r + δR2(θ, r)

where α ∈ C4[a, b], and R1, R2 ∈ C4(A). The number ω ∈ R is arbitrary and
δ ∈ (0, 1] is a parameter. Suppose that the function α satisfies

c−1
0 ≤ α′(r) ≤ c0 ∀r ∈ [a, b], ||α||C4[a,b] ≤ c0

for some constant c0 > 1. Moreover, we suppose that g satisfies the intersec-
tion property, in the sense that

g(Γ) ∩ Γ 6= ∅

for every non-contractible Jordan curve Γ ⊂ A.

Theorem 2 ([17]). Let g : A → C be a mapping in the previous conditions.
Then there exists ε > 0, depending on only on c0, such that if

||F ||C4(A) + ||G||C4(A) ≤ ε

the map g has an invariant curve.

Now everything is ready for the proof of theorem 1. Excepting for the
intersection property, it is easy to see that the Poincaré map expressed in
the form (17)-(18) satisfies all the hypothesis of theorem 2. In this case,
θ = u0, r = v0, ω = T , α(v0) = −T

2
v2

0 and δ is small enough. Concerning the
intersection property, notice that from a result in [11], the null mean value of
f implies that the Poincaré map associated to system (5) is exact symplectic
in the sense that the differential form

p1dq1 − pdq
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is exact in the cylinder. Moreover, it is known that an exact symplectic map
has the intersection property. Finally we can say that also map (17) has the
intersection property because this property is preserved by conjugacy. So,
an application of theorem 2 proves theorem 1.

We have just proved that hypothesis (A1) and (A2) imply that the mo-
mentum is bounded. To complete the study of the boundedness we need to
prove proposition 1. We will perform the proof supposing that

f̄ =
1

T

∫ T

0

f(s)ds > 0,

the other case being similar. We just need to prove that there exists R
sufficiently large such that if |p0| ≥ R then the corresponding orbit of the
Poincaré map Π is unbounded. In this case, a less subtle expansion of Π,
coming directly from system (5), will be sufficient. So, integrate (5) and get,
for t ∈ [0, T ] {

q(t; q0, p0) = q0 + t+ ε̃(t, q0, p0)

p(t; q0, p0) = p0 +
∫ t

0
g(q(s; q0, p0))ds+

∫ t
0
f(s)ds

(19)

where

ε̃(t, q0, p0) =

∫ t

0

{
p(s; q0, p0)√

1 + p2(s; q0, p0)
− 1

}
ds

As p(t; q0, p0)→∞ as p0 →∞ uniformly in q0 and t ∈ [0, T ], we have ε̃→ 0
as p0 →∞, uniformly in q0 and t ∈ [0, T ].
Adding and subtracting

∫ t
0
g(q0 + s)ds = G(q0 + t) − G(q0) in the second

equation of (19) we get

p(t; q0, p0) = p0 +G(q0 + t)−G(q0) +

∫ t

0

f(s)ds+ ε(t, q0, p0)

where

ε(t, q0, p0) =

∫ t

0

{g(q0 + s+ ε̃(s, q0, p0))− g(q0 + s)}ds.

The mean value theorem implies that ε→ 0 as p0 →∞ uniformly in q0 and
t ∈ [0, T ]. Evaluating in t = T we get the following expansion of Π:{

q1 = q0 + T + ε̃(T, q0, p0)
p1 = p0 +G(q0 + T )−G(q0) + T f̄ + ε(T, q0, p0)

12



where ε and ε̃ tends to zero uniformly in q0 as p0 tends to +∞.
Now, inspired by [1], consider the function

V (q, p) = q −G(p).

and notice that
V (Π(q, p)) = V (q, p) + Γ(q, p)

where

Γ(q, p) = −G(q + T + ε̃(T, q, p)) +G(q + T ) + ε(T, q, p) + T f̄ .

Now, using the fact thatG is bounded, one can find V∗ such that if V (q0, p0) ≥
V∗ then p0 is sufficiently large in order to have Γ(q0, p0) > T f̄

2
. For such a p0

we have

V (Π(q0, p0)) > V (q0, p0) +
T f̄

2
> V ∗.

So, by induction we can prove that

V (qn, pn) > V (q0, p0) + n
T f̄

2
, n ≥ 1.

Finally we have that
lim
n→∞

V (qn, pn) = +∞

and remembering the definition of V and the boundedness of G we get that
pn → +∞.

5 Generalized quasi-periodic and periodic so-

lutions

We have just proved that all the solutions of (5) have bounded momentum
and a natural question is to describe the kind of recurrent motions that can
be expected. Periodic solutions of different types always exist ([11],[5]), and
now we are going to look for quasi-periodic solutions. Precisely, we will prove

Theorem 3. For every ω ∈ (−T, T ), there exists a family of solutions of
(5), Xξ(t) = (qξ(t), pξ(t)), with ξ ∈ R such that

Xξ+1(t) = Xξ(t) + (1, 0) and Xξ(t+ T ) = Xξ+ω(t). (20)
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Moreover, the initial conditions

ξ 7→ qξ(0) and ξ 7→ pξ(0)

are of bounded variation and

lim
t→∞

qξ(t)

t
=
ω

T
.

To understand why these solutions satisfy a kind of weak quasi-periodicity
we define, inspired by [16],

Φξ(θ1, θ2) = Xθ2− ωT θ1+ξ(θ1).

