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1 Introduction

Consider the forced pendulum equation

ẍ+ a sinx = f(t) (1)

where a > 0 is a parameter and f : R → R is a continuous and T -periodic
function with ∫ T

0
f(t)dt = 0. (2)

The paper by Mawhin [7] contains a very complete survey on this problem.
As can be seen in that survey, many of the known properties for (1)-(2) are
of generic nature. This means that they do not need to hold for all forcings
f but just for a sub-class which is large in the sense of category. Among the
known generic properties we mention:

(a) finite number of T -periodic solutions
(b) existence of infinitely many sub-harmonic solutions
(c) chaotic dynamics.
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At this moment it is convenient to mention that the periodicity of the
equation implies that if x(t) is a solution then x(t) + 2π is also a solu-
tion. For this reason the properties (a) and (b) refer to solutions satisfying
x(0) ∈ [0, 2π] and the dynamics in (c) is analyzed in the cylinder (x(0), ẋ(0))
with x(0) ≡ x(0) + 2π. The property (a) does not hold for f ≡ 0 and
a > (2π

T )2. This shows that the nature of (a) is indeed generic. Also (c) fails
if f ≡ 0. As far as I know, it has not been decided if the property (b) holds
for all forcings. Concerning the proofs, the genericity of the property (a) is
a direct consequence of the results in [6]. The genericity of (b) follows from
a result by Fonda and Willem [3] together with [6]. The genericity of (c)
is proved by Bosetto, Serra and Terracini in [2]. All these proofs have used
another generic property obtained in [6],

(d) every T -periodic solution is non-degenerate.

Let us recall that a T -periodic solution x(t) is non-degenerate if y ≡ 0 is the
unique T -periodic solution of the variational equation

ÿ + (a cosx(t))y = 0. (3)

The property (d) looks rather technical but it seems an useful tool for the
obtention of other generic results.

Up to now I have not been precise on the meaning of genericity. To
remedy this, let us consider the set F of T -periodic and continuous functions
satisfying (2). It becomes a Banach space with the norm

||f ||∞ = max
t∈R

|f(t)|.

A set G ⊂ F is generic if there exists a sequence {Gn}n∈N of open and dense
subsets of F such that

⋂
n∈N Gn ⊂ G. This is the standard notion of large

set in the sense of category. In spaces of finite dimension large sets can
be understood also in the sense of measure. The duality between measure
and category is nicely described in the book by Oxtoby [9]. For infinite
dimensional spaces like F , a prevalent set can be seen as the analogue of a
set of full measure in finite dimension. The papers by Ott and Yorke [8] and
by Fraysse, Jaffard and Kahane [4] discuss this point in detail. Once the
notion of prevalence is available, it seems natural to ask whether the known
generic results for the pendulum equation are also prevalent. In this paper
we prove that the property (d) is prevalent.

Theorem 1 There exists an open and prevalent set R ⊂ F such that (d)
holds for each f ∈ R.
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Prevalent sets are dense in the ambient space and so R is large in both
senses, category and prevalence.

The rest of the paper is divided in two sections. First we present a
prevalent version of the theorem of parametric transversality. There are
related results by Kaloshin [5] and Shannon [10] but our assumptions are
slightly different. In the last section of the paper the abstract transversality
theorem is applied to the pendulum equation. The proof does not use many
properties of the sine function and the pendulum has been replaced by an
equation of the type

ẍ+ s(x) = f(t)

where s(x) is a rather general periodic function.

2 A transversality theorem

Let E be a separable Banach space of infinite dimension. A subset N of E is
Haar-null if there exist a Borel set B and a Borel measure µ on E such that

• N ⊂ B

• 0 < µ(C) <∞ for some compact subset C of E

• µ(e+ B) = 0 for each e ∈ E.

Compact sets are always Haar-null. Also, a countable union of Haar-null
sets is Haar-null. We refer to [8] for a proof of these results as well as for
additional information on the notion of Haar-null sets, also called shy sets.
A subset of E is prevalent if its complement is Haar-null. A prevalent set
can be small in the sense of category but it is always dense in E.

