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1 Introduction and main result.

In this paper we consider the existence of periodic solutions for the forced pen-
dulum equation with relativistic effects x′√

1− x′2

c2

′ + kx′ + a sinx = p(t) (1.1)

where c > 0 is the speed of light in the vacuum, k ≥ 0 is a possible viscous
friction coefficient and p is a continuous and T -periodic forcing term with mean
value p = 1

T

∫ T

0
p(t)dt = 0. This equation can be derived from an appropriate

lagrangian formulation [3]. Physically, we are assuming a basic principle of
Special Relativity: the mass of a moving object is not constant but depends on
its velocity. From a more mathematical perspective, the equation can be seen
as a singular φ-laplacian oscillator. The recent publication of [2] has renewed
the interest in the study of equations with singular φ-laplacian operators. If
compared with the classical or newtonian case, the relativistic pendulum has
been scarcely studied, therefore at this stage it is important to point out the
dynamical differences between both models. The aim of this note is to reveal a
new dynamical response when relativistic effects are considered.
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In the non-relativistic regime, that is, if c is assumed to be +∞, we have the
classical forced pendulum equation

x′′ + kx′ + a sinx = p(t), (1.2)

which is a paradigm in Classical Mechanics and Dynamical Systems. The long
story around this equation can be found in the reviews [6, 7]. Concerning the
existence of periodic solutions, the first result was proved by Hamel [4] in 1922
for the conservative case k = 0.

Theorem 1 (Hamel’s theorem) If k = 0, then equation (1.2) has at least
one T -periodic solution.

Let us note that the original result by Hamel was proved for p(t) = sin t but
the idea is easily extended to the general case. The proof is of variational type
and hence the conservative nature of the problem plays the fundamental role.
However, J. Mawhin [5] conjectured that a topological approach may be useful
to prove the existence of periodic solutions in the presence of friction. The first
counterexample was presented by R. Ortega [8]. Later, J.M. Alonso [1] provided
a different counterexample, but the more general non-existence result is given
in [9]. From now on, let us denote by CT the Banach space of the continuous
and T -periodic functions and by C̃T the space of the functions of CT with zero
mean value.

Theorem 2 ([9]) Given positive constants a, k and T , there exists p ∈ C̃T such
that the equation (1.2) has no T -periodic solutions.

Our main aim is to prove that Mawhin’s conjecture is partially true in the
relativistic framework. Our main result is as follows.

Theorem 3 Let us assume that 2cT ≤ 1. For any values a, k and for any
p ∈ C̃T , equation (1.2) has at least one T -periodic solution.

The proof is an elementary application of the Schauder’s Fixed Point Theorem
and will be given in the next section. Of course, now an interesting open question
arises: are there proper counterexamples for higher values of the period?

2 Proof of the main result.

The equation (1.1) can be written as

φ(x′)′ + kx′ + a sinx = p(t)

where φ :]− c, c[→ IR is given by

φ(u) =
u√

1− u2

c2

.
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Of course, the inverse φ−1 is a bounded operator. The first step of the proof
is to make the change of variables x = arcsin y. Then the equation (1.1) is
equivalent to

φ

(
y′√

1− y2

)′
+ k

y′√
1− y2

+ ay = p(t). (2.3)

The second step is to write the problem of finding a T -periodic solution of
(2.3) as a fixed point problem for a suitable operator. An integration of the
equation gives

φ

(
y′√

1− y2

)′
+ k arcsin y =

∫ t

0

(p(s)− ay(s))ds + C,

where C is a constant to be fixed later. For convenience, let us define the
operator

F [y](t) =
∫ t

0

(p(s)− ay(s))ds− k arcsin y.

Then, we get
y′ =

√
1− y2φ−1 (F [y](t) + C) .

Finally, a new integration gives

y(t) =
∫ t

0

√
1− y2φ−1 (F [y](t) + C) ds + D.

Lemma 1 For any y ∈ C̃T , there exists a unique choice of Cy, Dy such that

T [y](t) ≡
∫ t

0

√
1− y2φ−1 (F [y](t) + Cy) ds + Dy ∈ C̃T . (2.4)

Proof. . Periodicity is equivalent to∫ T

0

√
1− y2φ−1 (F [y](t) + Cy) ds = 0.

As a function of Cy, the left-hand side of this equation is continuous and in-
creasing, so the existence of a unique solution Cy for such equation follows from
a basic application of the Mean Value Theorem. Once Cy is fixed, Dy is given
by

Dy = − 1
T

∫ T

0

∫ t

0

√
1− y(s)2φ−1 (F [y](s) + Cy) dsdt.

ut

Therefore, we have a well-defined functional T : C̃T → C̃T . It is easy to
prove that it is continuous and compact. Let us define the closed and convex
set

K = {y ∈ C̃T : ‖y‖∞ ≤ 2cT}.
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Take y ∈ K. Note that
∥∥φ−1[y]

∥∥
∞ < c for every h ∈ CT . Therefore,

|T [y](t)| ≤ 2
∣∣∣∣∫ t

0

√
1− y(s)2φ−1 (F [y](s) + Cy) ds

∣∣∣∣ < 2cT.

for all t. In consequence, by the Schauder’s fixed point Theorem there exists
a T -periodic solution y of (2.3). The hypothesis 2cT ≤ 1 enables to invert the
change and hence x = arcsin y is a T -periodic solution of the original equation
(1.1).

As a final note, let us remark that the same proof works if the linear friction
term kx′ is replaced by h(x)x′ without further restrictions on the continuous
function h.
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