It satisfies

Φξ(θ1 + T, θ2) = Φξ(θ1, θ2), Φξ(θ1, θ2 + 1) = Φξ(θ1, θ2) + (1, 0)

and this says that the function Φξ is doubly periodic once it takes values on
the phase space T× R. The solution is recovered by the formula

Xξ(t) = Φξ(t,
ω

T
t)

when Φξ is continuous as a function of the three variables (ξ, θ1, θ2). This
function is quasi-periodic. Again we are assuming that it takes values on
T × R. In the discontinuous case the solution will not be quasi-periodic in
the classical sense but the bounded variation of the initial conditions implies
that quasi-periodicity in the sense of Mather will appear. See [12] for more
details. When the number ω is rational, say ω = a

b
with a and b relatively

prime, then
Xξ(t+ bT ) = Xξ(t) + (a, 0)

and the solution is periodic with period bT . Once more we are assuming that
Xξ takes values on T×R. Classically these solutions are called subharmonic
solutions of the second kind.

To prove theorem 3, consider the change of variable{
Q = q
P = p− F (t)
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where Ḟ = f . System (5) transforms into{
Q̇ = P+F (t)√

1+(P+F (t))2

Ṗ = g(Q)
(21)

The Poincaré map of system (21) has a particular form. Consider a partition
of the interval [0, T ] in N sub intervals of equal length

L =
T

N
<

π√
||g′||∞

(22)

and consider the map ΠL,τ (Q0, P0) = (Q(τ+L; τ,Q0, P0), P (τ+L; τ,Q0, P0)) =
(Q1, P1) where (Q(t; τ,Q0, P0), P (t; τ,Q0, P0)) is the solution of (21) with ini-
tial condition (Q0, P0) at time τ . The Poincaré map Π of the system can be
written as composition of such maps, precisely we have that

Π = ΠT,0 = ΠL,(N−1)L ◦ · · · ◦ ΠL,L ◦ ΠL,0.

So let us study such maps. It is worth recalling some definition inspired by
[13]. Consider a C2 diffeomorphism f(θ, r) = (Θ(θ, r), R(θ, r)) = (θ1, r1) of
the infinite cylinder T×R that is isotopic to the identity. Passing to the lift,
the components satisfy

Θ(θ + 1, r) = Θ(θ, r) + 1, R(θ + 1, r) = R(θ, r).

We stress the fact that in his work Mather required only a C1 diffeomorphism,
but for our purposes we will need more smoothness. The diffeomorphism is
said

• exact symplectic if the differential form RdΘ− rdθ is exact in T× R,

• twist if ∂Θ/∂r > 0, while, if there exists β > 0 such that ∂Θ/∂r > β
we will say that f is β-twist,

• to preserve the ends of the infinite cylinder, if R(θ, r) → ±∞ as r →
±∞ uniformly in θ,

• to twist each end infinitely, if Θ(θ, r)−θ → ±∞ as r → ±∞ uniformly
in θ.

Now we can recall the
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Definition 1. Let P∞ =
⋃
β>0Pβ, where Pβ is the class of C2 diffeomor-

phisms of the infinite cylinder that

1. are isotopic to the identity

2. are exact symplectic

3. are β-twist

4. preserve the ends of the infinite cylinder,

5. twist each end infinitely.

For our purposes we will need

Definition 2. Let Pρ+,ρ,− be the class of C2 diffeomorphisms of the infinite
cylinder that satisfy properties 1., 2., 4. of the previous definition and

3’. are twist

5’. are such that Θ(θ, r)− θ → ρ± as r → ±∞ uniformly in θ,

6. there exists M such that |R(θ, r)− r| ≤M for every (θ, r) ∈ T× R

Now we can start the study of the map ΠL,τ . Notice that by the period-
icity of (21) it can be seen as a map defined on the cylinder T×R. Moreover
we have that

Lemma 2. For every τ ∈ [0, T ], the map ΠL,τ is exact symplectic in T× R

Proof. Inspired by [8] consider the function

Vτ (Q0, P0) =

∫ τ+L

τ

{
−F

2(t) + P (t; τ,Q0, P0)F (t) + 1√
1 + (P (t; τQ0, P0) + F (t))2

+G(Q(t; τQ0, P0))

}
dt.

First of all, it follows from the periodicity of (21) that Q(t; τ,Q0+1, P0) =
Q(t; τ,Q0, P0) + 1 and P (t; τ,Q0 + 1, P0) = P (t; τ,Q0, P0). Hence we have

Vτ (Q0 + 1, P0) = Vτ (Q0, P0)

Now let us compute the differential dVτ .
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We have

∂Vτ
∂Q0

=

∫ τ+L

τ

{
P

[1 + (P + F )2]3/2
∂P

∂Q0

+ g(Q)
∂Q

∂Q0

}
dt

=

∫ τ+L

τ

{
P

[1 + (P + F )2]3/2
∂P

∂Q0

+ Ṗ
∂Q

∂Q0

}
dt

(23)

using the second equation in (21). Now, integrating by parts and using the
first equation in (21) we get∫ τ+L

τ

Ṗ
∂Q

∂Q0

dt = [P
∂Q

∂Q0

]τ+L
τ −

∫ τ+L

τ

P
∂Q̇

∂Q0

dt

= [P
∂Q

∂Q0

]τ+L
τ −

∫ τ+L

τ

P

[1 + (P + F )2]3/2
∂P

∂Q0

that, substituting in (23) gives

∂Vτ
∂Q0

= P (τ + L)
∂Q

∂P0

(τ + L)− P (τ)
∂Q

∂Q0

(τ).