Given a vector e ∈ E with norm ||e||, the open ball of radius r centered
at e is denoted by

B(e, r) = {f ∈ E : ||f − e|| < r}.

The norm of a vector ξ in the space of finite dimension Rd will be denoted
by |ξ|. We will work with a map

h : Rd × E → Rd, (ξ, e) 7→ h(ξ, e)

and we are interested in the set of zeros

Z = {(ξ, e) ∈ Rd × E : h(ξ, e) = 0}.
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We impose three conditions on the map h, the first of them is concerned
with the differentiability (in Fréchet sense),

(C1) h ∈ C1(Rd × E,Rd).

The partial derivatives will be denoted by ∂1h(t, ξ) and ∂2h(t, ξ) respec-
tively. At each point (ξ, e) the derivative ∂1h can be interpreted as an
endomorphism of Rd or as a matrix of dimension d× d. The derivative ∂2h
is a bounded linear operator from E to Rd. The second condition on h is
concerned with this derivative.

(C2) There exists a compact set K ⊂ E such that the linear operator
∂2h(t, ξ) : E → Rd is onto if (ξ, e) ∈ Z and e 6∈ K.

The last condition is concerned with the existence of a priori bounds for the
zeros of h.

(C3) Given b > 0 there exists B > 0 such that if (ξ, e) ∈ Z and ||e|| ≤ b
then |ξ| ≤ B.

Theorem 2 Assume that the conditions (C1), (C2) and (C3) hold. Then
the set

R = {e ∈ E : 0 is a regular value of h(·, e)}
is open and prevalent.

Remarks. 1. The map h(·, e) goes from Rd into Rd. In this setting, to say
that 0 is a regular value is equivalent to the non-degeneracy of the zeros of
h(·, e); that is, det[∂1h(ξ, e)] 6= 0 for each ξ ∈ Rd such that h(ξ, e) = 0.
2. The condition (C3) can be weakened if h satisfies a periodicity condition.
More precisely, assume that

h(T (ξ), e) = h(ξ, e), (4)

where T (ξ1, ξ2, ..., ξd) = (ξ1 + 2π, ξ2, ..., ξd). Then the condition (C3) in the
previous theorem can be replaced by

(C3)per Given b > 0 there exists B > 0 such that if (ξ, e) ∈ Z and ||e|| ≤ b

then |ξ̂| ≤ B, where ξ̂ = (ξ2, ..., ξd)

Notice that, in contrast with (C3), no bound is required on the first coordi-
nate ξ1.

Two preliminary results are needed before the proof of theorem 2.

Lemma 3 A subset N of E is Haar-null if there exist a Borel set B∗ and
a compact set K such that N ⊂ B∗ and the property below holds for each
e ∈ E \K,
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(Pe) There exist ε > 0, an integer N ≥ 1 and linearly independent vectors
e∗1, . . . , e

∗
N in E such that if ||e− f || < ε then

meas({λ ∈ HN : f +
N∑

i=1

λie
∗
i ∈ B∗}) = 0.

Here HN is the N -dimensional hypercube ] − 1, 1[× · · ·×] − 1, 1[ and meas
stands for the Lebesgue measure in RN .

Proof. This result is essentially contained in [8] but a complete proof will
be presented. The numbers ε and N in the property (Pe) depend on e and
we write ε = εe and N = Ne to emphasize this dependence. Define also
δe = 1

2εe. The family of open balls {B(e, δe)}e∈E\K covers E \ K. The
space E is separable and so Lindelöf theorem applies (see [11]).Therefore it
is possible to find a family {en : n ∈ A} with en ∈ E \K and A ⊂ N and
such that

E \K ⊂
⋃
n∈A

B(en, δn),

where δn = δen . Let us consider the Borel set B∗n = B∗ ∩ B(en, δn). We
prove that B∗n is Haar-null. To this end we use that the property (Pe) holds
for e = en and consider the space F spanned by e∗1, . . . , e

∗
N . Notice that also

F depends on n but we do not make explicit this dependence. The map
λ = (λ1, . . . , λN ) 7→

∑N
i=1 λie

∗
i defines an isomorphism between RN and F .