Analogously we can get

∂Vτ
∂P0

= P (τ + L)
∂Q

∂P0

(τ + L)− P (τ)
∂Q

∂P0

(τ).

Hence dV = P1dQ1 − P0dQ0 and the lemma is proved.

This is not the only property satisfied by the map. In fact we have

Proposition 2. For every τ ∈ [0, T ], we have Πτ,L ∈ P−L,L

Proof. First of all, from lemma 2 we have that the map ΠL,τ is exact sym-
plectic and by a similar argument as in [11] condition (22) implies that for
every τ ∈ [0, T ], the map ΠL,τ is twist and isotopic to the identity. From
equation (21) we have{

Q(t; τ,Q0, P0) = Q0 +
∫ t
τ

P (s;τ,Q0,P0)+F (s)√
1+(P (s;τ,Q0,P0)+F (s))2

ds

P (t; τ,Q0, P0) = P0 +
∫ t
τ
g(Q(s; τ,Q0, P0))ds.

Evaluating the second equation in t = τ +L, the boundedness of g gives that
Πτ,L preserves the end of the infinite cylinder. Moreover, evaluating the first
equation in t = τ + L and using the second we easily get

lim
P0→±∞

(Q1 −Q0) = ±L
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uniformly in Q0. Finally, property 6. is a trivial consequence of the bound-
edness of g.

So, summing up we have that the Poincaré map of system (21) can be
written as a composition of maps in P−L,L and this justifies the study that
we are going to develop in the next section.

6 Composition of twist maps and proof of

Theorem 3

Consider a finite family {fi}i=1,...,N such that fi ∈ P∞ for every i. Let
F = f1 ◦ · · · ◦ fN . We have that F is a C2 exact symplectic diffeomorphism
of T × R that preserves the ends and such that twists the ends infinitely.
However, it has not to be twist.
In [13], Mather proved that one can associate to F a continuous function
h(θ, θ1), called variational principle, that acts as a generating function for
a twist diffeormorphism. The variational principle satisfies, among others,
these relevant properties:

(H1) h(θ + 1, θ1 + 1) = h(θ, θ1),

(H5) There exists a positive continuous function ρ on R2 such that

h(γ, θ1) + h(θ, γ1)− h(θ, θ1)− h(γ, γ1) ≥
∫ γ

θ

∫ γ1

θ1

ρ

if θ < γ and θ1 < γ1,

(H6α) there exists α > 0 such that

θ → αθ2/2− h(θ, θ1) is convex for every θ1

θ1 → αθ2
1/2− h(θ, θ1) is convex for every θ.

The function h in general is not differentiable but from (H6) one can prove
that the one side partial derivatives ∂1h(θ±, θ1) and ∂2h(θ, θ1±) exist. Mather
proved that there exist particular configurations (θ̄i) that minimize an ac-
tion. They are called minimal configurations and are such that the partial
derivatives ∂1h(θ̄i, θ̄i+1) and ∂2h(θ̄i−1, θ̄i) both exist and satisfy

∂1h(θ̄i, θ̄i+1) + ∂2h(θ̄i−1, θ̄i) = 0 for every i. (24)
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This property allows to construct a complete orbit (θ̄i, r̄i) of F defining

r̄i = −∂1h(θ̄i, θ̄i+1) = ∂2h(θ̄i−1, θ̄i).

Once we have a minimal configuration (θ̄i), we can define for (p, q) ∈ Z×Z its
translate Tp,qθ̄ by (Tp,qθ̄)i = θ̄i+q − p. In an analogous way we can define the
translate of an orbit. The translate of a minimal configuration is minimal.
Moreover, given two configurations Θ = (θi) and Γ = (γi) we say that Θ < Γ
if θi < γi for every i. Two configurations Θ and Γ are comparable if either
Θ = Γ or Θ > Γ or Θ < Γ. Using these characterizations Mather proved

Theorem 4 ([13]). Let F = f1◦· · ·◦fN with fi ∈ P∞ for i = 1, . . . , N . Then
for every ω ∈ R there exists an orbit (θ̄i, r̄i) of F such that any two translates
of (θ̄i) are comparable and the sequence (θ̄i) is increasing. Moreover,

lim
i→∞

θ̄i
i

= ω

and ω is called rotation number.

The connection between theorem 4 and the result in the first paper by
Mather [12] is stated in the following

Corollary 1. From the orbit (θ̄i, r̄i) in the previous theorem, we can construct
two functions φ, η : R→ R satisfying, for every t ∈ R

φ(t+ 1) = φ(t) + 1, η(t+ 1) = η(t)

F (φ(t), η(t)) = (φ(t+ ω), η(t+ ω)) (25)

where φ is monotone (strictly if ω /∈ Q) and η is of bounded variation.

Proof. Inspired by [15], let us consider, for every ω, the set

Σ = {t ∈ R : t = jω − k for some (j, k) ∈ Z2}. (26)

We have to distinguish whether ω is rational or not.
− If ω is irrational, Σ is a dense additive subgroup of R and every pair (j, k)
gives rise to a different number. We proceed by steps.
STEP 1: definition of φ on Σ. If t ∈ Σ we define

φ(t) = θ̄j − k. (27)
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We claim that the function φ : Σ→ R is strictly increasing: we have to prove
that

jω − k < j′ω − k′ ⇒ θ̄j − k < θ̄j′ − k′

that is, calling r = j′ − j and s = k′ − k,

0 < rω − s⇒ θ̄j < θ̄j+r − s.

The case r = 0 is obvious, so suppose r 6= 0. Suppose by contradiction that
for some j ∈ Z

θ̄j ≥ θ̄j+r − s (28)

we have, from the comparison property of the translated, that either

θ̄i > θ̄i+r − s for every i.

or
θ̄i = θ̄i+r − s for every i.

In the second case the orbit would be periodic and this is not compatible
with an irrational rotation number. So, from (28) we can prove by induction
that for every n ∈ N

θ̄j > θ̄j+nr − ns.
Now suppose that r > 0. Taking the limit for n → ∞ after having divided
by nr we get

0 ≥ ω − s

r
.

that leads to a contradiction as we multiply by r. Notice that we can repeat
the same argument and get the same contradiction for r < 0.
Moreover, φ satisfies the periodicity property

φ(t+ 1) = φ(t) + 1 for each t ∈ Σ.

STEP 2: extension of φ outside Σ. Given τ ∈ R− Σ, the limits

φ(τ±) = lim
t→τ±,t∈Σ

φ(t)

exist and φ(τ−) ≤ φ(τ+). To extend φ to a monotone function on the
whole real line it is sufficient to impose φ(τ) ∈ [φ(τ−), φ(τ+)] and we choose
φ(τ) = φ(τ−). In this way φ : R→ R is strictly increasing and satisfies

φ(t+ 1) = φ(t) + 1 for each t ∈ R.
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STEP 3: definition of η on Σ. Define, for t ∈ Σ

η(t) = ∂2h(φ(t− ω), φ(t)) (29)

where h is the variational principle associated to F . We claim that for every
t, s ∈ Σ

|η(s)− η(t)| ≤ α(φ(s)− φ(t)) (30)

where α comes from (H6α). Supposing t < s we have from the monotonicity

φ(t− ω) < φ(s− ω), φ(t) < φ(s), φ(t+ ω) < φ(s+ ω).

Inspired by [13, Proposition 2.6], we notice that if in (H5) we set γ = φ(s−ω),
θ = φ(t− ω), θ1 = φ(t)− ε, γ1 = φ(t) with ε > 0, divide by ε and let ε → 0
we get

∂2h(φ(s− ω), φ(t)−) ≤ ∂2h(φ(t− ω), φ(t)).

remembering that the partial derivatives exist on the orbits. Moreover, from
(H6α) and remembering that the one side partial derivatives of a convex
function exist and are non decreasing, we have

∂2h(φ(s− ω), φ(s)) ≤ ∂2h(φ(s− ω), φ(t)−) + α(φ(s)− φ(t)).

Combining these two inequalities we have

η(s) ≤ η(t) + α(φ(s)− φ(t)).

Using using (24) we can see that also η(t) = −∂1h(φ(t), φ(t + ω)) so we can
get analogously

η(t) ≤ η(s) + α(φ(s)− φ(t))

and conclude.
STEP 4: extension of η outside Σ. If τ /∈ Σ we define

η(τ) = lim
t↑τ,t∈Σ

η(t) (31)

This is a correct definition. Indeed, from (30) we have that

|η(tn+k)− η(tn)| ≤ α|φ(tn+k)− φ(tn)|,

and, being φ(tn) a Cauchy sequence, we have that η(tn) converges and the
limit (31) exists. In principle the limit could depend on the sequence. This is
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not the case, indeed in case that η(t1n)→ l1 and η(t2n)→ l2 we can construct
a new increasing sequence (τn) having (t1n) and (t2n) as sub-sequences. So also
η(τn) has to converge to a limit that is the same as l1 and l2. So the definition
(31) makes sense. With this definition we have that estimate (30) holds for
every t, s ∈ R. Since φ is monotone and hence of bounded variation, we have
that η is of bounded variation.
Now, from the periodicity property of h and φ we get that η(t+ 1) = η(t).
STEP 5: property (25) holds. Let us assume first that t ∈ Σ. Then t = jω−k
and

φ(t) = θ̄j − k, φ(t+ ω) = θ̄j+1 − k.

Moreover,
η(t) = ∂2h(φ(t− ω), φ(t)) = ∂2h(θ̄j−1, θ̄j) = r̄j

and similarly η(t+ ω) = r̄j+1. Since (θ̄j − k, r̄j) is an orbit of F we conclude
that

F (φ(t), η(t)) = (φ(t+ ω), η(t+ ω)).

Let us assume now that t ∈ R \ Σ. So we select a sequence (tn) converging
to t with tn ∈ Σ and tn < t. Then we can pass to the limit in the identity

F (φ(tn), η(tn)) = (φ(tn + ω), η(tn + ω)).