The Lebesgue measure transported to F will be denoted by measF and HF

will be the image of the hypercube in F . We define the Borel measure on E,

µ(B) = measF [(B ∩B(en, δn) ∩ (en + HF ))− en].

This is a measure supported on B(en, δn) ∩ (en + HF ) and the compact set
en + HF satisfies 0 < µ(HF ) ≤ 2N . To prove that

µ(ϕ+ B∗n) = 0 for each ϕ ∈ E

we distinguish two cases. Assume first that ||ϕ|| ≥ εn with εn = 2δn. In this
case the set ϕ+B∗n is outside the support of µ. In fact the balls ϕ+B(en, δn)
and B(en, δn) are disjoint and so

(ϕ+ B∗n) ∩B(en, δn) ⊂ (ϕ+B(en, δn)) ∩B(en, δn) = ∅.

To discuss the second case we assume that ||ϕ|| < εn. Now it is more
convenient to express µ directly in terms of the Lebesgue measure in RN .
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More precisely,

µ(ϕ+ B∗n) = meas({λ ∈ HN : en +
N∑

i=1

λie
∗
i ∈ (ϕ+ B∗n) ∩B(en, δn)}).

Since B∗n is contained in B∗,

µ(ϕ+ B∗n) ≤ meas({λ ∈ HN : en − ϕ+
N∑

i=1

λie
∗
i ∈ B∗}),

and we can apply (Pe) with e = en and f = en − ϕ.
Once we know that each B∗n is Haar-null, we arrive easily to the conclu-

sion of the lemma because N is contained in K ∪ [
⋃

n∈A B∗n].

The second preliminary result is an analogue of theorem 2 in finite di-
mensions. It is inspired by lemma 1 in [5] and lemma 3.2 in [10].

Lemma 4 Let H : Rd ×HN → Rd, (ξ, λ) 7→ H(ξ, λ) be a C1 function and
let Z = H−1(0) be the set of zeros. Assume that for each (ξ, λ) ∈ Z the
second partial derivative is onto. This condition can be expressed in terms
of the rank of matrices by

rank[
∂H

∂λ
(ξ, λ)] = d if (ξ, λ) ∈ Z.

Then
R = {λ ∈ HN : 0 is a regular value of H(·, λ)}

is of full measure in HN ; that is, meas(R) = 2N .

Proof. The assumptions imply that 0 is a regular value of H and so Z is
a manifold of class C1 and dimension N . Given a point (ξ, λ) in Z, vectors
lying in the tangent space T(ξ,λ)(Z) will be denoted by (ξ̇, λ̇). These are the
vectors (ξ̇, λ̇) ∈ Rd × RN satisfying

∂H

∂ξ
(ξ, λ)ξ̇ +

∂H

∂λ
(ξ, λ)λ̇ = 0. (5)

The projections π1(ξ, λ) = ξ and π2(ξ, λ) = λ can be restricted to the
manifold Z. These restrictions, denoted again by πi, are functions of class
C1 whose differentials (dπi)(ξ,λ) are the restrictions of πi to the tangent
space. From the identity (5) we deduce that

∂H

∂ξ
(ξ, λ) ◦ (dπ1)(ξ,λ) = −∂H

∂λ
(ξ, λ) ◦ (dπ2)(ξ,λ). (6)
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We intend to apply Sard’s lemma to π2 : Z → RN . This map has the
required smoothness but the classical version of the lemma only deals with
maps between Euclidean spaces. To overcome this difficulty one can use a
version of Sard’s lemma on manifolds (see [5] and [1]) but there is a simpler
approach in our case. After invoking again Lindelöf theorem, this time on
Rd × RN , we cover Z with a countable family of charts, then the classical
version of the lemma is applied to the composition of π2 with each chart.
In any of the two ways we conclude that the set R̃ of regular values of
π2 : Z → RN is of full measure in RN . Given λ ∈ R̃∩HN , for each (ξ, λ) ∈ Z
we know that the differential (dπ2)(ξ,λ) : T(ξ,λ)(Z) → RN , (λ̇, ξ̇) 7→ λ̇ is an
isomorphism. From the assumption we conclude that −∂H