The irrational case is done.
− The case ω = p

q
rational is simpler. We can suppose that p and q are

relative primes and that the corresponding sequence (θ̄i) is periodic (in the
sense that θ̄i+q = θ̄i + p). First of all notice that in this case, the subgroup
Σ defined in (26) is discrete, precisely,

Σ = {d
q

: d ∈ Z}.

The representation t = jω − k is not unique, indeed t = j p
q
− k = j′ p

q
− k′

whenever k′ − k = Np and j′ − j = Nq for some N ∈ N. Anyway the
periodicity of (θ̄i) implies that

j
p

q
− k = j′

p

q
− k′ ⇒ θ̄j − k = θ̄j′ − k′.

So we can define φ on Σ as in (27). As before one can prove that φ : Σ→ R
is increasing (non strictly). We extend it to a monotone function on the
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whole R as a piecewise constant function that is continuous from the left and
taking only the values θ̄j − k.

Finally, as before, one can prove that φ(t + 1) = φ(t) + 1. Moreover,
the fact that φ takes only values at points of a minimal orbit, we can define
directly for t ∈ R

η(t) = ∂2h(φ(t− ω), φ(t)).

This function is of bounded variation and condition (25) is satisfied as well.
To prove this we just have to repeat the same arguments as in the irrational
case. Note that this time it is not necessary to pass to the limit.

In our case, theorem 4 cannot be applied, as the hypothesis of the infinite
twist at infinity is not satisfied. So we will present a modified version of the
theorem. First we give the following notation: let Γk be a sequence of non-
contractible Jordan curves that are invariant under a map f . This curves
are called invariant curves. We say that Γk ↑ +∞ uniformly if there exists a
sequence rk → +∞ as k → +∞ such that Γk ⊂ T × (rk,+∞). The reader
can easily guess the meaning of Γk ↓ −∞ uniformly.

We can prove

Theorem 5. Consider a finite family {fi}i=1,...,N where fi ∈ Pρ+,ρ−. Let
F = f1 ◦ · · · ◦ fN . Suppose that F possesses a sequence (Γk) of invariant
curves such that Γk ↑ +∞ uniformly as k → +∞ and Γk ↓ −∞ uniformly
as k → −∞ Then, for every ω ∈ (Nρ−, Nρ+) there exist two functions
φ, η : R→ R satisfying the same properties as in Corollary 1.

The proof of this theorem relies on the following lemmas

Lemma 3. Consider f ∈ Pρ+,ρ,−. Fix an interval [a, b]. Then, there exists
f̃ ∈ P∞ such that f = f̃ on T× [a, b].

Proof. It is convenient to work with the generating function h(θ, θ1). Remem-
ber that it is a C3 function defined on the set Σ̃ = {ρ− < θ1− θ < ρ+} ⊂ R2

such that h(θ + 1, θ1 + 1) = h(θ, θ1) and satisfies the Legendre condition
∂12h < 0. It generates f in the sense that the map f is defined implicitly by
the equations {

∂1h(θ, θ1) = −r
∂2h(θ, θ1) = r1.

(32)

More details can be found in [8]. Notice that the strip T×[a, b] of the cylinder
corresponds to the set Σ̃2 = {α(θ) ≤ θ1 − θ ≤ β(θ)} ⊂ Σ̃ where α and β are
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implicitly defined by

−∂1h(θ, θ + α(θ)) = a

−∂1h(θ, θ + β(θ)) = b.

The functions α and β are C2, 1-periodic and the Legendre condition implies
that α(θ) < β(θ). Moreover, we have that α(θ) ↓ ρ− as a → −∞ and
β(θ) ↑ ρ+ as b → +∞. Now take two larger strips Σ̃1 = {ã ≤ θ1 − θ ≤ b̃}
and Σ̃ε = {ã+ ε < θ1 − θ < b̃− ε} such that Σ̃2 ⊂ Σ̃ε ⊂ Σ̃1 ⊂ Σ̃ (cfr figure).
Notice that, by compactness, there exists δ > 0 such that ∂12h < −δ on Σ̃1.

ρ−

ã

ã+ ε

b̃− ε

b̃

ρ+

∧ θ1

β(θ)

α(θ)

>
θ

Σ̃
Σ̃1

Σ̃ε

Σ̃2

Now, fix ε > 0 small and extend ∂12h out of {ρ−+ ε ≤ θ1− θ0 ≤ ρ+− ε} as a
C1 bounded function (it is not important how you do it). So we can suppose
that there exists a constant M1 > 0 such that

sup
(θ0,θ1)∈R2

|∂12h| ≤M1. (33)
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Consider χ a C∞ cut-off function of R2 such that{
χ = 1 on Σ̃ε

χ = 0 on {θ1 − θ > b̃}.

Moreover we can suppose that χ = χ(θ1 − θ), 0 ≤ χ ≤ 1 and χ > 0 on
{b̃− ε < θ1 − θ < b̃}. Define the new function

∆ = χ∂12h+ (χ− 1)δ.

We notice that ∆ ∈ C1, ∆(θ1 + 1, θ + 1) = ∆(θ1, θ) and{
∆ = ∂12h on Σ̃ε

∆ = −δ on {θ1 − θ > b̃}

With a similar argument as in [10] we can consider the following Cauchy
problem for the wave equation

∂12u = ∆(θ, θ1)
u(θ, θ + ã) = h(θ, θ + ã)
(∂2u− ∂1u)(θ, θ + ã) = (∂2h− ∂1h)(θ, θ + ã).