∂λ (ξ, λ) ◦ (dπ2)(ξ,λ)

is onto. The identity (6) implies that ∂H
∂ξ (ξ, λ) is also onto. Since this map

is an endomorphism of Rd we conclude that det[∂H
∂ξ (ξ, λ)] 6= 0. Summing

up, we have proved that 0 is a regular value of H(·, λ) if λ ∈ R̃ ∩ HN . In
consequence R̃ ∩HN is contained in R and the proof is complete.

Proof of theorem 2. We divide the proof in three steps.
Step 1: R is open.
We prove that the complement E \ R is closed. Given a sequence en 6∈ R
converging to e∞, we must prove that e∞ is not in R. From the definition
of R we find a sequence of degenerate zeros (ξn, en) ∈ Z. They satisfy

h(ξn, en) = 0, det[∂1h(ξn, en)] = 0. (7)

From (C3) we deduce that the sequence ξn is bounded and so we can extract
a convergent subsequence ξk. Let ξ∞ be the limit. Letting k → ∞ in (7),
we deduce that ξ∞ is a degenerate zero of h(·, e∞) and so e∞ 6∈ R.

When h is periodic and (C3) is replaced by (C3)per, the previous argu-
ment needs some modifications. By periodicity we find another sequence
(ζn, en) with ξn − ζn ∈ 2πZ and ζn ∈ [0, 2π]. Moreover, the differential of h
coincides at the points (ξn, en) and (ζn, en). By (C3)per we know that ζ̂n is
bounded and the rest of the proof is the same.

Given a subspace F of E we consider the restriction of ∂2h(ξ, e) to F .
This is a linear operator that will be denoted by ∂2,Fh(ξ, e) : F → Rd. Also,
for each e ∈ E, we employ the notation

Ze = {ξ ∈ Rd : (ξ, e) ∈ Z}.

Step 2: Given e ∈ E \K there exists a subspace F of E of finite dimension
and such that ∂2,Fh(ξ, e) is onto for every ξ ∈ Ze.
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We apply (C2) to each ξ ∈ Ze and find vectors f (ξ)
1 , . . . , f

(ξ)
d ∈ E with

∂2h(ξ, e)f
(ξ)
i = ci, i = 1, . . . , d,

where c1, . . . , cd is the canonical basis of Rd. The continuity of ∂2h implies
the existence of a number δξ > 0 such that the family {∂2h(ξ∗, e)f

(ξ)
i }1≤i≤d

is a basis of Rd if |ξ − ξ∗| ≤ δξ. The condition (C3) and the continuity
of h imply in particular that Ze is compact. Then we can find a finite set
ξ1, . . . , ξr ∈ Ze such that the balls

B1 = B(ξ1, δξ1), . . . , Br = B(ξr, δξr)

is a covering of Ze. We put all the vectors f (ξj)
i together, with i = 1, . . . , d

and j = 1, . . . , r. They span a vector space F having at most dimension r ·d.
We claim that F satisfies the conditions of Step 2. Indeed, given ξ ∈ Ze

we find some j ∈ {1, . . . , r} with |ξ − ξj | < δξj
and so the family of vectors

∂2h(ξ, e)f
(ξj)
i , i = 1, . . . , d, is a basis of Rd.

When h is periodic and (C3)per holds, the set Ze is not compact but the
proof still works if one replaces Ze by

Z̃e = Ze ∩ {ξ1 ∈ [0, 2π]}.

Given a vector e ∈ E and N linearly independent vectors ϕ1, . . . , ϕN ∈ E we
define the function

H : Rd × RN → Rd, H(ξ, λ) = h(ξ, e+
N∑

i=1

λiϕi).