The solution h+ is defined on the set {θ1− θ > ã+ ε}, is such that h+ ∈ C2,
h+(θ1 + 1, θ + 1) = h+(θ1, θ), ∂12h

+ = ∆ and h+ = h on Σ̃ε. Now perform
an analogous argument to modify ∂12h also in the zone {θ1 − θ < ã} finding
h−. Finally glue h+ and h− through the common part Σ̃ε to get a function
h̃. Notice that ∂12h̃ ≤ −δ on R2. The function h̃ generates via (32) a
diffeomorphism f̃(θ, r) = (θ1, r1) such that the relation

∂θ1

∂r
= − 1

∂12h̃

holds. So the diffeomorphism f̃ is β-twist with β = 1/max{−∂12h̃} and sat-
isfies property 5’. Moreover, as h = h̃ on Σ̃ε, the diffeomorphism f̃ coincides
with f on T× [a, b].

It is not hard to guess that we are going to use this lemma to modify
the diffeomorphism F through its components fi. So, it is worth introducing
some notation. Given f ∈ Pρ−,ρ+ and an interval [a, b] then the modified dif-
feomorphism f̃ with support [a, b] is the diffeomorphism coming from lemma
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3. Given F = f1 ◦ · · · ◦ fN with fi ∈ Pρ−,ρ+ , we will call F̃ with support [a, b]
the diffeomorphism given by F̃ = f̃1 ◦ · · · ◦ f̃N where every f̃i is supported in
[a, b]. Moreover, notice that, if fi ∈ P∞ then trivially f̃i ≡ fi. Finally, F has
coordinates (Θ(θ, r), R(θ, r)) while fi has coordinates (Θ(i)(θ, r), R(i)(θ, r))
and the corresponding modifications have coordinates (Θ̃(θ, r), R̃(θ, r)) and
(Θ̃(i)(θ, r), R̃(i)(θ, r)).

Lemma 4. Consider f ∈ Pρ−,ρ+. There exists K > 0 such that for every
modified f̃ with support [a, b]

|R̃(θ, r)− r| ≤ K for every (θ, r) ∈ T× R

uniformly in [a, b].

Proof. We have to prove that, given a modification with support [a, b], we
have the estimate with the constant K independent on [a, b]. Consider the
generating function h̃ of f̃ . We have to estimate the quantity

|∂2h̃(θ, θ1) + ∂1h̃(θ, θ1)|.

Notice that, with the notation of the previous lemma, in [b̃− ε, ã+ ε] we have
h ≡ h̃ so the estimate comes directly from property 6. in the definition of the
class f ∈ Pρ−,ρ+ . If θ1 − θ > b̃ or θ1 − θ < ã then R̃(θ, r) = r and K = 0. So
we only have to study the cases b̃− ε ≤ θ1−θ ≤ b̃ and ã ≤ θ1−θ ≤ ã+ ε. Let
us study the first, being the second similar. We need d’Alambert formula,
valid for a function V ∈ C2(R2):

V (θ, θ1) =−
∫ θ1

θ+δ

dη

∫ η−δ

θ

∂12V (ξ, η)dξ + V (θ, θ + δ)+∫ θ1

θ+δ

∂2V (η − δ, η)dη

where δ ∈ R. Applying it to h̃ and choosing δ = b̃− ε we get

h̃(θ, θ1) =−
∫ θ1

θ+b̃−ε
dη

∫ η−b̃+ε

θ

∆(ξ, η)dξ + h(θ, θ + b̃− ε)+∫ θ1

θ+b̃−ε
∂2h(η − b̃+ ε, η)dη
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Let us compute the partial derivatives. The fundamental theorem of calculus
gives

∂1h̃(θ, θ1) =

∫ θ1

θ+b̃−ε
∆(θ, η)dη + ∂1h(θ, θ + b̃− ε).

Remembering the definition of ∆ we have, integrating by parts∫ θ1

θ+b̃−ε
∆(θ, η)dη =

∫ θ1

θ+b̃−ε
χ(η − θ)∂12h(θ, η)dη + δ

∫ θ1

θ+b̃−ε
{χ(η − θ)− 1}dη =

χ(θ1 − θ)∂1h(θ, θ1)− ∂1h(θ, θ + b̃− ε)−
∫ θ1

θ+b̃−ε
χ′(η − θ)∂1h(θ, η)dη

+ δ

∫ θ1

θ+b̃−ε
{χ(η − θ)− 1}dη

where we used the fact that χ(b̃− ε) = 1. So

∂1h̃(θ, θ1) =χ(θ1 − θ)∂1h(θ, θ1) + δ

∫ θ1

θ+b̃−ε
{χ(η − θ)− 1}dη

−
∫ θ1

θ+b̃−ε
χ′(η − θ)∂1h(θ, η)dη.

Similarly,

∂2h̃(θ, θ1) =χ(θ1 − θ)∂2h(θ, θ1)− δ
∫ θ1−b̃+ε

θ

{χ(θ1 − ξ)− 1}dξ

−
∫ θ1−b̃+ε

θ

χ′(θ1 − ξ)∂2h(ξ, θ1)dξ.