At some moment it will be convenient to emphasize the dependence of H
with respect to e and we will write H = H(ξ, λ; e). The function H is of
class C1 and if we select e ∈ E \K and a basis ϕ1, . . . , ϕN of the subspace
F given by step 2, then

rank[
∂H

∂λ
(ξ, 0)] = d for each ξ ∈ Ze. (8)

Step 3: Given e ∈ E \K there exist ε > 0 and a basis ϕ1, . . . , ϕN of F such
that if f ∈ E and ||f − e|| < ε then

rank[
∂H

∂λ
(ξ, λ; f)] = d if H(ξ, λ, f) = 0 and λ ∈ HN .
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Let us fix a basis ϕ̂1, . . . , ϕ̂N of F and construct the associated function H.
We claim that there exists η > 0 such that

rank[
∂H

∂λ
(ξ, λ; f)] = d if H(ξ, λ, f) = 0 and |λ| ≤ η, ||f − e|| ≤ η.

This claim is proved by contradiction. Assume the existence of a sequence
(ξn, λn; fn) with rank[∂H

∂λ (ξn, λn; fn)] < d and H(ξn, λn; fn) = 0, |λn| ≤ 1
n ,

||fn− e|| ≤ 1
n . From (C3) we deduce that ξn is bounded. After extracting a

subsequence ξk → ξ∞ we notice thatH(ξ∞, 0; e) = 0 and rank[∂H
∂λ (ξ∞, 0; e)] <

d. This is a contradiction with step 2 since ξ∞ belongs to Ze. The proof of
step 3 is complete if we consider the basis ϕi = 1

η ϕ̂i.
The modifications for the periodic case are now rather obvious. We

replace Zη by Z̃η = Zη ∩ {ξ1 ∈ [0, 2π]} and proceed as before.
After these steps we are ready for the proof of the theorem. We want to

apply lemma 3 with N = B∗ = E \ R. Given e ∈ E \K we must check the
property (Pe). We know from step 3 that the assumption of lemma 4 holds
for H(·, ·; f) if ||f −e|| < ε. Then 0 is a regular value of H(·, λ; f) for almost
every λ in HN . Since h(·, f +

∑N
i=1 λiϕi) = H(·, λ; f), we conclude that

meas({λ ∈ HN : f +
N∑

i=1

λiϕi 6∈ R}) = 0.

3 General periodic non-linearities

In this section we work with a function s : R → R of class C1 satisfying

(σ1) s(x+ 2π) = s(x) for each x ∈ R,

(σ2) s is not locally trivial.

The condition (σ2) means that for every open and non-empty interval I ⊂ R
there exists some x ∈ I such that s(x) 6= 0. The function s(x) = a sinx+ b
satisfies both conditions if (a, b) 6= (0, 0).

Consider the differential equation

ẍ+ s(x) = f(t) (9)

with f ∈ F . Given a T -periodic solution x(t) of (9), the variational equation
is

ÿ + s′(x(t))y = 0. (10)

We say that x(t) is non-degenerate if y ≡ 0 is the unique T -periodic solution
of (10).
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Theorem 5 Assume that (σ1) and (σ2) hold. Then the set

R = {f ∈ F : every T − periodic solution of (9) is non− degenerate}

is open and prevalent.

The condition (σ1) is not sufficient to prove the theorem because R = ∅ if
s ≡ 0. At the end of the paper it will be shown that (σ2) is optimal.

The proof of the theorem will consist in an application of theorem 2 with
E = F and d = 2. Before the proof we need some preliminary remarks. We
work with column vectors ξ = (ξ1, ξ2)∗ ∈ R2 and the norm |ξ| = |ξ1|+ |ξ2|.
In the space of 2× 2 matrices R2×2 we consider the associated norm

|A| = max
|ξ|≤1

|Aξ| = max{|a11|+ |a21|, |a12|+ |a22|},

where A = (aij) ∈ R2×2. The space of bounded linear operators from F to
R2 will be denoted by L(F ,R2) with norm

||L|| = sup{|Lf | : f ∈ F , ||f ||∞ ≤ 1}

if L ∈ L(F ,R2). The integral operator

L : F → R2, L(f) =
∫ T

0
f(t)(ψ1(t), ψ2(t))∗dt

belongs to L(F ,R2) if ψ1, ψ2 : [0, T ] → R are two given integrable functions.
We present a preliminary result on this class of operators.