Now we can concentrate on the quantity

|∂2h̃(θ, θ1) + ∂1h̃(θ, θ1)|.

To estimate it we first notice that

|χ(θ1−θ)∂2h(θ, θ1)+χ(θ1−θ)∂1h(θ, θ1)| = |χ(θ1−θ)||∂2h(θ, θ1)+∂1h(θ, θ1)| ≤M

using property 6 in the definition of the class Pρ+,ρ− . Moreover, with the
change of variable θ1 − ξ = η − θ we get

|δ
∫ θ1

θ+b̃−ε
{χ(η − θ)− 1}dη − δ

∫ θ1−b̃+ε

θ

{χ(θ1 − ξ)− 1}dξ| = 0.
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So we just have to estimate the quantity

|
∫ θ1−b̃+ε

θ

χ′(θ1 − ξ)∂2h(ξ, θ1)dξ +

∫ θ1

θ+b̃−ε
χ′(η − θ)∂1h(θ, η)dη|

that, after the change of variable η = ξ+ b̃− ε in the first integral and having
noticed that |χ′| is bounded, reduces to an estimate of∫ θ1

θ+b̃−ε
|∂2h(η − b̃+ ε, θ1) + ∂1h(θ, η)|dη

≤ |θ1 − θ − b̃+ ε| max
θ+b̃−ε≤η≤θ1

|∂2h(η − b̃+ ε, θ1) + ∂1h(θ, η)|.

Remembering that we are working in the region b̃− ε ≤ θ1 − θ ≤ b̃,

|θ1 − θ − b̃+ ε| ≤ ε. (34)

Now, by the Legendre condition, the function

Ψ(η) = ∂2h(η − b̃+ ε, θ1) + ∂1h(θ, η)

is monotone, so maxθ+b̃−ε≤η≤θ1 |Ψ(η)| is either |Ψ(θ1)| or |Ψ(θ+ b̃− ε)|. Sup-
pose we are in the first case, being the other similar. We have

|Ψ(θ1)| ≤ |∂2h(θ1 − b̃+ ε, θ1)− ∂2h(θ, θ1)|+ |∂1h(θ, θ1) + ∂1h(θ, θ1)|
≤ |∂12h(c, θ1)||θ1 − θ − b̃+ ε|+M

for some c ∈ [θ, θ1 − b̃+ ε]. Now we can conclude using (34) and (33).

Lemma 5. Let F (θ, r) be a diffeomorphism of T×R. Assume that F = f1 ◦
· · · ◦ fN with fi ∈ Pρ+,ρ− for i = 1, . . . , N . Then, for every ω ∈ (Nρ−, Nρ+)
there exists three non negative constant r∗, A and B such that

Θ(θ, r)− θ ≥ ω + η for r > r∗
Θ̃(θ, r)− θ ≥ ω + η for r > r∗
Θ(θ, r)− θ ≤ ω − η for r < −r∗
Θ̃(θ, r)− θ ≤ ω − η for r < −r∗

where F̃ has support [−r∗ − A∗, r∗ +B∗] with A∗ > A and B∗ > B.
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Proof. For simplicity of notation, let us prove it for N = 2. The proof goes
by induction. If N = 1, then ω ∈ (ρ−, ρ+) and then by property 5′ in the
definition of the class Pρ+,ρ− there exist r∗ > 0 and η > 0 such that{

Θ(θ, r)− θ ≥ ω + η for r > r∗
Θ(θ, r)− θ ≤ ω − η for r < −r∗

Every modified F̃ outside [−r∗, r∗] is twist, so

∂(Θ̃(θ, r)− θ)
∂r

> 0

and, remembering that F (θ,±r∗) = F̃ (θ,±r∗) for every θ, one can verify
that also {

Θ̃(θ, r)− θ ≥ ω + η for r > r∗
Θ̃(θ, r)− θ ≤ ω − η for r < −r∗.

Now suppose that F = f1 ◦ f2 so that we fix ω ∈ (2ρ−, 2ρ+). From the case
N = 1 there exist ρ∗ and η such that, for i = 1, 2,

Θ(i)(θ, r)− θ ≥ ω+η
2

for r > ρ∗
Θ̃(i)(θ, r)− θ ≥ ω+η

2
for r > ρ∗

Θ(i)(θ, r)− θ ≤ ω−η
2

for r < −ρ∗
Θ̃(i)(θ, r)− θ ≤ ω−η

2
for r < −ρ∗.

(35)

Moreover, as f2 preserves the end, there exists r∗ > ρ∗ such that R(2)(θ, r) >
ρ∗ for r > r∗. So, for r > r∗

Θ(θ, r)− θ = Θ(1)(Θ(2)(θ, r), R(2)(θ, r))−Θ(2)(θ, r) + Θ(2)(θ, r)− θ ≥ ω + η

Analogously we can suppose that

Θ(θ, r)− θ ≤ ω − η for r < −r∗.

Now take the modified f̃i with support bigger than [−r∗ −K, r∗ +K] where
K is the constant coming from lemma 4. Let us estimate the quantity

Θ̃(θ, r)− θ = Θ̃(1)(Θ̃(2)(θ, r), R̃(2)(θ, r))− Θ̃(2)(θ, r) + Θ̃(2)(θ, r)− θ

for r > r∗. It comes from (35) that Θ̃(2)(θ, r)− θ ≥ ω+η
2

. It remains to prove
that

Θ̃(1)(Θ̃(2)(θ, r), R̃(2)(θ, r))− Θ̃(2)(θ, r) ≥ ω + η

2
.
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If r∗ < r ≤ r∗+K then R̃(2)(θ, r) = R(2)(θ, r) > ρ∗ and we get the estimation
through (35). If r > r∗+K then, by the definition of K, we have R̃(2)(θ, r) >
r∗ > ρ∗ and we conclude as before. In an analogous way we have the others
estimates.

Lemma 6. Let F (θ, r) be a diffeomorphism of T×R that possesses an invari-
ant curve Γ. Assume that F = f1 ◦ · · · ◦fN with fi ∈ Pρ+,ρ− for i = 1, . . . , N .
Then, for every ω ∈ (Nρ−, Nρ+) there exist three non negative constants r∗,
A and B, such that the following holds. Let (θn, rn) be an orbit of F or of
a modified F̃ with support [−r∗ − A∗, r∗ + B∗] with A∗ > A and B∗ > B.
Suppose that for every η > 0 we have

lim inf
n→∞

θn
n
< ω + η and lim sup

n→∞

θn
n
> ω − η

then there exists n̄ ∈ Z such that

(θn̄, rn̄) ∈ T× (−r∗, r∗).

Proof. Let r∗, A and B the constant coming from lemma 5. We can suppose
that r∗ is large enough to have Γ ⊂ T×(−r∗, r∗). The invariant curve divides
the cylinder in two components, the upper and the lower and both are F -
invariant (resp. F̃ -invariant). Notice that to prove it we must use the fact
that F (resp. F̃ ) preserves the ends. It means that there cannot exist orbits
that jump from the top to the bottom of the cylinder. So, if an orbit (θn, rn)
of F or F̃ is such that rn > r∗ for every n or rn < −r∗ for every n then

lim inf
n→∞

θn
n
≥ ω + η or lim sup

n→∞

θn
n
≤ ω − η

respectively, in contradiction with the hypothesis.

Now we are ready for the

Proof of theorem 5. Fix ω ∈ (Nρ−, Nρ+), consider the constants r∗, A and
B coming from lemma 6. By hypothesis, we can find two invariant curves
Γ+ and Γ− contained, respectively in r > r∗ or r < r∗. Let Σ be the compact
region defined by such curves. Let F (j) = f1 ◦ · · · ◦ fj for j = 1, . . . , N . The
sets F (j)(Σ) are compacts and so one can find a region Σ̃, defined by two
invariant curves such that

Σ ∪ F (1)(Σ) ∪ F (2)(Σ) ∪ · · · ∪ F (N)(Σ) ⊂ intΣ̃.
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Analogously, we can find and a region Σ1 = T × [−r∗ − A∗, r∗ + B∗] with
A∗ > A and B∗ > B such that

Σ̃ ∪ F (1)(Σ̃) ∪ F (2)(Σ̃) ∪ · · · ∪ F (N)(Σ̃) ⊂ intΣ1.

Now modify every fi outside the strip Σ1 applying lemma 3 and find the
corresponding f̃i. So we get F̃ = f̃1 ◦ · · · ◦ f̃n. The diffeomorphisms F̃
satisfies the hypothesis of theorem 4 so we get an orbit (θ̄n, r̄n) of F̃ with
rotation number ω. By lemma 6 there exists n̄ such that (θ̄n̄, r̄n̄) ∈ Σ. Notice
that Γ+ and Γ− are also invariant curves for F̃ and so by the invariance on
Σ we have that (θ̄n, r̄n) ∈ Σ̃ for every n. But in Σ̃ we have F = F̃ so that
(θ̄n, r̄n) is also an orbit of F . Remembering corollary 1 we get the thesis.

Finally, we are ready for

Proof of theorem 3. From proposition 2 we can apply theorem 5 to the Poincaré
map Π of system (21) and find for every ω ∈ (−T, T ) two functions φ and η
such that

φ(ξ + 1) = φ(ξ) + 1, η(ξ + 1) = η(ξ) (36)

Π(φ(ξ), η(ξ)) = (φ(ξ + ω), η(ξ + ω)). (37)

Let Xξ(t) = (Qξ(t), Pξ(t)) be the solution of (21) with initial condition
(φ(ξ), η(ξ)). Notice that from (36) and uniqueness we have that

Xξ+1(t) = Xξ(t) + (1, 0)

and from (37) and the definition of Π,

Xξ(t+ T ) = Xξ+ω(t).

so that (20) is verified. Finally, consider the limit

lim
t→∞

Qξ(t)

t
.

We have that, for nT ≤ t ≤ (n+ 1)T

Qξ(t)

t
=
Qξ(t)−Qξ(nT )

t
+
Qξ(nT )

nT

nT

t

where, being the vector field in (21) bounded, the quantity Qξ(t) − Qξ(nT )
is bounded. So we can compute

lim
t→∞

Qξ(t)

t
= lim

n→∞

Qξ(nT )

nT
= lim

n→∞

Qξ+nω(0)

nT
= lim

n→∞
[
Qξ+{nω}(0)

nT
+

[nω]

nT
] =

ω

T

where [x] denotes the integer part of x and {x} = x− [x].
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