Lemma 6 Assume that ψ1 and ψ2 are functions in C1[0, T ]. The following
statements are equivalent:
(i) The derivatives ψ̇1 and ψ̇2 are linearly independent in C[0, T ],
(ii) The map L ∈ L(F ,R2) is onto.

Proof. The condition (ii) is equivalent to
(ii)∗ The functionals `i : F → R, `i(f) =

∫ T
0 f(t)ψi(t)dt, i = 1, 2, are

linearly independent in the dual space F∗.
This is a consequence of general arguments in abstract Linear Algebra. We
also recall that if ψ ∈ C1[0, T ] then the condition∫ T

0
f(t)ψ(t)dt = 0 for each f ∈ F

10



is equivalent to ψ̇ ≡ 0. From this last statement we notice that if k1, k2 ∈ R,
the identity in F∗

k1`1 + k2`2 = 0

is equivalent to k1ψ̇1 + k2ψ̇2 ≡ 0. The equivalence of (i) and (ii)∗ follows.

Proof of theorem 5. Given ξ = (ξ1, ξ2)∗ ∈ R2 and f ∈ F , the solution of
the initial value problem

ẍ+ s(x) = f(t), x(0) = ξ1, ẋ(0) = ξ2 (11)

will be denoted by x(t; ξ, f). Since s is bounded, this solution is globally
defined. The notations Φ(t) and Φ(t; ξ, f) will be employed for the matrix
solution of

Ẏ = A(t)Y, Y (0) = I2, with A(t) =
(

0 1
−s′(x(t; ξ, f)) 0

)
. (12)

Notice that this first order system is associated to the variational equation
(10). The theorem on continuous dependence can be applied to the Cauchy
problems (11) and (12). It implies that the map

(t; ξ, f) ∈ R× R2 ×F 7→ Φ(t; ξ, f) ∈ R2×2

is continuous. In particular it is uniformly continuous on compact sets. This
implies that if ξn → ξ and ||fn − f ||∞ → 0 then

Φ(t; ξn, fn) → Φ(t; ξ, f) uniformly in t ∈ [0, T ].

We also consider the map

h : R2 ×F → R2, h(ξ, f) = (x(T ; ξ, f)− ξ1, ẋ(T ; ξ, f)− ξ2)∗

and observe that the zeros of h(·, f) are the initial conditions producing
T -periodic solutions. This map is continuous and the theorem on differ-
entiability with respect to initial conditions and parameters implies that
it is Gâteaux differentiable with partial derivatives ∂1h(ξ, f) ∈ R2×2 and
∂2h(ξ, f) ∈ L(F ,R2) given by

∂1h(ξ, f) = Φ(T ; ξ, f)− I2, ∂2h(ξ, f)g = (y(T ), ẏ(T ))∗

where g is an arbitrary function in F and y(t) is the solution of

ÿ + s′(x(t; ξ, f))y = g(t), y(0) = ẏ(0) = 0.

11



A more explicit expression for y(t) can be obtained via the formula of vari-
ation of constants and the identity detΦ(t; ξ, f) = 1,

y(t) =
∫ T

0
G(t, s; ξ, f)g(s)ds (13)

and G(t, s; ξ, f) = φ2(t)φ1(s)− φ2(s)φ1(t), φi = φi(·; ξ, f). Similarly,

ẏ(t) =
∫ T

0

∂G

∂t
(t, s; ξ, f)g(s)ds. (14)

The continuity of Φ and the formulas (13) and (14) can be employed to prove
the continuity of the partial derivatives of h. In particular the continuity of
(ξ, f) ∈ R2 ×F 7→ ∂2h(ξ, f) ∈ L(F ,R2) is a consequence of the estimate

||∂2h(ξ, f)− ∂2h(ξ̂, f̂)|| ≤∫ T

0
{|G(T, s; ξ, f)−G(T, s; ξ̂, f̂)|+ |∂G

∂t
(T, s; ξ, f)− ∂G

∂t
(T, s; ξ̂, f̂)|}ds.

The previous discussions show that h is Fréchet differentiable and (C1)
holds. The condition (σ1) implies that x(t;T (ξ), f) = x(t; ξ, f) + 2π. From
here we deduce that h satisfies the periodicity condition (4) and we check
(C3)per. Given (ξ, f) ∈ Z we know that x(t; ξ, f) is a T -periodic solution of
(9). Hence

||ẍ(·; ξ, f)||∞ ≤ ||s||∞ + ||f ||∞.
The periodicity of x(·; ξ, f) implies that the derivative vanishes somewhere,
say ẋ(τ ; ξ, f) = 0 for some τ ∈ [0, T ]. Then

|ξ2| = |ẋ(0; ξ, f)| = |
∫ τ

0
ẍ(t; ξ, f)dt| ≤ (||s||∞ + ||f ||∞)T.

The condition (C3)per holds with B = (||s||∞ + b)T .
To check (C2) we define K = {0} and prove that ∂2h(ξ, f) : F → R2 is

onto if (ξ, f) ∈ Z and f 6≡ 0. After some manipulations with the formulas
(13) and (14) we obtain

∂2h(ξ, f)g = Φ(T ; ξ, f)J
∫ T

0
g(t)(φ1(t), φ2(t))∗dt

with J =
(

0 −1
1 0

)
. Since Φ and J have an inverse, it is enough to prove

that

L : g ∈ F 7→
∫ T

0
g(t)(φ1(t), φ2(t))∗dt ∈ R2
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is onto. In view of lemma 6 we must prove that φ̇1 and φ̇2 are linearly
independent. Actually we will prove that the Wronskian of these functions is
not identically zero. From the equation (10) and the identity W (φ1, φ2) ≡ 1,

W (φ̇1, φ̇2) = φ̇1φ̈2 − φ̇2φ̈1 = s′(x(t; ξ, f))(φ1φ̇2 − φ2φ̇1) = s′(x(t; ξ, f)).

Assume by contradiction that W (φ̇1, φ̇2) ≡ 0. Then s′(x(t; ξ, f)) vanishes
identically and so s(x(t; ξ, f)) is a constant k. From the equation (9), f(t) =
ẍ(t; ξ, f)+k. The solution x(t; ξ, f) is T -periodic and f has zero average and
hence k = 0. In consequence also s(x(t; ξ, f)) vanishes identically and the
assumption (σ2) implies that x(t; ξ, f) must be constant. Then f(t) = k = 0
but this forcing has been excluded by the definition of K. The proof of
the theorem is complete because the sets R appearing in theorems 2 and
5 are the same. Notice that 0 is a regular value of h(·, f) if and only if
det[Φ(T ; ξ, f)− I2] 6= 0 for each T -periodic solution x(t; ξ, f).

We finish the paper with a result on the sharpness of the condition (σ2).
The set R is the same as in theorem 5.

Proposition 7 Assume that s ∈ C1(R) vanishes on some open and non-
empty interval I ⊂ R. Then there exists an open and non-empty subset
D ⊂ F with D ∩R = ∅.

Proof. Given f ∈ F let F be the unique solution of

F̈ = f(t), F ∈ F .

The linear operator f ∈ F 7→ F ∈ F is bounded. We pick a point x∗ ∈ I
and define

D = {f ∈ F : x∗ + F (R) ⊂ I}.

This set contains f ≡ 0 and is open. Moreover, if f ∈ D then x(t) = x∗+F (t)
is a T -periodic solution of (9) and the variational equation (10) becomes
ÿ = 0. In consequence x(t) is degenerate and f 6∈ R.
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